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ABSTRACT

1,4-Pentadienyl-3-sulfonamides afford products including those resulting from disfavored 5-endo-trig reactions when subjected to radical
cyclization conditions. Products resulting from pathways featuring 4-exo-trig cyclizations are also detected, even when the 4-exo-trig reaction
leads to a highly strained bicyclo[3.2.0] ring system.

The outcome of radical cyclization reactions can usually be
predicted by applying the rules that were announced by
Baldwin1 25 years ago (and subsequently developed by
Beckwith2 in specific relation to radical cases). The examples
in Baldwin’s original papers focused especially on the
disfavored nature of 5-endo-trigreactions. 5-Endo-trigradical
cyclizations are rare,3,4 and steric and electronic factors are
frequently present3 that help to mitigate the unfavorable

factors. We now report a novel specific series of sulfon-
amides that flout the 5-endo-trig guideline, where there is
no obvious rationalization for this behavior.

Dienes15 were treated with tributyltin hydride and AIBN
and afforded6 the expected products2. However, the yield
of 2 was very low, and further investigation revealed that a
second type of product was present as a mixture of
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(5) Compounds1, 7, 15, 16, and24were prepared by Mitsunobu coupling
of the corresponding 1,4-dien-3-ols with the appropriate sulfonamide. In
the cases of7, 15, 16, and24 the desired product was contaminated by the
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Diels-Alder reaction with 4-phenyl-1,3,4-triazoline-2,5-dione followed by
chromatographic separation to leave the pure desired products.

(6) A mixture of tributyltin hydride (1.5 equiv) and AIBN (0.25 equiv)
in solution in benzene was added by syringe pump over 7-12 h to the
substrate (10 mM in benzene) while heating under reflux. Treatment with
iodine and DBU, filtration, and chromatography afforded the products;
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diastereoisomers. This structure was assigned as6, and this
was confirmed by selective crystallization of one of the
isomers6* and subsequent single-crystal X-ray structure
determination.

Two pathways were considered for formation of cyclo-
pentene6: (a) 5-endo-trigcyclization of intermediate3 to
afford the cyclopropylcarbinyl radical4, which following
fragmentation and hydrogen atom abstraction afforded6, or
(b) a fragmentation-cyclization pathway via5. Although
the fragmentation to a vinyl radical,5, would not be favored
on energetic grounds, slow progress through an unfavorable
equilibrium might, in principle, afford5, which should then
cyclize in a favorable 5-exo-trig mode onto the activated
alkene to yield the observed product6 following hydrogen
atom abstraction. To distinguish between the two possible
mechanisms and to explore the scope of the reaction,
substrate7a was prepared and subjected to radical cycliza-
tion. This afforded both the product expected from 5-exo-
trig cyclization followed by reductive termination,8a (as a
mixture of isomers) and the 5-endoproduct9a, the latter
being thepredominantproduct. Intriguingly, it also afforded
the indole10 (20%). This product can be rationalized by a
second cyclization (4-exo-trig) of 11 cisto afford the highly

strained bicyclo[3.2.0] intermediate12. (To our knowledge,
this is the first example of a radical cyclization to form the
four-membered ring of a bicyclo[3.2.0] system). Fragmenta-
tion of this radical,12, produces the somewhat stabilized
indolinyl intermediate13, which yields14 by loss of the
sulfinyl radical and then tautomerizes to indole10. Variation
of the sulfonamide group as in7b,c altered the relative yield
of the products: “normal” product8b, (12%), 8c (0%),
5-endoproduct9b, (29%), 9c (25%), and indole10 (24%
from 7b, 31% from7c).

The formation of products9 in these reactions cannot occur
by a fragmentation route as discussed for the substrate (1)
and clearly demonstrates that the normally disfavored 5-endo-
trig pathway is in operation. To test the generality of the
reaction, the seven- and eight-membered ring dienes15 and
16 were then prepared. Cyclization of15 led to the tricycle
17 (50%). If tetracyclic radicals19and20were formed, their
reversal to18was too rapid to permit reduction by tributyltin
hydride. By contrast, however, the eight-membered substrate
16 afforded not only the simple tricyclic product21 (20%)
but also the two products resulting from transannular
cyclization,22 (37%) and the indole23 (10%). This con-
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jugated product must arise by tautomerism of the initially
formed isomer.

All of the examples reported above feature an aryl ring;
to see if this was a prerequisite for the 5-endocyclization,
chloroamide (24) was prepared and treated with tributyltin
hydride under the normal conditions. This afforded the
expected monocyclic pyrrolidine product (25, 48%) as the
principal product. However, the bicyclic amide (26, 15%),
resulting from 5-endocyclization, was also formed.

It is clear that the dienesulfonamide substrates examined
in this study constitute a class of compounds that undergo
normally disfavored radical cyclizations with unusual ease.
The examples studied in this communication all feature
unactivated alkenes and use tributyltin hydride, which
features a relatively weak Sn-H bond. Extension of the

studies to substrates with activated radical acceptor sites and
alternative radical-chain carriers is currently under investiga-
tion.
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