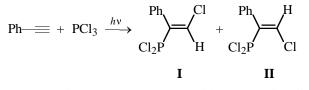
Russian Journal of General Chemistry, Vol. 71, No. 5, 2001, p. 813. Translated from Zhurnal Obshchei Khimii, Vol. 71, No. 5, 2001, p. 866. Original Russian Text Copyright © 2001 by Borovinskii, Krivchun, Ionin.

> LETTERS TO THE EDITOR

Photochemical Chlorophosphination of Phenylacetylene


K. I. Borovinskii, M. N. Krivchun, and B. I. Ionin

St. Petersburg State Institute of Technology, St. Petersburg, Russia

Received December 26, 2000

It is known that under UV irradiation phosphorus tribromide adds across multiple bonds to form the corresponding P(III) adducts [1–3]. However, PCl₃ does not add under these conditions. Although study by chemically induced dynamic nuclear polarization did reveal formation of products upon irradiation of a mixture of phenylacetylene with PCl₃, the reaction products were not isolated [2]. Addition products were isolated only when the reaction was induced by γ -irradiation [4] or sensitized with PBr₃ [3]. Addition of PCl₃ to alkylthiochloroacetylene under UV irradiation was reported in [5].

We found that under irradiation with an immersion mercury lamp PCl₃ regiospecifically and with a high regioselectivity adds to phenylacetylene to form 1-phenyl-2-chlorovinyldichlorophosphine (isomer ratio $E: Z \ 97: 3$).

The reaction does not occur without UV irradiation. Compound I was isolated and oxidized to the corresponding phosphonyl dichloride; the physicochemical parameters of the latter agree with published data [6].

The structure of the products was proved by 1 H, 13 C, and 31 P NMR spectroscopy.

1-Phenyl-2-chlorovinyldichlorophosphine (I, II). Phenylacetylene (40 g) was added dropwise with stirring over a period of 1 h at $20-40^{\circ}$ C to 345.4 g of PCl₃ irradiated with an immersion mercury UV lamp. After adding the whole amount of phenylacetylene, the mixture was irradiated for an additional 1 h. Then unchanged PCl₃ and phenylacetylene were distilled off, and the residue was distilled in a vacuum. A fraction (40.7 g) boiling at $100-105^{\circ}$ C (1 mm Hg) was obtained; it contained, according to the ³¹P NMR spectrum, 97% *E* isomer **I** and 3% *Z* isomer **II**. *E* Isomer **I** was isolated with a yield of 37.7 g (39% based on phenylacetylene); bp 103° C (1 mm Hg), mp 26° C.

E-1-Phenyl-2-chlorovinyldichlorophosphine (I). ¹H NMR spectrum (CDCl₃), δ , ppm: 7.5 m (5H), 7.32 d (1H, ³J_{PH} 10.81 Hz). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 145.65 d (C¹, ¹J_{CP} 65.02 Hz), 131.61 d (C², ²J_{CP} 89.48 Hz), 131.15 d (C⁴, ²J_{CP} 4.58 Hz). ³¹P NMR spectrum (CDCl₃), $\delta_{\rm P}$, ppm: 152.48 d (³J_{PH} 10.81 Hz).

Z-1-Phenyl-2-chlorovinyldichlorophosphine (II). ¹H NMR spectrum (CDCl₃), δ , ppm: 7.5 m (5H), 6.86 d (1H, ³*J*_{PH} 14.61 Hz). ³¹P NMR spectrum (CDCl₃), δ_P , ppm: 148.23 d (³*J*_{PH} 14.61 Hz).

The ¹H, ¹³C, and ³¹P NMR spectra were taken with a Bruker C-200 spectrometer, working frequencies 200.132, 50.327, and 81.026 MHz, respectively. The chemical shifts are given relative to internal TMS (¹H, ¹³C) and external 85% H_3PO_4 (³¹P).

REFERENCES

- Sendyurev, M.V., Belyaeva, T.N., Kholmogorov, V.E., Petrov, A.A., Ionin, B.I., and Dogadina, A.V., *Zh. Obshch. Khim.*, 1981, vol. 51, no. 12, pp. 2803–2804.
- Sendyurev, M.V., Gol'dfarb, E.I., Ionin, B.I., and Buchachenko, A.L., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 7, pp. 1184–1185.
- Belyaeva, T.N., Krivchun, M.N., Sendyurev, M.V., Dogadina, A.V., Sokolov, V.V., Ionin, B.I., and Petrov, A.A., *Zh. Obshch. Khim.*, 1986, vol. 56, no. 5, pp. 1184–1185.
- Zagorets, P.A., Shostenko, A.G., and Dodonov, A.M., Zh. Obshch. Khim., 1975, vol. 45, no. 11, pp. 2365–2367.
- D'yachkova, S.G., Beskrylaya, E.A., Gusarova, N.K., Afonin, A.V., Nikitin, M.V., and Trofimov, B.A., *Zh. Obshch. Khim.*, 2000, vol. 70, no. 10, pp. 1628–1630.
- Kruglov, A.S., Dogadina, A.V., Ionin, B.I., and Petrov, A.A., *Zh. Obshch. Khim.*, 1978, vol. 48, no. 3, p. 705.

1070-3632/01/7105-0813 \$25.00 © 2001 MAIK "Nauka/Interperiodica"