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Hydrosulfonylation Reaction with Arenesulfonyl Chlorides and
Tetrahydrofuran: Conversion of Terminal Alkynes into
Cyclopentylmethyl Sulfones
Christian Simon Gloor, Fabrice D8nHs,* and Philippe Renaud*

Abstract: An efficient and simple radical chain reaction to
convert terminal alkynes into arenesulfonylmethylcyclopen-
tanes is described. The reaction involves a radical addition–
translocation–cyclization process and necessitates solely the
use of readily available arenesulfonyl chlorides in tetrahydro-
furan. Interestingly, this radical-mediated C@H activation
process took place with a high level of retention of config-
uration when an enantiomerically pure starting material was
used.

Sulfones are important and versatile compounds in organic
synthesis. They are present in natural compounds[1] and
analogues[2] presenting biological activity, such as antifungal,
antibacterial, and anti-HIV activity. Moreover, several bio-
logically active compounds containing a sulfone functional
group are known.[3] Sulfones are also useful building blocks, as
illustrated by the preparation of 26,28-methylene-1-a,25-
dihydroxyvitamin D2, a drug candidate for the treatment of
osteoporosis,[4] on the basis of a Julia olefination process
involving a homochiral phenyl cyclopentylmethyl sulfone
(Scheme 1). The addition of sulfonyl radicals to alkenes is one

of the mildest methods to introduce a sulfonyl group into
a molecule. Interestingly, this approach offers unique oppor-
tunities for cascade reactions involving, for example, the
formation of five-membered-ring systems from dienes and

enynes.[5] A variety of precursors, such as sulfonyl halides,[6]

sulfonyl selenides,[7] sulfonyl azides,[8] and allyl sulfones,[9]

have been used. The use of sulfonyl hydrazides[10] and
sulfinates[11] under oxidative conditions has also been
reported. Processes involving the addition of a sulfonyl
radical and a hydrogen atom to give alkenyl or alkylsulfones
(hydrosulfonylation) are much less common and require the
use of metal catalysis.[12]

We report herein a hydrosulfonylation procedure based
on the use of commercially or readily available arenesulfonyl
chlorides and THF as the source of the hydrogen atom, thus
avoiding the use of any dedicated reducing agent. The
reaction has been used to carry out efficient cascade reactions
involving a radical addition–translocation–cyclization
(RATC) process leading to the formation of aryl cyclo-
pentylmethyl sulfones from terminal alkynes.[13, 14]

The reaction was observed for the first time during an
attempt to form a cyclopentane derivative through chloro-
sulfonylation of alkyne 1a with para-toluenesulfonyl chloride
and dilauroyl peroxide (DLP) in cyclohexane at reflux
(Scheme 2). In contrast to previously reported radical cas-

cades involving the cyclization of dienes[6a,i, 11a,15] and eny-
nes[10c,16] or ring opening of vinylcyclopropanes,[17] no trace of
the expected cyclic chlorinated sulfone 3a was observed.
Instead, cyclic compound 2a resulting from hydrosulfonyla-
tion was obtained in 66 % yield. A related observation was
made by Quiclet-Sire and Zard two decades ago during the
study of 1,2-xanthate migration in sugar derivatives, which led
finally to an efficient procedure for the preparation of
deoxysugars.[18]

Rapid solvent screening showed that weak-hydrogen-
atom-donor solvents, such as benzene, acetonitrile, and ethyl
acetate, also provided the cyclized product 2a but in lower
yields (Table 1, entries 2–4).[19] 1,4-Dioxane gave results
similar to cyclohexane (Table 1, entries 1 and 5). The yield
of 2a was significantly increased to 81% when THF[20] was
used as the solvent (Table 1, entry 6).

Scheme 1. A cyclopentylmethyl phenyl sulfone building block.
Scheme 2. Discovery of the hydrosulfonylation reaction. Tol = tolyl.
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Different arenesulfonyl chlorides were tested and pro-
vided the corresponding cyclic sulfones in good to high yields
(Scheme 3). Later, it was discovered that initiation of the
reaction by simple sunlight irradiation in the absence of DLP
afforded the product 2a in slightly higher yield (88%).[21]

The reaction was then tested with a variety of terminal
alkynes 1g–o (Scheme 4), and the cyclized product c-2 was
obtained as the major product in fair to excellent yields.
Translocation processes leading to secondary alkyl radicals
are known to be very challenging[13e, 22] but take place
efficiently under our reaction conditions. The generation of
a primary radical from 1k was even possible and provided
a nearly 1:1 mixture of c-2 k and a-2 k in 84% yield. Examples
of the activation of such terminal positions are rather
scarce.[13e, 23, 24]

Finally, the reaction was tested for the synthesis of
enantiomerically enriched aryl cyclopentylmethyl sulfones
related to that used in the preparation of 26,28-methylene-1-
a,25-dihydroxyvitamin D2 (see Scheme 1). The strategy was
to use a RATC process involving the memory-of-chirality
effect discovered by Heiba and Dessau[25] and further studied
by Curran and co-workers.[26] Treatment of the enriched silyl
ether 4 (er 99:1) with p-tolylsulfonyl chloride afforded the
expected cyclopentylmethyl sulfone 5a in 81% yield as
a mixture of diastereomers (Scheme 5). Both the major and
the minor diastereomer were enantiomerically enriched (er
79:21 and 75:25, respectively). Running the reaction with

pentafluorobenzenesulfonyl chloride at 40 88C under sun-lamp
irradiation afforded 5b in 69% yield with the highest level of
retention of the absolute configuration ever observed for
a translocation–cyclization process (er 88:12 and 86:14 for the
two diastereomers). The selectivity observed for the forma-
tion of the pentafluorinated phenyl sulfone 5b is best
rationalized by favorable electronic effects that increase the
rate of cyclization relative to the conformational change
involved in the racemization process (Scheme 5, gray part of
the mechanism).

To clarify the mechanism, we carried out the reaction of
1h in THF, [D8]THF, and cyclohexane (see the Supporting
Information for details). The results confirmed that the ratio
of cyclic/acyclic products is determined during the transloca-
tion step and not during the subsequent very fast cyclization.

Table 1: Solvent optimization for the reaction of 1a (Scheme 2).[a]

Entry Solvent T [88C] Yield (2a) [%]

1 cyclohexane 80 66
2 benzene 80 40
3 acetonitrile 82 19
4 ethyl acetate 77 32
5 1,4-dioxane 101 68
6 tetrahydrofuran 66 81

[a] Reaction conditions: 1a (1 mmol), p-toluenesulfonyl chloride
(2 equiv), dilauryl peroxide (DLP; 0.5 equiv).

Scheme 3. Reaction of terminal alkyne 1a with different sulfonyl
chlorides.

Scheme 4. Scope and limitations of the hydrosulfonylation of terminal
alkynes.

Scheme 5. Memory of chirality in the RATC process (gray: racemiza-
tion process). AIBN= azobisisobutyronitrile, TBS= tert-butyldimethyl-
silyl.
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On the basis of these observations, we propose the mechanism
depicted in Scheme 6. The starting electrophilic sulfonyl
radical adds efficiently to the terminal alkyne to furnish
a highly reactive alkenyl radical that is perfectly suitable to
abstract a hydrogen atom from an aliphatic C@H bond. Owing
to its appropriate conformation and to favorable electronic
effects, the translocated radical cyclizes extremely fast. The
cyclized a-sulfonyl radical[27] is not chlorinated by ArSO2Cl
owing to unfavorable polar effects[28] but is able to abstract
a hydrogen atom from THF (or cyclohexane).[18] This key step
is strongly facilitated by polar effects.[18, 29] Finally, the
nucleophilic 2-tetrahydrofuranyl radical is rapidly chlorinated
by ArSO2Cl owing to favorable polar effects.[28b] Importantly,
every single step of this process is favored by polar effects and
thermodynamic factors, thus giving rise to an efficient chain
reaction.

In conclusion, we have developed an inexpensive method
for an unprecedented hydrosulfonylation cascade reaction.
The reaction is experimentally very simple to run and affords
the desired products in good to high yields. Moreover, the
strategy used in this study for the hydrosulfonylation cascade
process is expected to be extendable to a large variety of other
reactions. Investigations along those lines are currently in
progress in our laboratory.
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