Stereoselective Synthesis of 1,2-Aminoalcohols by [2,3]-Wittig Rearrangements

ORGANIC LETTERS 2007 Vol. 9, No. 17 3245-3248

Marion Barbazanges, Christophe Meyer,* and Janine Cossy

Laboratoire de Chimie Organique, ESPCI, CNRS, 10 rue Vauquelin 75231 Paris Cedex 05, France

christophe.meyer@espci.fr

Received May 18, 2007

ABSTRACT

[2,3]-Wittig rearrangements of (*E*)-3-aza-allylic alcohol derivatives can provide access to functionalized 1,2-aminoalcohols with high *syn* or *anti* diastereoselectivity depending on the anionic stabilizing group (amide or alkyne).

1,2-Aminoalcohols are encountered in a large number of natural products and/or biologically active compounds.¹ Moreover, optically enriched 1,2-aminoalcohols are often used as building blocks for the preparation of chiral catalysts used in a variety of enantioselective processes.² Numerous strategies have been developed to synthesize 1,2-aminoal-cohols. Among the different possible routes, those that involve formation of the σ bond between the two hetero-substituted carbons, with control of their configuration, essentially rely on the addition of α -amino or α -alkoxy carbon nucleophiles to carbonyl compounds or imines.^{3,4} Alternatively, reductive coupling reactions between C=N and C=O bonds can also be carried out.⁵ The preparation of α -alkoxy- β -aminoesters has also been described from α -alkoxy- γ , δ -unsaturated esters that can be obtained by a

[3,3]-glycolate Claisen rearrangement. In this latter approach, oxidative cleavage of the double bond to the corresponding acid and subsequent Schmidt reaction were used to introduce the amino substituent.⁶ However, to our knowledge, there are no examples of direct formation of the σ bond between the two heterosubstituted carbons in 1,2-aminoalcohols that relies on sigmatropic rearrangements. Herein, we report our results on the [2,3]-Wittig rearrangement of derivatives of

(6) Jung, D. Y.; Kang, S.; Chang, S.; Kim, Y. H. Synlett 2006, 86-90.

^{(1) (}a) Lee, H.-S.; Kang, S. H. Synlett **2004**, 1673–1685. (b) Bergmeier, S. C. Tetrahedron **2000**, 56, 2561–2576. (c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. **1996**, 96, 835–875. (d) Cardillo, G.; Tomasini, C. Chem. Soc. Rev. **1996**, 117–128. (e) Cole, D. C. Tetrahedron **1994**, 50, 9517–9582.

^{(2) (}a) Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; *Comprehensive Asymmetric Catalysis*, 1st ed.; Springer: Berlin, 1999. (b) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. *Chem. Rev.* **2000**, *100*, 2159–2232.

⁽³⁾ For selected references, see: (a) Ramasastry, S. S. V.; Zhang, H.; Tanaka, F.; Barbas, C. F., III J. Am. Chem. Soc. 2007, 129, 288–289. (b) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778–2779. (c) Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2006, 45, 7230–7233. (d) Enders, D.; Grondal, C.; Vrettou, M.; Raabe, G. Angew. Chem., Int. Ed. 2005, 44, 4079–4083. (e) Matsunaga, S.; Yoshida, T.; Morimoto, H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8777–8785. (f) List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827–833.

^{(4) (}a) Lombardo, M.; Mosconi, E.; Pasi, F.; Petrini, M.; Trombini, C. J. Org. Chem. **2007**, 72, 1834–1837. (b) Keinicke, L.; Fristrup, P.; Norrby, P.-O.; Madsen, R. J. Am. Chem. Soc. **2005**, 127, 15756–15761. (c) Reetz, M. T. Chem. Rev. **1999**, 99, 1121–1162. (d) Bloch, R. Chem. Rev. **1998**, 98, 1407–1438 and references cited in these articles.

⁽⁵⁾ Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Izumi, K.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2005, 127, 11956–11957 and references cited therein.

acyclic 3-aza-substituted allylic alcohols as a diastereoselective route to 1,2-aminoalcohols.

With the goal of synthesizing α -hydroxy- β -amino- γ , δ unsaturated carbonyl derivatives of type **A**, in which the double bond and the carbonyl group could undergo several transformations and hence give access to a variety of functionalized 1,2-aminoalcohols, it was envisaged to carry out the [2,3]-Wittig rearrangement of enamine derivatives of type **B**.⁷ The latter compounds would be synthesized from the 3-aza-allylic alcohols of type **C**. Although there has been one previous report dealing with [2,3]-Wittig rearrangements of substrates bearing an enol ether moiety,⁸ related reactions have apparently not been studied with enamine derivatives. As compounds of type **B** contain an enamine moiety and a potential allylic alkoxy leaving group, the nitrogen atom was substituted by an electron-withdrawing tosyl substituent (R' = Ts) to obtain stable enamide derivatives (Scheme 1).

A straightforward route toward allylic alcohols of type **C** starts with the conjugate addition of sulfonamides **1a**-**f** to methyl propiolate in the presence of *N*-methylmorpholine (NMM) (MeCN, 0 °C).⁹ The corresponding β -aminoacrylates were obtained as a mixture of geometric isomers with acceptable stereoselectivity in most cases [(*E*)/(*Z*) ≥ 80:20] except when R is a *p*-anisyl group [(*E*)/(*Z*) = 70:30]. After separation by flash chromatography, the major (*E*)- β -aminoacrylates **2a**-**f** were isolated in good yields (55–91%) and were reduced (DIBAL-H, CH₂Cl₂, -78 °C) to the corresponding (*E*)-allylic alcohols **3a**-**f** (84–99%) without alteration of the stereoisomeric purity (Table 1).

Though this access to 3-aza-allylic alcohols of type **C** was convenient, a stereoselective route to both geometric isomers of the latter compounds has also been secured. The coppercatalyzed coupling between sulfonamide **1a** and bromoalkyne **4** [CuSO₄•5H₂O, 1,10-phenanthroline, K₃PO₄, toluene, 60 °C] afforded the disubstituted ynamide **5** (99%).¹⁰ The latter was reduced to the (*Z*)-allylic alcohol **7** by conversion to an $(\eta^2$ -alkyne)Ti(II) complex followed by hydrolysis¹¹ and subsequent deprotection with TBAF (59%, two steps from **5**). On the other hand, deprotection of the hydroxyl group in

⁽¹⁰⁾ Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. **2004**, *6*, 1151–1154.

3246

Table 1. Synthesis of 3-aza-Allylic Alcohols of Type C							
$ \begin{array}{c} = & CO_2Me \\ Ts N^R \\ H \\ H \\ H \\ H \\ H \\ H \\ MeCN, 0 ^{\circ}C \\ 2 \\ CMe \\ CH_2CI_2, -78 ^{\circ}C \\ 3 \\ H \\ H \\ H \\ H \\ H \\ H \\ H$							
R	$(E)/(Z)^a$	2	yield $(\%)^b$	3	yield (%)		
Bn	92:8	2a	91	3a	95		
$CH_2CH(OMe)_2 \\$	87:13	2b	69	3b	99		
$(CH_2)_2CH=CH_2$	82:18	2c	82	3c	94		
$CH_2CH=CH_2$	88:12	2d	84	3d	99		
PMB	90:10	2e	90	3e	93		
PMP	70.30	2f	55	3f	84		
	le 1. Synthesis of Ts N^R N H MeC 1 R Bn CH ₂ CH(OMe) ₂ (CH ₂) ₂ CH=CH ₂ CH ₂ CH=CH ₂ PMB PMP	le 1. Synthesis of 3-aza-Al Ts N ^{,R} MMM H $MeCN, 0 °C$ 1 R $(E)/(Z)^{a}$ Bn 92:8 CH ₂ CH(OMe) ₂ 87:13 (CH ₂) ₂ CH=CH ₂ 82:18 CH ₂ CH=CH ₂ 88:12 PMB 90:10 PMP 70:30	le 1. Synthesis of 3-aza-Allylic Ts N ^{,R} MM H MeCN, 0 °C 1 R $(E)/(Z)^{a}$ 2 Bn 92:8 2a CH ₂ CH(OMe) ₂ 87:13 2b (CH ₂) ₂ CH=CH ₂ 82:18 2c CH ₂ CH=CH ₂ 88:12 2d PMB 90:10 2e PMP 70:30 2f	le 1. Synthesis of 3-aza-Allylic Alcohols of Ts N ^{,R} $\xrightarrow{NMM}_{MeCN, 0 \circ C}$ $\xrightarrow{Ts N,R}_{OMe} \xrightarrow{DIBAL-H}_{CH_2Cl_2, -78 \circ C}$ R (E)/(Z) ^a 2 yield (%) ^b Bn 92:8 2a 91 CH_2CH(OMe)_2 87:13 2b 69 (CH_2)_2CH=CH_2 82:18 2c 82 CH_2CH=CH_2 88:12 2d 84 PMB 90:10 2e 90 PMP 70:30 2f 55	le 1. Synthesis of 3-aza-Allylic Alcohols of Type $ \begin{array}{c} = -CO_2Me \\ \hline NMM \\ H \\ \hline MeCN, 0 \ ^{\circ}C \\ 1 \end{array} \xrightarrow{\begin{subarray}{c} CD_2 \\ \hline CH_2Cl_2, -78 \ ^{\circ}C \\ \hline CH_2Cl_2, $		

^{*a*} Determined by ¹H NMR and/or GC-MS. ^{*b*} Isolated yield of the (*E*) isomer.

ynamide **5** afforded the propargylic alcohol **6** which could be stereoselectively reduced (Red-Al, THF, rt) to the corresponding (*E*)-allylic alcohol **3a** (68%, two steps from **5**) (Scheme 2).

The 3-aza-substituted allylic alcohols had to then be converted to allylic ethers of type **B**, required as substrates for the [2,3]-Wittig rearrangement, and derivatives bearing a carbonyl amide group were first considered.¹² Thus, alcohols **3a**-**f** were alkylated with *N*-(bromoacetyl)pyrrolidine **8** under phase-transfer catalysis (35% aq NaOH/toluene, cat. *n*-Bu₄NHSO₄) to provide amides **9a**-**f** in good yields (85–99%) (Table 2).

Metalation of amides **9a**–**f** was achieved by treatement with LiHMDS (1.5–2 equiv, THF, –40 °C to 0 °C; method A), and subsequent [2,3]-Wittig rearrangement took place to afford mixtures of the corresponding diastereomeric *syn*and *anti*- α -hydroxy- β -amino amides **10a**–**f** and **11a**–**f**, respectively, with low to good diastereoselectivities (*syn*/ *anti* = 2:1 to 10:1).¹³ To improve these results, the effect of additives was investigated. Addition of the polar cosolvent

^{(7) (}a) Frauenrath, H. In *Houben-Weyl (Methods of Organic Chemistry),* Stereoselective Synthesis; Helmchen, G.; Hoffmann, R. W., Mulzer, J., Schaumann, E., Thieme Verlag: Stuttgart, 1995; Vol. E21d, pp 3301– 3756. (b) Nakai, T.; Mikami, K. Chem. Rev. **1986**, 86, 885–902. (c) Marshall, J. A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: London, 1991; Vol. 3, pp 975–908.

⁽⁸⁾ Nakai; E.; Nakai, T. Tetrahedron Lett. 1988, 29, 5409-5412.

⁽⁹⁾ Lee, E.; Kang, T. S.; Joo, B. J.; Tae, J. S.; Li, K. S.; Chung, C. K. Tetrahedron Lett. **1995**, *36*, 417–420.

^{(11) (}a) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Org. Lett. **2003**, 5, 67–70. (b) (η^2 -ynamide)Ti(II) complexes also react with aldehydes to afford 3-aza-allylic alcohols having a trisubstituted double bond: Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. **2004**, 6, 727–729.

⁽¹²⁾ Mikami, K.; Takahashi, O.; Kasuga, T.; Nakai, T. Chem. Lett. 1985, 1729–1732.

HMPA (4 equiv) enabled us to achieve the deprotonation of amides $9\mathbf{a}-\mathbf{f}$ at a lower temperature (LiHMDS, THF, -78 °C; method B), and under these conditions, subsequent [2,3]-Wittig rearrangements occurred with a dramatic improvement of the diastereoselectivity (*syn/anti* = 9:1 to >24: 1) (Table 3).

Table 3. [2,3]-Wittig Rearrangements of Amides 9 $Table 3.$ [2,3]-Wittig Rearrangements of Amides 9 N R^{-N} N g $Method A:$ LiHMDS (1.5-2 equiv) THF, -40 °C to 0 °C Method B: LiHMDS (2 equiv) HMPA (4 equiv) THF, -78 °C N							
		metho	d A	method B			
	R	syn/anti (10/11)	yield (%)	syn/anti (10/11)	yield (%)		
9a 9b 9c 9d 9e 9f	Bn CH ₂ CH(OMe) ₂ (CH ₂) ₂ CH=CH ₂ CH ₂ CH=CH ₂ PMB PMP	$7:1 \\ 3:1 \\ 6:1 \\ 10:1 \\ 6:1 \\ 2:1$	73 61 60 58 66 55	>24:1 19:1 >24:1 >24:1 >24:1 >24:1 9:1	77 64 71 75 49 52		

Attempts to achieve the rearrangements of amides of type **B** synthesized from 3-aza-allylic alcohols of (*Z*) configuration, which may have potentially reverted the diastereoselectivity in favor of the *anti*- α -hydroxy- β -amino amides **11**, have not yet been successful.¹⁴ Thus, with the aim of getting access to 1,2-*anti*-aminoalcohols by [2,3]-Wittig rearrangements of derivatives of (*E*)-3-aza-allylic alcohols, the remaining option was to replace the π -acceptor amide group by a stabilizing π -donor alkynyl substituent. To prepare propargylic ethers from the alcohols 3a-e, a two-step procedure involving alkylation with propargyl bromide under phase-transfer catalysis followed by silylation of the terminal alkyne moiety (*n*-BuLi, THF, -78 °C) was initially used (method C, Table 4). Under these conditions, alcohols **3a** and **3b** were efficiently converted to ethers **12a** (67%) and **12b** (91%), respectively, but **12c** was obtained in low yield (31%) from **3c**.¹⁵ A one-step propargylation protocol of alcohols **3c**-e (method D, Table 4) was therefore developed under phase transfer conditions with the propargylic bromide **13**, bearing a TIPS group, and the propargylic ethers **14c**-e were thus obtained in high yields (86–91%) (Table 4).

Table 4. Synthesis of the Propargylic Ethers 12 and 14Method C1)Example a cat. n -Bu ₄ NHSO ₄ Ts							
3	R	method	R′	12/14	yield (%)		
3a	Bn	С	TMS	12a	67		
3b	$CH_2CH(OMe)_2 \\$	С	TMS	12b	84		
3c	$(CH_2)_2CH=CH_2$	С	TMS	12c	31		
		D	TIPS	14c	86		
3d	$CH_2CH=CH_2$	D	TIPS	14d	89		
3e	PMB	D	TIPS	14e	91		

Despite the presence of other potential acidic hydrogens in substrates 12a-c and 14c-e, metalation at the propargylic position was successfully achieved by treatment with LDA (THF, -78 °C), and subsequent [2,3]-Wittig rearrangements proceeded cleanly to afford the corresponding 1,2-aminoalcohols 15a-c and 16c-e in good yields (74–93%) and with high 1,2-anti diastereoselectivity (anti/syn = 11:1 to >24:1). It is interesting that the propargylic ethers 14c-esubstituted by a TIPS group are not only easier to synthesize but also also underwent [2,3]-Wittig rearrangements with higher diastereoselectivities (dr > 24:1) (Table 5).¹⁶

Additionally, it is also noteworthy that the rearrangement of propargylic ethers derived from (*E*)-3-aza-allylic alcohols can also provide access to *anti*- α -hydroxy- β -amino methyl ketones of type **A** (R'' = Me). Indeed, the triple bond in compound **15a** can undergo hydration (cat. HgSO₄, cat. H₂SO₄, THF/H₂O, rt) to afford ketone **17** (86%) without epimerization (Scheme 3).

The stereochemical outcome observed in the [2,3]-rearrangement of the amides and the propargylic ethers derived from 3-aza-allylic alcohols is in perfect agreement with the

⁽¹³⁾ The relative configurations of 10a, 11a, and 10f were unambiguously ascertained by chemical correlations; see Supporting Information. The relative configuration of the other compounds 10b-e was assigned by analogy.

⁽¹⁴⁾ The [2,3]-Wittig rearrangement of the pyrrolidine amide derived from the (*Z*)-allylic alcohol **7** failed and resulted in extensive decomposition. Enolization of this substrate appears to be considerably more difficult to achieve, probably for steric reasons.

⁽¹⁵⁾ For this substrate, metalation of the aromatic group also took place as a side reaction during the second stage of method C.

⁽¹⁶⁾ The relative configuration of 15a was unambiguously ascertained by a chemical correlation, and those of 15b,c were assumed to be similar. Desilylation of 15c and 16c (TBAF, THF) led to the same 1,2-aminoalcohol indicating that the nature of the silicon substituent on the alkyne does not affect the stereochemical outcome; see Supporting Information.

Table 5. [2,3]-Wittig Rearrangements of Propargylic EthersTs R' LDA R' LDA R' R' HF OH 12a-c R' = TMS14c-e R' = TIPS16c-e R' = TIPS					Ethers
12/14	R	R′	15/16	anti/syn	yield (%)
12a 12b 12c 14c 14d 14e	Bn $CH_2CH(OMe)_2$ $(CH_2)_2CH=CH_2$ $(CH_2)_2CH=CH_2$ $CH_2CH=CH_2$ PMB	TMS TMS TMS TIPS TIPS TIPS	15a 15b 15c 16c 16d 16e	13:1 23:1 11:1 >24:1 >24:1 >24:1	89 81 74 76 79 93

transition state model used to rationalize the diastereoselectivities of the rearrangement of nonheterosubstituted alcohol derivatives. In this five-membered ring transition state model

of envelope conformation, the π -donating stabilizing alkynyl group (of small steric demand) tends to occupy an *exo* orientation, whereas an *endo* orientation is favored for the π -acceptor amide moiety due to secondary orbital or electrostatic interactions with the negatively charged olefinic moiety (Scheme 4).¹⁷

We have reported the first examples of [2,3]-Wittig rearrangements of acyclic 3-aza-substituted allylic alcohol derivatives that proceed with synthetically useful levels of 1,2-diastereoselectivity. Further work is currently underway to explore the scope of such [2,3]-Wittig rearrangements and in particular to control the absolute configuration of the newly formed heterosubstituted stereocenters by the use of a chirality transfer from secondary 3-aza-allylic alcohols.

Acknowledgment. Financial support from Glaxo-Smith-Kline and the CNRS (BDI grant to M.B.) is gratefully acknowledged.

Supporting Information Available: Experimental procedures, analytical data for all new compounds, evidence for stereochemical assignments, and copies of the ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0711725

^{(17) (}a) Wu, Y.-D.; Houk, K. N.; Marshall, J. A. J. Org. Chem. **1990**, 55, 1421–1423. (b) Mikami, K.; Uchida, T.; Hirano, T.; Wu, Y.-D.; Houk, K. N. Tetrahedron **1994**, 50, 5917–5926.