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Upon treatment of cyclic 1,2-bis(silylethynyl)benzenes with
lithium naphthalenide, the intramolecular reductive cyclization
proceeds in an endo–endo mode to produce 1,4-dilithio-2,3-di-
silylnaphthalenes, which are transformed into a series of 1,4-di-
functionalized 2,3-disilylnaphthalenes.

The Bergman cyclization is a radicallic cyclization of ene-
diynes,1 which proceeds in an endo–endo mode2 to produce
1,4-dehydrobenzene biradicals (Eq 1). This reaction has attract-
ed much attention not only from a biological viewpoint as a key
action of the enediyne antibiotics,3 but also from a recent interest
in materials science as a new methodology for the construction
of�-conjugated frameworks.4 However, one synthetic drawback
of this reaction is the limited scope of the functional group trans-
formation from the 1,4-dehydrobenzene biradicals. In this re-
gard, its anionic analogous reaction, i.e., the intramolecular re-
ductive cyclization of the enediynes (Eq 2) would have a
greater synthetic potential, since the produced ring is a dianion
which can be trapped with a variety of electrophiles. However,
only a few examples of this type of cyclization have been report-
ed so far.5–8 As a related reaction, we recently developed the
endo–endo mode reductive cyclization of bis(phenylethynyl)-
silanes, which is a general synthetic method for 2,5-difunction-
alized siloles.2a To extend this methodology to the enediyne-type
substrates, we investigated the reductive cyclization using 1,2-
bis(silylethynyl)benzenes as the starting materials (Eq 3). We
envisioned that the use of the silyl groups at the acetylene termi-
nus would be beneficial in terms of further functional group
transformation after the cyclization, which would increase the
synthetic utility of this methodology.
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Previous papers reported that the reductive cyclization of the
enediyne-type substrates can proceed not only in the endo–endo
mode but also in an exo–endo mode.2 For instance, while the re-
ductive cyclization of enediyne 1 affords 2 as one of the prod-
ucts,6 the reaction of 1,2-bis(phenylethynyl)benzene 3 proceeds

in the exo–endo mode to give 4.5,9 Thus, the question is how to
control the reaction mode. Our strategy to answer this question is
the use of the cyclic derivatives of the 1,2-bis(silylethynyl)-
benzenes. Two cyclic derivatives bearing 1,2-ethylene (5a)
and 1,2-phenylene (5b) tethers were prepared from 1,2-
bis(trimethylsilylethynyl)benzene 6 (R = Me) by the desilyl-
lithiation using n-BuLi in THF, followed by treatment with the
appropriate bis(chlorosilane)s.

The results of the reaction of 5a with reductants are summa-
rized in Table 1. Typically, upon treatment of 5a with 4 molar
amounts of lithium naphthalenide (LiNaph) at room temperature
for 5 min, followed by quenching with an NH4Cl aqueous solu-
tion, the cyclization indeed proceeded in the endo–endo mode to
give the target product 8a in 65% yield (Entry 1). To confirm the
formation of the dianion intermediate 7a, the reaction mixture
was quenched with 1N DCl/D2O solution instead of the NH4Cl
aqueous solution; a 74%-deuteriated cyclized product was ob-
tained when the reaction was performed at room temperature
(Entry 2), suggesting that substantial hydrogen abstraction prob-

Table 1. Reduction of cyclic bis(silylethynyl)benzene 5a

reductant

THF
temp
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Me2
Si
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Me2
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Li
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Si
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H(D)

H(D)

7a 8a

Entry Reductanta Temp. Quenching Yieldb

reagents

1 LiNaph (4) rt NH4Cl/H2O 65%
2 LiNaph (4) rt DCl/D2O 50% (74%D)
3 LiNaph (4) 0 �C DCl/D2O 52% (92%D)
4 LiNaph (2.5) 0 �C DCl/D2O 63% (91%D)
5 LDBB (4) �10 �C DCl/D2O 26% (97%D)
aMolar amounts of the reductants in the parentheses.
bDeuteriation percentage in the parentheses.
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ably from the solvent took place at this temperature, and the deu-
teriation percentage increased to 92% in the reaction at 0 �C
(Entry 3). Using a stronger reductant, lithium 4,40-di-tert-butyl-
biphenylide (LDBB), the reaction could be carried out at lower
temperature (�10 �C), resulting in a higher deuteriation percent-
age, although the yield of the product substantially decreased
(Entry 5). When the amount of the reductant was reduced to
2.5 molar amounts, no significant change was observed (Entry
4).

To elucidate the effect of the cyclic structure in the starting
material, we also carried out the reactions of acyclic substrates 6
(R = Me or Ph) with LiNaph (4 molar amounts). Although a
complex mixture was obtained at 0 �C, at the decreased temper-
ature such as �78 �C, not the cyclization but the full reduction of
one acetylene moiety occurred to produce 1-(2-silylethyl)-2-
(silylethynyl)benzenes 9 as the major product (isolated yields:
R = Me, 32%; R = Ph, 71%). Their structures were identified
based on 1H and 13C NMR spectroscopies and by the X-ray crys-
tallography of 9 (R = Ph).10 These results demonstrate that a
spatial proximity between the two acetylene moieties in the cy-
clic diethynylbenzenes is crucial to realize the endo–endo mode

cyclization, as well established in the chemistry of the Bergman
cyclization.1 According to the crystal structure of 5a (Figure 1)10

and the calculated structure of 6 (R = Me, at the B3LYP/
6-31G(d) level of theory), the inter-acetylenic distance at the ter-
minal positions (5a, 3.63 
A; 6, 4.20 
A) is reduced about 0.6 
A by
forming the cyclic structure.

To demonstrate the synthetic utility of the present cycliza-
tion, we performed several functional group transformations,
as summarized in Scheme 1. Thus, the 1,4-dilithiated naphtha-
lene 7a produced from 5a was trapped with dimethyl sulfate to
give the dimethylated product 10a in 53% yield. Similarly, a
benzo-analogue 10b was obtained starting from 5b, although
the yield is low. As for the electrophiles, the use of a 2-isopro-
poxy-1,3,2-dioxaborolane derivative and dimethylchlorosilane
afforded 1,4-diboryl-2,3-disilylnaphthalene 11a and 1,2,3,4-tet-
rasilylnaphthalene 12a, respectively. In addition, it is notewor-
thy that the 2,3-bis(silyl) groups can be converted into halogens
by the halodesilylation, as exemplified by the transformation
from 8a to 13 using ICl. These results suggest the possible appli-
cation of the present methodology for the synthesis of function-
alized acenes, which have now attracted significant attention as
promising materials for organic electronics.11 Further study in
this direction is currently in progress in our laboratory.
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Figure 1. ORTEP drawing of 5a (50% probability for thermal
ellipsoids). Selected bond lengths [ 
A] and angles [deg]: Si1–
C1 1.847(4), C1–C2 1.210(5), C2–C3 1.432(5), C3–C8
1.399(5), Si1–C1–C2 169.1(3), C1–C2–C3 172.6(4), C2–C3–
C8 118.3(3). C1� � �C8 nonbonded distance, 3.63 
A.
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Reagents and conditions: i, LiNaph, THF, 0 °C, 5 min; ii, (MeO)2SO2 ;  iii, 2-
isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane; iv,Me2HSICl; v,NH4Cl/H2O;
vi, ICl, CH2Cl2, rt.

Scheme 1.
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