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Microwave-Assisted Synthesis of Pyrazoline
Derivatives on Soluble Polymer

Min Xia* and Xue-jie Pan

Department of Applied Chemistry, Zhejiang Institute of Science and

Technology, Hangzhou 310033, P.R. China

ABSTRACT

1-Phenyl-3-substituted-2-pyrazolinyl-5-carboxylates could be synthe-

sized rapidly and regioselectively in good yield through the protocol of

1,3-dipolar cycloaddition of polyethylene glycol supported acrylic acid

with aldehyde phenylhydrazones under microwave irradiation.

Key Words: Liquid-phase synthesis; Polyethelene glycol; Pyrazoline

derivatives; Microwave.

It is known that pyrazoline derivatives are significant compounds, not

only as intermediates and agricultural pesticides, but as effective luminescent

and fluorescent substances as well.[1] There exist various approaches to their
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synthesis; however, 1,3-dipolar cycloaddition through nitrilimines generated

in situ is the most powerful and versatile route to construct the five-member

heterocycles.[2] A number of methods have been reported for the generation

in situ of nitrilimines, e.g., the base-induced dehydrochlorination of the hydra-

zonyl halides,[3] the thermal decomposition of 2,5-disubstituted tetrazoles[4] or

the sodium salt of 2-nitrohydrazones,[5] the photolysis of 3,4-disubstituted

sydones[6] or 2,5-disubstituted tetrazoles,[7] and the oxidation of aldehyde

arylhydrazones with lead tetraacetate.[8] Nevertheless, all of them have short-

comings such as troubles with operation, harsh conditions, difficulty in pre-

paration of starting substrates, low yields of nitrilimines, or the use of toxic

reagents. (Diacetoxy)iodobenzene is the most useful and promising reagent

among the hypervalent iodine compounds, which can be prepared readily

without any toxicity and is an effective oxidant, especially for the oxidation

of the compounds containing N atoms in good yields under mild conditions.[9]

In recent years, the application of microwave (MW) irradiation in organic

synthesis has been the focus of considerable attention and is becoming an

increasingly popular technology.[10] The prominent features of the microwave

approach are the rapid reactions, clean reaction conditions, and ease of

manipulation. Reactions in “dry media” or under solvent-free conditions are

especially appealing as they provide an opportunity to work with open

vessels, thus avoiding the risk of high pressure development. In the literature,

there exist many reports that 1,3-dipolar cycloadditions can be effectively

promoted through microwave irradiation,[11] thus affording the rapid and

convenient routines to the construction of five-member heterocycles.

Currently, organic synthesis of small molecular compounds on soluble

polymers, i.e., liquid-phase chemistry, has increasingly become an attractive

field.[12] It couples the advantages of homogeneous solution-phase chemistry

(high reactivity, lack of diffusion phenomena, and ease of analysis without the

cleavage-and-check procedure) with those of solid-phase chemistry (use of

excessive reagents, easy isolation and purification of products). Besides,

owing to the homogeneity of liquid-phase reactions, reaction conditions can

be readily shifted from solution-phase systems without many changes, and

the amount of excessive reagents is less than that in solid-phase reactions.

Among the various soluble polymers, polyethylene glycol (PEG) is the

most useful and promising. Due to the low melting point (mp) of PEG

(�518C), it can be readily melted to turn liquid under microwave heating.

Therefore, synthesis of small organic molecules on PEG by microwave

heating has the advantage in that PEG plays the roles of polymer support

and liquid solvent as well.[13] In connection with our work on the synthesis

of small molecular compounds on soluble polymer,[14] herein we report

the microwave-promoted synthesis of pyrazoline derivatives through 1,3-
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cycloaddition of aryldehyde phenylhydrazones with PEG-bound acrylate

(Sch. 1).

We selected PEG 4000 as the polymeric support due to its good compro-

mise of crystallization and loading capacity. The terminal hydroxyl groups

were active enough to be esterified by acryloyl chloride in the presence of

pyridine at room temperature overnight. The conversion of terminal hydroxyl

groups was quantitative, which could be determined by 1H NMR to check that

the signal of hydroxyl groups on PEG at 4.58 ppm disappeared. The PEG-

linked acrylate (1) was taken as the dipolarophile to react with the nitrilimines

generated in situ by the oxidation of aldehyde phenylhydrazones with (diace-

toxy)iodobenzene. The 1,3-dipolar cycloaddition was carried out smoothly

and rapidly under microwave heating within 4 minutes to form the PEG

loaded pyrazoline intermediates (2). During microwave irradiation, the

PEG-bound acrylate (1) was melted into a liquid, in which substrates were

ensured to react with each other in homogeneity. The PEG 4000 in our case

acted simultaneously as a polymeric support and as a solvent as well under

MW irradiation, transporting energy and diffusing the chemicals in the reac-

tion system. The target products of 1-phenyl-3-substituted-2-pyrazolinyl-

5-carboxylates (3) were completely released from the support [checked by

thin-layer chromatography (TLC)] in the media of 1 N NaOMe/MeOH solu-

tion at room temperature overnight. Owing to the excellent precipitation of

PEG in ether, the PEG-bound pyrazoline intermediates (2) could be obtained

in excellent purities after simple filtration and washing, avoiding the compli-

cated isolation and separation procedure. The target products could be

obtained without further chromatography.

The results are shown in Table 1, indicating that the 1,3-dipolar cyclo-

addition had obvious electronic effects. When the aldehydes had electron-

donating groups, the yields were excellent. However, when there existed

Scheme 1.
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electron-withdrawing groups, the yields were low, especially for the strongly

electron-withdrawing NO2 group where the expected product could not be

obtained. Not only aromatic hydrazones but also heterocyclic and a,

b-unsaturated hydrazones were efficient substrates.

It was found that PEG-supported 1,3-dipolar cycloaddition was comple-

tely regioselective,[15] since only the 1-phenyl-3-substituted-2-pyrazolinyl-5-

carboxylates (3) were provided. The regioselectivity was determined by 1H

NMR that the chemical shifts of C5-H were at 4.8 ppm, at relatively low field.

In conclusion, we herein report the rapid and readily microwave-assisted

1,3-dipolar cycloaddition for pyrazoline derivatives on PEG support, utilizing

(diacetoxy)iodobenzene to generate nitrilimines in situ. The PEG-supported

synthesis of pyrazoline derivatives could give the products in good yields

and excellent purities with complete regioselectivity, avoiding the complicated

isolation and separation procedure of intermediates. Therefore, the protocol

described was an effective and easy approach to the pyrazoline derivatives.

EXPERIMENTAL SECTION

1. General procedure for the preparation of PEG 4000-supported acry-

late (1): At 08C, the acryoyl chloride (3 mmol) in anhydrous CH2Cl2
(10 mL) was added dropwise to the mixture of PEG 4000 (1 mmol,

Table 1. 1,3-Dipolar cycloaddition of nitrilimines with PEG-bound acrylate under

microwave irradition.a

Entry Ar Yield (%) Entry Ar Yield (%)

3a 84 3e 88

3b 92 3f 94

3c 86 3g 61

3d 74 3h 0

aThe yields were determined by loading capacity of terminal hydroxyl groups on PEG

4000 with 0.5 mmol/g.
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2 g) and pyridine (5 mmol) in anhydrous CH2Cl2 (15 mL) over 1

hour; the resultant mixture was stirred at room temperature overnight.

After removal of the solvent, the residue was dissolved in CH2Cl2
(10 mL), and cold ether (70 mL) was poured to precipitate the

white solid, which was washed by cold ether three times

(3 � 20 mL). After drying under reduced pressure, the PEG 4000-

bound acrylate (1) was obtained as a white powder. 1H NMR

(400 MHz, CDCl3): d (ppm) 3.53 � 3.84 (m, PEG backbone,

OCH2CH2O), 4.33 (t, J ¼ 4.8 Hz, 2 H, PEG-OCH2CH2OCO), 5.88

(dd, J ¼ 10 Hz, J ¼ 2 Hz, 1 H), 6.20 (dd, J ¼ 16.5 Hz, J ¼ 10 Hz,

1 H), 6.43 (dd, J ¼ 16.5 Hz, J ¼ 2 Hz, 1 H).

2. General procedure for the preparation of PEG 4000-supported

pyrazoline intermediates (2): At room temperature, the well-ground

mixture of PEG 4000-bound acrylate (1) (0.5 mmol, 1 g), (diacetoxy)

iodobenzene (1 mmol), and aldehyde phenylhydrazone (1 mmol) was

put in an open vessel and irradiated for 4 minutes at 450 w (irradiated

for 2 minutes and cooled for 1 minute, cycled for two times) in a

domestic microwave oven. After the mixture was cooled to room

temperature, CH2Cl2 (10 mL) was added and the resultant mixture

was filtrated. The filtrate was poured with ether (70 mL) and stirred

to precipitate the white solid, which was filtrated and washed with

ether three times (3 � 20 mL). After drying under reduced pressure,

the PEG 4000-bound pyrazoline intermediate (2) was obtained as a

white powder.

3. General procedure for the preparation of 1-phenyl-3-substituted-

2-pyrazolinyl-5-carboxylates (3): The PEG 4000-loaded pyrazoline

intermediate (2) was dissolved in a solution of 1 N NaOMe/MeOH

(15 mL). The resultant solution was stirred at room temperature over-

night. By pouring with water (30 mL), the solution was extracted with

ether (3 � 10 mL). After drying over anhydrous MgSO4, the organic

solvent was removed to give the target products without further

chromatography.

Compound 3a: mp 105 � 1068C (Lit.[15] 106 � 1078C); 1H NMR

(400 MHz, CDCl3): d (ppm) 3.42 (dd, J ¼ 17 Hz, J ¼ 6.5 Hz, 1 H), 3.68

(dd, J ¼ 17 Hz, J ¼ 12.5 Hz, 1 H), 3.75(s, 3 H), 4.83(dd, J ¼ 12.5 Hz,

J ¼ 6.5 Hz, 1 H), 6.88(t, J ¼ 7 Hz, 1 H), 7.12 (d, J ¼ 8 Hz, 2 H), 7.25 � 7.41

(m, 5 H), 7.72 (d, J ¼ 7 Hz, 2 H); FT-IR (KBr) y (cm21) 3029, 2952, 1737,

1596, 1504, 1493, 1397, 1336, 1263, 1135, 1016, 889, 745, 686; MS m/z

(%) 280 (Mþ, 33.34), 221 (100), 118 (14.79), 104 (18.45), 91 (28.05), 77

(53.97), 51 (30.91).
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Compound 3b: mp 1358C; 1H NMR (400 MHz, CDCl3): d (ppm) 3.38

(dd, J ¼ 7 Hz, J ¼ 17 Hz, 1 H), 3.62 (dd, J ¼ 13 Hz, J ¼ 17 Hz, 1 H), 3.75

(s, 3 H), 4.78 (dd, J ¼ 7 Hz, J ¼ 13 Hz, 1 H), 5.99 (s, 2 H), 6.80

(d, J ¼ 8 Hz, 1 H), 6.86 (t, J ¼ 7 Hz, 1 H), 7.02 (dd, J ¼ 1.5 Hz, J ¼ 8 Hz,

1 H), 7.09 (d, J ¼ 8 Hz, 2 H), 7.25 � 7.29 (m, 2 H) 7.38 (d, J ¼ 1.5 Hz, 1 H);

FT-IR (KBr) y (cm21) 3042, 2921, 1732, 1599, 1500, 1454, 1351, 1318,

1220, 1039, 936, 876, 812, 747, 694, 669, 619; MS m/z (%) 324 (Mþ,

51.86), 265 (100), 235 (10.85), 207 (24.05), 104 (9.44), 91 (9.86), 77

(34.16), 51 (16.19).

Compound 3c: mp 103 � 1048C; 1H NMR (400 MHz, CDCl3): d (ppm)

2.37 (s, 3 H), 3.40 (dd, J ¼ 17 Hz, J ¼ 7 Hz, 1 H), 3.67 (dd, J ¼ 13 Hz,

J ¼ 17 Hz, 1 H), 3.75 (s, 3 H), 4.81 (dd, J ¼ 13 Hz, J ¼ 7 Hz, 1 H), 6.87

(t, J ¼ 7.5 Hz, 1 H), 7.11 (d, J ¼ 8 Hz, 2 H), 7.20 (t, J ¼ 8 Hz, 2 H),

7.25 � 7.30 (m, 2 H), 7.60 (d, J ¼ 8 Hz, 2 H); FT-IR (KBr) y (cm21) 3027,

2950, 1740, 1597, 1497, 1378, 1321, 1268, 1200, 1122, 1031, 880, 821,

753, 692; MS m/z (%) 294 (Mþ, 38.29), 235 (100), 117 (10.44), 104 (9.56),

91 (22.54), 77 (28.18), 51 (13.71).

Compound 3d: mp 84 � 858C; 1H NMR (400 MHz, CDCl3) d (ppm)

3.39 (dd, J ¼ 6.5 Hz, J ¼ 17 Hz, 1 H), 3.62 (dd, J ¼ 13 Hz, J ¼ 17 Hz, 1 H),

3.73 (s, 3 H), 4.81 (dd, J ¼ 13 Hz, J ¼ 6.5 Hz, 1 H), 6.48 (dd, J ¼ 2 Hz,

J ¼ 3.5 Hz, 1 H), 6.63 (d, J ¼ 3.5 Hz, 1 H), 6.87 (t, J ¼ 7 Hz, 1 H), 7.09

(d, J ¼ 8 Hz, 2 H), 7.25 � 7.29 (m, 2 H), 7.49 (d, J ¼ 2 Hz, 1 H); FT-IR

(KBr) y (cm21) 3136, 2954, 1735, 1595, 1503, 1373, 1264, 1133, 1002,

922, 887, 804, 746, 690; MS m/z (%) 270 (Mþ, 58.45), 211 (100), 183

(18.37), 117 (8.83), 104 (8.89), 91 (13.05), 77 (42.28), 51 (27.00).

Compound 3e: mp 115 � 1178C (Lit.[15] 114 � 1158C); 1H NMR

(400 MHz, CDCl3): d (ppm) 3.38 (dd, J ¼ 7 Hz, J ¼ 17 Hz, 1 H), 3.64 (dd,

J ¼ 17 Hz, J ¼ 13 Hz, 1 H), 3.74 (s, 3 H), 3.83 (s, 3 H), 4.79 (dd, J ¼ 13 Hz,

J ¼ 7 Hz, 1 H), 6.86 (t, J ¼ 7.5 Hz, 1 H), 6.92 (d, J ¼ 9 Hz, 2 H), 7.10

(d, J ¼ 8 Hz, 2 H), 7.25 � 7.3 (m, 2 H), 7.66 (d, J ¼ 8.5 Hz, 2 H); FT-IR

(KBr) y (cm21) 3043, 2958, 1735, 1596, 1501, 1392, 1250, 1132, 1034,

879, 826, 743, 691; MS m/z (%) 310 (Mþ, 48.45), 251 (100), 162 (18.10),

135 (25.33), 117 (14.70), 104 (14.23), 91 (68.32), 77 (61.24), 57 (33.13), 51

(27.65), 43 (33.31).

Compound 3f: mp 123 � 1248C; 1H NMR (400 MHz, CDCl3): d (ppm)

3.32 (dd, J ¼ 6.5 Hz, J ¼ 17 Hz, 1 H), 3.56 (dd, J ¼ 13 Hz, J ¼ 17 Hz, 1 H),

3.75 (s, 3 H), 4.82 (dd, J ¼ 6.5 Hz, J ¼ 13 Hz, 1 H), 6.62 (d, J ¼ 16.5 Hz,

1 H), 6.88 (t, J ¼ 7.5 Hz, 1 H), 7.06 (d, J ¼ 7.5 Hz, 2 H), 7.19 (d, J ¼ 16.5 Hz,

1 H), 7.26 � 7.30 (m, 3 H), 7.36 (t, J ¼ 7.5 Hz, 2 H), 7.47 (d, J ¼ 7.5 Hz, 2 H);

FT-IR (KBr) y (cm21) 2950, 1741, 1599, 1501, 1324, 1200, 1122, 1038, 958,

882, 748, 691; MS m/z (%) 306 (Mþ, 58.42), 247 (100), 115 (15.11), 104

(17.99), 91 (19.36), 77 (76.95), 51 (33.04).
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Compound 3g: mp 143 � 1448C; 1H NMR (400 MHz, CDCl3): d (ppm)

3.63 (dd, J ¼ 6.5 Hz, J ¼ 17 Hz, 1 H), 3.74 (s, 3 H), 3.92 (dd, J ¼ 13 Hz,

J ¼ 17 Hz, 1 H), 4.84 (dd, J ¼ 6.5 Hz, J ¼ 13 Hz, 1 H), 6.89 (t, J ¼ 7 Hz,

1 H), 7.11 (d, J ¼ 8 Hz, 2 H), 7.25 � 7.30 (m, 4 H), 7.38 � 7.40 (m, 1 H),

7.84 � 7.86 (m, 1 H); FT-IR (KBr) y (cm21) 3064, 2952, 1739, 1599, 1502,

1435, 1389, 1322, 1265, 1204, 1141, 1036, 879, 750, 691, 666; MS m/z

(%) 314 (Mþ, 41.92), 255 (100), 117 (13.83), 104 (9.31), 91 (23.88),

77 (49.44), 51 (27.25).
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