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Abstract: Ethyl 2-(diisopropoxyphosphoryl)-2H-azirine-3-carbox-
ylate, the first example of an azirine bearing simultaneously ester
and phosphonate groups was generated in situ and reacted with a
number of 1,3-dienes. Cycloadducts or their ensuing rearranged
products were isolated in moderate yields.

Key words: 2H-azirines, aza-Diels–Alder cycloaddition, dieno-
philes, phosphonates

2H-Azirines have generated a great deal of interest due to
their versatility as building blocks in the synthesis of im-
portant classes of heterocyclic compounds,1,2 and amino
acids.3 2H-Azirines carrying ester groups are especially
important not only due to their structural similarity to nat-
urally occurring azirines with biological activity, like
azirinomycin4 and (–)-(R)-dysidazirine antibiotics,5 but
also for being excellent precursors in the synthesis of a-6

and b-amino acid7 derivatives. Azirines with C=O, P=O
or heteroaromatic groups conjugated with the C=N bond,
are effective dienophile partners8–10 in Diels–Alder cy-
cloadditions, producing bicyclic and tricyclic compounds.
2H-Azirines devoid of electron-withdrawing groups only
react with specially activated dienes such as 1,3-diphenyl-
isobenzofuran in refluxing toluene11a,b or under Lewis
acid catalysis.11c,d 

Excitatory amino acids are the most common neurotrans-
mitters in the mammalian central nervous system thus
their receptors have been exploited in the treatment of
several pathological conditions affecting the brain, such
as Parkinson’s and Alzheimer’s diseases.12 (S)-2-Amino-

3-phosphonopropanoic acid [(S)-AP-3, 1, Figure 1] is
known to be a modulator for the N-methyl-D-aspartate
(NMDA) receptor site.

Figure 1 (S)-2-Amino-3-phosphonopropanoic acid

In connection with our work on 2H-azirines, we envis-
aged that 2-(dialkoxyphosphoryl)-2H-azirine-3-carboxy-
lates would be excellent dienophiles for Diels–Alder
cycloadditions, introducing simultaneously the biologi-
cally important phosphonate group13 into cycloadducts.
This class of compounds has not been previously synthe-
sized, despite of being closely related to (S)-AP-3 1.

This paper reports the unprecedented generation of ethyl
2-(diisopropoxyphosphoryl)-2H-azirine-3-carboxylate (5)
and its interception by a number of electron-rich buta-1,3-
dienes producing mono-, di-, and tricyclic aziridines, car-
rying the a-amino-b-phosphonate carboxylate moiety.

The oxime 3 was obtained from ethyl bromopyruvate
oxime (2)14 and triisopropyl phosphite. Its treatment with
tosyl chloride in the presence of sodium carbonate led to
b-phosphonic tosyloxime ester 4 (Scheme 1). The corre-
sponding 2H-azirine 5 was obtained under Neber condi-
tions, but could not be isolated from the reaction medium.
Although monofunctional 2H-azirine-2-phosphonates15
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Scheme 1 Preparation of b-phosphonic tosyloxime ester
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have been produced and isolated before under similar re-
action conditions, manipulation of the reaction mixture in
the present case, however, led to decomposition, accord-
ing to 1H NMR analysis.

In a typical procedure tosyloxime 4 was solubilized in
benzene mixed with potassium carbonate (10 equiv), tri-
ethylamine (0.3 equiv), and a 1,3-diene and stirred for
four days at room temperature. The primary cycloadducts
6a,b,d,e were obtained in 9–59% yield. Derivative 7 was
obtained in the case of reaction with the Danishefsky di-
ene in 39% yield, by rearrangement of the primary cy-
cloadduct 6c (Scheme 2). In case 6f, the silyl group
cleaved during chromatography giving 8.

The moderate yields are certainly the reflection of the
two-step sequence in the one-pot procedure together with
the instability of the azirine because of the presence of the
two electron-withdrawing substituents in the ring.

Cycloadduct 6a, obtained from reaction of azirine 5 with
2,3-dimethylbuta-1,3-diene, was isolated in very low
yield, even in the presence of a large excess of diene (5
equiv). Difficulties of the same type had been reported by
Davis in reaction of a 2H-azirine-3-phosphonate with 2,3-
dimethylbuta-1,3-diene, where 100 equivalents of the di-
ene were required.9

Reaction of the azirine 5 with 1-methoxybuta-1,3-diene
evidenced that the regioselectivity of the cycloaddition is
governed by electronic effects. 1H and 13C NMR data of
product 6b are in accordance with the electron-withdraw-
ing effect of the two heteroatoms attached to C2; H2 is at
dH = 4.80 and C2 at dC = 85.6. The cycloaddition products

were obtained as single isomers, presumably formed by
endo-selective processes, as generally observed in reac-
tions of 2H-azirines with 1,3-dienes.8 Furan and their de-
rivatives are exceptions due to retro-Diels–Alder
cycloadditions of the initially formed endo-cycloadduct
that isomerize to the exo-products.11b The low-field reso-
nance of H3 in the tricyclic products obtained by reaction
of 2H-azirines with cyclopentadiene is a clear feature of
the endo selectivity.8 This can be ascribed to the anisotro-
py of the backside double bond over H3, due to con-
straints of the tricyclic structure. The chemical shift value
of H3 in compound 6d correspond to such an effect ap-
pearing at dH = 1.62.

Features of pyridinone 7, obtained by rearrangement of
6c, are the two hydrogens of the CH2 group, coupling to
the phosphorus nucleus with J = 12.0 Hz; the signal at
dH = 6.45, assigned to H5, shows a doublet of doublets
(3J = 3.0 Hz to H3 and 2J = 7.6 Hz to H6) and two dou-
blets at dH = 7.35, corresponding to H6, and at dH = 7.03,
corresponding to H3, show matching couplings to H5. Re-
arrangements of this type have been noticed before in bi-
cyclic adducts obtained from the Danishefsky diene and
2H-azirines bearing electrophilic groups.16 

In summary, cycloaddition reactions of ethyl 2-(diisopro-
poxyphosphoryl)-2H-azirine-3-carboxylate to nucleo-
philic dienes produced, in moderate yields, a number of
functionalized six-membered-ring fused aziridines. These
may eventually be valuable intermediates at the synthesis
of interesting biological compounds related to (S)-AP3.
Studies to improve the reaction efficiency as well as the

Scheme 2 Generation of azirine 5 and its cycloaddition reactions with 1,3-dienes
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development of an asymmetric synthesis or generation of
the azirine are ongoing.

1H and 13C NMR spectra (100.6 or 75.5 MHz) were recorded on a
Bruker Avance III 400 (400 MHz) spectrometer or on a Bruker WM
AMX (300 MHz), using TMS as internal standard. IR spectra were
recorded on a Perkin-Elmer 1640-FT spectrophotometer. Samples
were run as thin films. Mass spectra were recorded on a VG Au-
tospec M. Purification of crude samples was performed by dry flash
chromatography, using silica gel purchased from Carlo Erba (35–70
mm).

Ethyl 3-(Diisopropoxyphosphoryl)-2-(hydroxyimino)pro-
panoate (3) 
To ethyl bromopyruvate oxime (4.7 g, 22 mmol) dissolved in
CH2Cl2 (30 mL) was added P(Oi-Pr)3 (6 mL, 24 mmol) and the mix-
ture stirred at 35 °C for 16 h. H2O (30 mL) was added and the mix-
ture stirred at r.t. for a further 30 min and the organic phase was
dried (MgSO4) and evaporated under vacuum. The oily residue was
subjected to dry-flash chromatography (silica gel, CH2Cl2–EtOAc,
10:1), affording 3 (5.13 g, 79%) as a as colorless oil.

IR(neat): 3167, 2982, 2936, 1720, 1252, 995 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.22–1.30 (m, 15 H, 5 Me), 3.29
(d, 1JPH = 24.0 Hz, 2 H), 4.19–4.29 (m, 2 H, OCH2), 4.66–4.74 (m,
2 H, 2 OCH).
13C NMR (75.47 MHz, CDCl3): d = 14.1 (Me), 23.6 (Me), 23.7
(Me), 24.6 (Me), 24.6 (d, 1JPC = 83.8 Hz), 61.5 (OCH2), ~71.1 (d,
2JPC = 13.6 Hz, OCH), 143.6 (C=N), 163.9 (CO).

HRMS (ESI-TOF): m/z [M + H]+ calcd for C11H23NO6P: 296.1263;
found: 296.1258.

Ethyl 3-(Diisopropoxyphosphoryl)-2-[(tosyloxy)imino]pro-
panoate (4) 
To a soln of 3 (4.5 g, 15 mmol) in CH2Cl2 (40 mL) was added
Na2CO3 (4.8 g, 45 mmol) followed by TsCl (3.24 g, 17 mmol) and
the mixture stirred until the disappearance of the starting oxime (~4
h). The insolubles were removed by filtration and the solvent was
evaporated to afford a residue that was subjected to dry-flash chro-
matography (silica gel, hexanes–CH2Cl2–EtOAc, increasing polar-
ity) to product 4 (4.2 g, 62%) as a pale yellow thick oil. 

IR(neat): 2983, 1737, 1386, 1267, 1194, 993 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.19–1.30 (m, 15 H, 5 Me), 2.38
(s, 3 H, PhMe), 3.25 (d, 1JPH = 24.0 Hz, 2 H), 4.23 (q, J = 6.0 Hz, 2
H, OCH2), 4.57–4.64 (m, 2 H, 2 OCH), 7.28 (d, J = 6.0 Hz, 2 H),
7.83 (d, J = 6.0 Hz, 2 H).
13C NMR (75.5 MHz, CDCl3): d = 13.8 (Me), 21.6 (Me), 23.4 (Me),
23.5 (Me), 23.6 (Me), 23.7 (Me), 26.5 (d, 1JPC = 135.8 Hz, PCH2),
62.8 (OCH), ~72.0 (d, 2JPC = 12.1 Hz, OCH), 131.7 (C, Ar), 145.7
(C, Ar), 152.1 (C=N), 161.1 (CO).

HRMS (ESI-TOF): m/z [M + H]+ calcd for C18H29NO8PS:
450.1351; found: 450.1346.

Cycloaddition Reactions; General Procedure
To a soln of tosyloxime 4 (0.3 g, 0.69 mmol) in benzene (5 mL) was
added Et3N (30 mL, 0.33 equiv), K2CO3 (0.96 g, 6.9 mmol, 10
equiv), and the diene (1.0 equiv to large excess). [Cyclopentadiene
was used in large excess (1 mL), other dienes were used in excess:
the Danishefsky diene (1.5 equiv), 1-methoxybuta-1,3-diene (2
equiv), 2,3-dimethylbuta-1,3-diene (1.5 equiv or 5 equiv).] The
mixture was stirred at r.t. for 4 d. Evaporation of the solvent gave
the crude product, which was subjected to dry-flash chromatogra-
phy (silica gel, petroleum ether–Et2O, polarity gradient or EtOAc–
MeOH, 3:1 for 7) affording products 6–8 as oils.

Ethyl 7-(Diisopropoxyphosphoryl)-3,4-dimethyl-1-azabicyc-
lo[4.1.0]hept-3-ene-6-carboxylate (6a)
(i) 2,3-Dimethybuta-1,3-diene (1.5 equiv); yield: 0.020 g (8%).

(ii) 2,3-Dimethybuta-1,3-diene (5.0 equiv); yield: 0.025 g (9%).

IR (neat): 3458, 2981, 2933, 1753 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.29–1.33 (m, 15 H, 5 Me), 1.52
(br s, 3 H, Me), 1.63 (br s, 3 H, Me), 2.16 (d, J = 17.3 Hz, 1 H, H7),
2.38 (br d, J = 17.3 Hz, 1 H, H5), 2.70 (d, J = 17.6 Hz, 1 H, H5),
3.23 (d, J = 17.0 Hz, 1 H, H2), 3.73 (d, J = 17.0 Hz, 1 H, H2), 4.16–
4.26 (m, 2 H, OCH2), 4.68–4.80 (m, 2 H, 2 OCH).
13C NMR (75.5 MHz, CDCl3): d = 13.1 (Me), 15.4 (Me), 17.5 (Me),
22.6 (Me), 22.9 (Me), 23.95 (Me), 23.05 (Me), 23.1 (Me), 28.4 (d,
3JPC = 19 Hz, CH2, C5), 33.1 (d, 1JPC = 216 Hz, C7), 45.0 (d,
2JPC = 5.0 Hz, C6), 51.6 (d, 3JPC = 6.6 Hz, CH2, C2), 60.3 (CH2O),
69.8 (d, 3JPC = 6.0 Hz, COH), 69.9 (d, 3JPC = 6.3 Hz, COH), 118.7
(C3 or C4), 119.1 (C4 or C3), 168.7 (CO).

HRMS (FAB): m/z [M + H]+ calcd for C17H31NO5P: 360.1940;
found: 360.1927.

Ethyl 7-(Diisopropoxyphosphoryl)-2-methoxy-1-azabicyc-
lo[4.1.0]hept-3-ene-6-carboxylate (6b)
Yield: 0.125 g (51%).

IR (neat): 3467, 2980, 2931, 1754, 1731 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.23–1.28 (m, 15 H, 5 Me), 2.30
(d, J = 16.6 Hz, 2 H, H5, H7), 2.78 (dd, J = 6.1, 18.5 Hz, 1 H, H5),
3.61 (s, 3 H, OMe), 4.16–4.18 (m, 2 H, OCH2), 4.68 (br s, 2 H,
2 OCH), 4.80 (s, 1 H, H2), 5.39 (d, J = 10.0 Hz, 1 H, H3), 5.62–5.63
(m, 1 H, H4). 
13C NMR (75.5 MHz, CDCl3): d = 14.4 (Me), 24.1 (Me), 24.2 (CH2,
C5), 24.4 (Me), 24.42 (Me), 24.6 (Me), 33.2 (d, 1JPC = 217 Hz, C7),
45.6 (d, 2JPC = 4.5 Hz, C6), 57.3 (OMe), 61.8 (OCH2), 71.3 (d,
2JPC = 6.8 Hz) 71.5 (d, 2JPC = 6.8 Hz, OCH), 85.6 (C2), 123.1 (C3
or C4), 124.5 (C4 or C3), 168.0 (CO). 

HRMS (FAB): m/z [M + H]+ calcd for C16H29NO6P: 362.1732;
found: 362.1731.

Ethyl 3-(Diisopropoxyphosphoryl)-2-azatricyclo[3.2.1.02,4]oct-
6-ene-4-carboxylate (6d)
Yield: 0.140 g (59%).

IR (neat): 3467, 2981, 2937, 1741 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.27–1.34 (m, 15 H, 5 Me), 1.62
(d, J = 12.5 Hz, 1 H, H3), 1.71 (t, J = 8.6 Hz, 1 H, H8), 2.43 (d,
J = 8.6 Hz, 1 H, H8), 3.29 (br s, 1 H, H5), 4.24–4.29 (m, 3 H, OCH2,
H1), 4.67–4.78 (m, 2 H, 2 OCH), 5.71–5.73 (m, 1 H, H6 or H7),
6.18–6.22 (m, 1 H, H7 or H6).
13C NMR (75.5 MHz, CDCl3): d = 14.5 (Me), 24.3 (Me), 24.4 (Me),
24.43 (Me), 24.5 (Me), 45.8 (d, 1JPC = 205 Hz, C3), ~48 (C6), 49.6
(C5), 59.4 (d, J = 3.0 Hz, C8), 62.0 (OCH2), 67.6 (d, 3JPC = 7.5 Hz,
C1), 71.3 (d, 2JPC = 6.8 Hz, OCH), 71.5 (d, 2JPC = 6.8 Hz, OCH),
128.8 (C5 or C6), 133.3 (C6 or C5), 172.0 (CO). 

HRMS (FAB): m/z [M + H]+ calcd for C16H27NO5P: 344.1627;
found: 344.1615.

Ethyl 3-(Diisopropoxyphosphoryl)-2-azatricyclo[3.2.2.02,4]non-
6-ene-4-carboxylate (6e)
Yield: 0.088 g (20%).

IR (neat): 2933, 1749, 1653, 1281 cm–1.
1H NMR (400 MHz, CDCl3): d = 1.10 (m, 1 H, H8 or H9), 1.24–
1.34 (m, 16 H, 5 Me, 1 H, H9 or H8), 1.52 (d, J = 13.2 Hz, 1 H, H3),
1.69 (m, 1 H, H8 or H9), 2.1 (m, 1 H, H9 or H8), 3.12 (m, 1 H, H5),
3.99 (m, 1 H, H1), 4.26 (m, 2 H, CO2CH2CH3), 4.66–4.81 (m, 2 H,
2 OCH), 5.68 (m, 1 H, H6 or H7), 6.22 (m, 1 H, H7 or H6).
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13C NMR (100.6 MHz, CDCl3): d = 14.1 (CO2CH2CH3), 19.8 (C8
or C9), 23.6 (C9 or C8), 23.82, 23.9, 24.0, 24.0 (4 Me), 31.0 (d,
1JPC = 212.5 Hz, C3), 32.9 (d, J = 2.6 Hz, C5), 52.3 (d, 3JPC = 9.2
Hz, C1), 61.4 (CO2CH2CH3), 70.7 (d, 2JPC = 6.3 Hz, OCH), 71.0 (d,
2JPC = 6.3 Hz, OCH), 125.1 (C6 or C7), 130.1 (C7 or C6), 125.5 (q,
C2), 169.2 (C=O).

HRMS (FAB): m/z [M + H]+ calcd for C17H29NO5P: 358.1783;
found: 358.1784.

Ethyl 1-[(Diisopropoxyphosphoryl)methyl]-4-oxo-1,4-dihydro-
pyridine-2-carboxylate (7)
Yield: 0.092 g (39%).

IR (neat): 3440, 2983, 2938, 1733, 1633, 1573 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.21–1.27 (m, 12 H, 4 Me), 1.36
(t, J = 7.2 Hz, 3 H, Me), 3.73 (q, J = 7.2 Hz, 2 H, OCH2), 4.63–4.71
(m, 2 H, 2 OCH), 4.71 (d, J = 12.0 Hz, 2 H, H1¢), 6.45 (dd, J = 3.0,
7.6 Hz, 1 H, H5), 7.03 (d, J = 3.0 Hz, 1 H, H3), 7.35 (d, J = 7.6 Hz,
1 H, H6).
13C NMR (75.5 MHz, CDCl3): d = 14.3 (Me), 24.21 (Me), 24.27
(Me), 24.32 (Me), 49.7 (d, 1JPC = 156 Hz, C1¢, CH2), 63.3 (CH2O),
73.0 (d, 2JPC = 7.5 Hz, OCH), 119.7 (C5), 123.3 (C3), 140.2 (C2),
162.9 (CO), 179.5 (CO).

HRMS (FAB): m/z [M + H]+ calcd for C15H25NO6P: 346.1419;
found: 346.1419.

Ethyl 3-(Diisopropoxyphosphoryl)-6-oxo-2-azatricyc-
lo[3.2.2.02,4]nonane-4-carboxylate (8)
Yield: 0.077 g (19%).

IR (neat): 3459, 3274, 3054, 1734, 1602 cm–1.
1H NMR (400 MHz, CDCl3): d = 1.29–1.30 (m, 15 H, 5 Me), 1.73–
1.80 (m, 2 H), 1.88 (d, J = 9.3 Hz, 1 H, H3), 2.07–2.32 (m, 4 H),
3.07 (br s, 1 H, H1), 3.79 (br s, 1 H, H5), 4.26 (m, 2 H, CH2CH3),
4.75 (m, 2 H, 2 OCH).
13C NMR (100.6 MHz, CDCl3): d = 14.0 (Me), 18.5 (C8 or C9),
23.8 (Me), 23.92 (Me), 23.96 (Me), 24.0 (Me), 24.6 (CH2), 33.5 (d,
1JPC = 213.3 Hz, C3), 39.6 (C8 or C9), 43.7 (d, 3JPC = 2.0 Hz, C5),
45.8 (d, 2JPC = 4.0 Hz, C4), 49.7 (d, 3JPC = 8.0 Hz, C1), 61.8 (OCH),
71.4 (d, 2JPC = 6.0 Hz, OCH), 167.0 (C=O), 207.6 (C=O). 

HRMS (FAB): m/z [M + H]+ calcd for C17H29NO6P: 374.1732;
found: 374.1729.
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