Metal-Free Stereoselective Synthesis of (*E*)- and (*Z*)-N-Monosubstituted β -Aminoacrylates via Condensation Reactions of Carbamates

Scott R. Pollack* and Amélie Dion*

ABSTRACT: N-monosubstituted β -aminoacrylates are building blocks, which have been used in the preparation of amino acids and pharmaceuticals. Two efficient, stereoselective methods of preparation, via acid- or base-promoted condensation reactions of carbamates, are described. The base-promoted reaction is *E*-selective, while acid catalysis can, through the choice of solvent, selectively form *E* or *Z*. The acid-catalyzed *E*-selective process proceeds through a crystallization obviating the need for chromatographic purification.

INTRODUCTION

 β -Aminoacrylates (1, Figure 1), also known as vinylogous carbamates, are versatile building blocks that have found use in

Figure 1. β -Aminoacrylates as precursors to β^2 -amino acids.

the synthesis of a variety of compounds including heterocycles,¹ amino acids,^{2a} and pharmaceuticals.³ As part of ongoing efforts to incorporate non-natural amino acids into peptides to make them more drug-like,⁴ we have become interested in new methods to prepare β^2 -amino acids (2).⁵ Based on the work of Elaridi,^{2b} it appeared that (*E*)- α -substituted N-monofunctionalized β -aminoacrylates (3) could be an excellent starting point.

Unfortunately, there are limited reports on the synthesis of the requisite α -substituted (*E*)-acrylates (3, $R^2 \neq H$)⁶ and no approaches that are general and stereocontrolled. However, it seemed reasonable that we could use the (*E*)- α -unsubstituted (3, $R^2 = H$) analogs as a starting point. It has been reported that similar compounds can be halogenated at the α -postion⁷ and then subjected to metal-mediated cross coupling.⁸ Consequently, those compounds, with nitrogen-protected as a carbamate (3, $R^3 = OR$) to facilitate later elaboration, became the focus of our efforts.

A review of the literature shows numerous methods for the preparation of N-acylated β -aminoacrylates (3, R² = H). However, in the various reports on this class of substrate, the Z isomer tends to predominate as the exclusive or major product.

Methods utilized (e.g., see Scheme 1) include metal-mediated processes such as amidation/hydroamidation,⁹ decarboxylative/ decarbonylative eliminations,¹⁰ dehydrogenation,¹¹ and C-X cross coupling¹² as well as oxidation,¹³ acetal condensation, retro-Diels Alder,¹⁵ and heterocycle fragmentation¹⁶ reactions. The vast majority of compounds reported are amides. Of the carbamate-containing examples, nearly all reported reactions favor the formation of the (Z)-acrylate. That configurational selectivity has been attributed, by several of the authors, to hydrogen bonding from the N-H to the ester carbonyl during olefin formation.^{9a,b} Some of the decarboxylative elimination reactions slightly favor the (E)-acrylates but not consistently so. There are also examples of photoisomerization from the (Z)- to (E)-acrylate.¹⁵ Then, there is the work of Porco¹² who described the cross coupling of amides (no carbamates reported) and (E)- β -iodoacrylates. However, that process is not entirely stereocontrolled as Z-acrylates are sometimes the favored products.

Of the two reports (Newhouse¹¹ and Ragulin¹⁴) that describe *E*-selective reactions, neither actually is. Newhouse used a Pdmediated dehydrogenation to convert β -alanines to β -aminoacrylates. However, the compounds with a free N–H are actually the *Z* isomers.¹⁷ In the single example by Ragulin,¹⁴ the reaction produces both isomers in nearly equal amounts with the *E* isomer isolated selectively by crystallization (vide infra). Finally, there are examples of *E*-selective reactions that produce products with

Received: May 24, 2021

Pd-catalyzed amidation (Kim and Chang) or hydroamidation (Panda)

Decarboxylative elimination (Tunge)

Metal-mediated C-X cross-coupling (Porco)

d)
$$I \xrightarrow{O} X$$

 $X = OAllyl \text{ or NHBn}$
 $Cu(CN)_4 PF_6, \text{ amide} Rh_2 CO_3, DMA, 40 °C \\ \hline Rh_2 CO_3, DMA, 40 °C \\ \hline Rh_2 CO_3, DMA, 40 °C \\ \hline Rh_H N \xrightarrow{O} N \xrightarrow{O} X$

This work - Metal-free stereoselective condensation reactions 9E or 97 acid (70-95% E: 63-73% Z OR^1 or base (84-94% E) н NHR4 X = OR or R

a fully substituted nitrogen¹⁸ (no N-H), but none with an easily removeable protecting group. Additionally, we hoped to use hydrogen bonding to our advantage.

We now report the development of a pair of efficient metalfree stereoselective processes for the preparation of Ncarbamate-protected $\alpha_{,\beta}$ -unsubstituted β -aminoacrylates (3, $R^2 = H$). The first uses an acid-catalyzed condensation to prepare the *E* isomer. Further exploration of the reaction allowed for a Z-selective reaction by careful selection of the solvent. The second process relies on base catalysis to prepare the E configuration and is amenable to both N-carbamates and Namides.

RESULTS AND DISCUSSION

Our initial efforts to stereoselectively access (E)- β -aminoacrylates began with an examination of the Wittig reaction of N-formyl carbamates. Traditionally, the Wittig reaction of aldehydes with stabilized ylides is expected to generate trans olefins with high selectivity. Interestingly, while the reaction of *N*-formyl amides and stabilized ylides has been reported, ^{6a,9c} the corresponding reaction of N-formyl carbamates has not.

The required N-Cbz and N-Boc-formamides (12 and 13) were quickly prepared in a two-step process. Carbamates 10 and 11 were condensed with N,N-dimethylformamide-dimethyl acetal (DMF-DMA) to give intermediate dimethylaminoimines. Acid hydrolysis of those intermediates gave the desired Nformylcarbamates 12 and 13 in high yield and purity without need for chromatography.

The results of the Wittig reaction with N-formyl carbamates and various stabilized ester ylides are detailed in Scheme 2.

0 R ¹ 0 NH 10 (R ¹ = Bn 11 (R ¹ = O <i>t</i>	1. DM toli 2 2. 70: 3) rt, Bu) 92% c	$\begin{array}{c} 1. \text{ DMF-DMA} \\ toluene, 90 ^{\circ}\text{C}, 2 \text{ h} \\ 2. 70:30 \text{ HOAc:}\text{H}_2\text{O} \\ rt, 18 \text{ h} \end{array} \begin{array}{c} 0 \\ R^{1}\text{O} \\ H \\ 12 (R^1 = Bn) \\ 13 (R^1 = OrBu) \end{array}$		
Ph ₃ P	Jene	0 R ¹ 0		2
90-100	0, 4-18 11		14-19	
Product	R ¹	R ²	14-19 <i>E:Z</i>	% yield
Product 14	R ¹ Bn	R ² Me	14-19 <u><i>E:Z</i></u> 56:44	<mark>% yield</mark> 98%
Product 14 15	R ¹ Bn Bn	R ² Me Et	E:Z 56:44 50.5:49.5	<mark>% yield</mark> 98% 94%
Product 14 15 16	R ¹ Bn Bn Bn	R ² Me Et <i>t</i> Bu	E:Z 56:44 50.5:49.5 46.8:53.2	<mark>% yield</mark> 98% 94% 96%
Product 14 15 16 17	R ¹ Bn Bn Bn <i>t</i> Bu	R ² Me Et <i>t</i> Bu Me	<i>E:Z</i> 56:44 50.5:49.5 46.8:53.2 61.2:38.8	<mark>% yield</mark> 98% 94% 96% 92%
Product 14 15 16 17 18	R ¹ Bn Bn Bn <i>t</i> Bu <i>t</i> Bu	R ² Me Et <i>t</i> Bu Me Et	E:Z 56:44 50.5:49.5 46.8:53.2 61.2:38.8 53:47	<mark>% yield</mark> 98% 94% 96% 92% 96%

Unfortunately, while products form in high yield, none of the reactions were sufficiently selective for the desired *E* isomer. In fact, the E/Z ratio dropped as more sterically hindered esters were used. The analogous Horner-Wadsworth-Emmons reaction, using stabilized phosphonate ylides, was also examined, but, no product formation was observed. The main products of those reactions were carbamates 10 and 11, which presumably occur via N-deformylation due to increased nucleophilicity of the phosphonate relative to the phosphonium ylides.

Several interesting observations resulted from these initial efforts, which had a significant impact on the direction of our subsequent work. First, the E isomers are generally solid at ambient temperatures, while the Z isomers are oils. Additionally, the Z isomers are substantially less polar than their corresponding E isomer as evidenced by retention times on silica or C18 stationary phases used in reversed-phase highperformance liquid chromatography (HPLC). That particular property is, likely, due to hydrogen bonding.

On a related note, an example of the importance of hydrogen bonding in the Z-selective formation of a similar series of compounds (20Z, Figure 2) was reported by Suh and Kishi. In

Figure 2. Kishi's study of H-bonding in β -aminoacrylates.

their efforts toward the total synthesis of palytoxin,¹⁹ they prepared a number of amide analogs (vinylogous ureas), which lead to a series of important observations. They observed, in an acid-catalyzed process, that: (1) polar solvents could disrupt the propensity for intramolecular hydrogen bonding, (2) the E isomers were, often, observed to be highly crystalline (possibly because of the presence of intermolecular hydrogen bonding) (20E), and (3) potential for E/Z interconversion exists. Thus, through carefully selected conditions, it might be possible to selectively prepare one isomer or the other.

The extension of Kishi's work to the selective synthesis of Nmonosubstituted- β -aminoacrylates (vinylogous carbamates) is based on the previously mentioned single reported example by Ragulin.¹³ Benzyl carbamate (**10**) and acetal **21** were condensed under acid catalysis to, reportedly, give the (*E*)- β -aminoacrylate exclusively in moderate yield (see Scheme 3). The *E* isomer

Scheme 3. Known Acid-Catalyzed β -Aminoacylate Synthesis

(15*E*) was crystallized from the reaction mixture after workup. In our hands, careful examination of the crude reaction showed both the *E* and *Z* isomers were formed in nearly equivalent amounts.^{20a}

Armed with these precedents, we examined the possibility of developing an efficient condensation reaction that operates under equilibration/crystallization conditions. When reacting acetal **22** with benzyl carbamate in the presence of aqueous HCl in acetonitrile (ACN)/water, we obtained the desired β -aminoacrylate **14***E* in great yield and selectivity (93%, see Table 1) as a crystalline solid. Following the reaction profile over

Table 1. E-Isomer Synthesis/Crystallization in Polar Solvents

23 OR ³ O R ³ O or 24 O R ³ O	OR ¹ 25 0 R ² 0 aq. HCl c solve rt - 5	NH ₂ or pTsOH ent(s) 0 °C ^a	R ² O H	0 OR ¹ 26 <i>E</i>
carbamate	\mathbb{R}^1	\mathbb{R}^2	pdt #	isolated yield
27	Me	Me	$30E^{b}$	90
27	Et	Me	31E	84
28	Me	Et	32E	87
10	Me	Bn	$14E^{b}$	93
10	Et	Bn	15E	81
10	allyl	Bn	33E	75
10	propargyl	Bn	34E	72
10	Bn	Bn	35E	92
29	Me	Fmoc	36E	95
29	Et	Fmoc	37E	70
29	Bn	Fmoc	38E	94

^{*a*}Conditions: 1 equiv carbamate, 1.3 equiv of acetal in solvent with acid—100% 5 N HCl, rt, 18 h for R^2 = Me or Et; 1:1 ACN/5 N HCl, rt, 18 h for R^2 = Bn; and ACN, 50 °C, 18 h for R^2 = FMoc. ^{*b*}Reaction could be scaled up to make >100 g. R^3 may or may not equal R^1 . See Supporting Information for partner (23/24) used.

time, ^{20a,b} the *E* isomer forms rapidly while steadily crystallizing out of solution over time (Figure 3A). Under these conditions, the *Z* isomer remains at a consistently low level. We hypothesize that water might play a double role by serving as an antisolvent for the crystallization of **14***E* and by disfavoring the intramolecular hydrogen bonding stabilizing **14***Z*. As previously reported, ¹⁹ a different behavior was expected, and demonstrated, when the condensation reaction was run in a nonpolar solvent [dichloromethane (DCM) in the presence of 3.0 M HCl in cyclopentyl methyl ether (CPME), Figure 3B]. In this instance, while 14E initially formed at higher concentrations compared to 14Z, a plateau occurred after 30 min corresponding to an increase in 14Z, further supporting the existence of an equilibrium between these isomers.

To gain further clarity into the equilibrium between aminoacrylates 14*E* and 14Z, each isomer was independently subjected to the condensation conditions. While the olefin configuration was mostly conserved with 14*E* (Figure 4A), pure 14Z slowly converted into 14*E* (Figure 4B). In fact, subjecting 14Z to optimized condensation reaction conditions (see Scheme 4), for the formation of 14*E* from acetal and carbamate, results in near complete isomerization to 14*E* via simultaneous crystallization.

In order to develop the scope of this reaction for a scalable process, we targeted conditions that would operate under kinetic control as that would give us the crystalline E isomer in high yield. Gratifyingly, after screening solvent(s), acids, and temperature, we were able to prepare carbamic acid esters of (*E*)- β -aminoacrylates (26*E*, Table 1) in good to excellent yield without need for chromatography. Reactions were run in either 100% water, 100% ACN, or mixture of the two depending on solubility of the carbamate (25). An excess of the condensation partner was used to ensure complete consumption of the carbamate. Either a 3,3-dialkoxypropionate (23) or a 3alkoxyacryate ester (24, cis or trans) can be used as the reaction partner without an effect on yield. The acid used both promotes condensation and facilitates isomerization. Reactions were carried out with aq HCl (5 N) except where ACN was the sole solvent in which case p-toluenesulfonic acid (pTsOH) was used. Due to solubility issues, Fmoc-amide (29) required moderate heating $(50 \,^{\circ}\text{C})$ to facilitate the reaction.

In an analogous fashion, reactions may be run under thermodynamic control (toluene, CSA, 50 °C) to selectively form the *Z* isomer (see Table 2). As the most *Z* isomers are oils or low-melting solids, the products must be isolated chromatographically. Overall yields are diminished relative to the synthesis of the *E* isomers due to lower selectivity of the reaction but are still on par with most of the metal-catalyzed processes. As the *Z* isomers have been utilized in number ways, 9^{c_115} this simplified alternative method to access them should be of use.

We propose the following mechanism (see Scheme 5) based on reaction profiling of the condensation and isomerization reactions. The first intermediate is, likely, compound 49, which would form when carbamate 25 reacts, under acid catalysis, with either acetal 23 or alkoxy acrylate 24. Under aqueous conditions, 23 or 24 could first hydrolyze to the respective aldehyde before undergoing condensation with the carbamate. It is also conceivable that a second equivalent of carbamate could add in (49, R = NHCO₂R) as that has been reported to occur when carbamates react with aldehydes. Regardless, all of the possible intermediates could then undergo an elimination reaction to generate either 26*E* or 26*Z*. At that point, depending on solvent selection, an equilibrium between the compounds, via $50E^{13b}$ and 50Z, is established that favors one compound over the other. In the case of 26E, selectivity is further enhanced through crystallization of the product from solution. Again, a driving force in the reaction is thought to be hydrogen bonding, particularly under conditions that favor the Z isomer. It is also possible that the chloride anion plays a role in some of the isomerization process,²¹ but it is not essential as the reaction can be catalyzed by organic acids such as camphorsulfonic acid (CAS) or pTsOH. It is important to note that in the absence of conditions (e.g., acid or UV light) that promote isomerization,

Figure 3. Formation of acrylate 14: ACN vs DCM/CPME.

the individual isomers are configurationally stable at ambient temperatures in their pure forms.

While the previously discussed chemistry represents a significant improvement in the preparation of these important building blocks, there are a few limitations. The reaction conditions are not compatible with acid-labile functional groups, for example, *t*-butyl carbamate (Boc). Also, the *E*-selective kinetic controlled reaction with crystallization depends on the exclusive (or at least significantly superior) crystallinity of one of the isomers. In order to address these issues, we developed a complementary approach.

Imides have been reported to undergo a base-promoted nucleophilic addition reaction to propiolate esters to produce (E)- β -aminoacrylates that are fully substituted on nitrogen.²² We theorized that this process could be modified using an acyclic diacylated nitrogen, where one of the groups on nitrogen is a protecting group, such as Boc, that could be removed after the initial condensation to generate the desired (*E*)-N-monosubstituted β -aminoacrylate.

Thus, a series of *N*-Boc carbamates (or amides) were prepared (see Table 3). When subjected to a DABCO-catalyzed reaction, they quickly form (*E*)-N-disubstituted β -aminoacrylates (53*E*). For example, bis-Boc amine 55 undergoes the condensation reaction smoothly in very high yield to produce nearly exclusively the *E* isomer (62*E*, >90:1). Small amounts (1–5%) of *Z* isomer are sometimes observed but are easily separated after

the deprotection step. The fully protected acrylate (62*E*) is then converted to mono-Boc 17*E* using Lewis acid catalysis $(MgClO_4)$.²³

The amount of Lewis acid used is key to avoid a sluggish reaction and/or unwanted byproducts. Use of conventional strong acid deprotection methods (e.g., trifluoroacetic acid) leads to lower yields and isomerization of the olefin. This approach also allows for *N*-acyl (alkyl and aryl) analogs to be prepared and is an excellent alternative to the various metal-mediated processes,⁹ which primarily afford the *Z* isomer. However, *N*-Boc deprotection of the amide requires stoichio-metric amounts of the Lewis acid.

In conclusion, we have developed two fast and efficient routes for the preparation of N-monosubstituted- β -aminoacrylates. The first method is a solvent-controlled process to selectively prepare the *E* or *Z* isomer. The second method is a new use of the nucleophilic addition reaction of imides to propiolates to prepare *E* isomers with acid-labile groups or amides on nitrogen. Future publications will detail the functionalization of these substrates and their conversion to β^2 -amino acids and heterocycles.

EXPERIMENTAL SECTION

General Information. Commercial grade reagents and solvents were used without further purification. All starting materials not previously reported in the literature have been fully characterized. All compounds previously reported in the literature are spectroscopically

Figure 4. *E*/*Z* isomerization of acrylate 14 in ACN/aqueous HCl.

consistent with the reported values. Reactions are run under a nitrogen atmosphere unless noted. Reactions were monitored by either thin-layer chromatography (EMD Millipore Silica Gel 60 F254 plates with visualization by UV or KMnO4 stain) or ultraperformance liquid chromatography-mass spectrometry (UPLC/MS) (Agilent 1290 Infinity II UPLC with Agilent 6140 MS using ESI) at 1.0 mL/min, 210 and 254 nm, 15-99% gradient eluted with ACN and water (10 mM pH 3.5 ammonium formate) over 1.5 min and then held at 99% ACN for 0.5 min (Zorbax Ecclipse Plus C18 RRHD, 1.8 μ m, 2.1 \times 50 mm). Kinetics data were collected using a Mettler-Toledo EasyMax 102 and EasySampler 1210 and analyzed by HPLC (Agilent 1260, 0.4 mL/min, 254 nm, 2% ACN/water + 0.3% formic acid for 2.5 min then gradient eluted to 90% over 6 min, and then held for 1.75 min, Waters Acquity UPLC BEH C18, 1.7 μ m, 2.1 × 100 mm). ¹H (500 MHz) and ¹³C (125 MHz) NMR spectra were measured on a Bruker system running TopSpin and were internally referenced to CHCl₃ (7.24 ppm for ¹H;

Table 2. Synthesis of Z-Isomers Using Nonpolar Solvents

R ³ 0 ⁻¹ 24		$\frac{25 \text{ O}}{\text{R}^2 \text{O} \text{ NH}_2}$ CSA, toluene 65 °C ^a	O R ² O N H	26Z
carbamate	$R^{1}(=R^{3})$	R ²	pdt #	isolated yield
27	Me	Me	30Z	67
28	Me	Et	32Z	66
39	Me	nPr	44Z	67
40	Me	iPr	45Z	72
10	Me	Bn	14Z	73
10	Et	Bn	15Z	68
41	Me	menthyl	46Z	71
42	Me	Ph	47Z	76
43	Me	CCl_3CH_2	48Z	63

^{*a*}Conditions: 1 equiv carbamate, 1.3 equiv of acetal, 5 mol % CSA in toluene (0.4-0.5 M) at 65 °C for 5–20 h. Isolated by chromatography.

Table 3. Scope of Propiolate Condensation/Deprotection

OR ¹ + O R ⁴ NH Boc 52	$\begin{array}{c} \begin{array}{c} DABCO \\ \hline DCM \\ 0 \ ^{\circ}C - rt \\ 2 \ h^{a} \end{array} \end{array} \begin{array}{c} \begin{array}{c} O \\ R^{4} \\ Boc \\ 53E \end{array}$	O OR ¹ MgClO₄ ACN, rt ► 24 h ^b	0 0 14 N OR ¹ 54E
R_1	imide- R^4 (#)	int. # (yield)	pdt # (yield)
Me	Ot-Bu (55)	62 E (97%)	17E (91%)
Et	Ot-Bu (55)	63 E (95%)	18E (95%)
t-Bu	Ot-Bu (55)	64 E (99%)	19E (93%)
Me	OMe (56)	65 E (91%)	30 E (94%)
Et	Me (57)	66 E (96%)	71E (93%)
Me	phenyl (58)	6 7 <i>E</i> (96%)	7 2 E (85%)
t-Bu	$4-CO_{2}Me-Ph(59)$	68 E (95%)	73E (88%)
Me	2-Br-Ph (60)	69 E (97%)	74E (97%)
Me	4-Br-Ph (61)	7 0 E (99%)	7 5 E (88%)

^{*a*}1 equiv each of propiolate and imide in DCM with 10 mol % DABCO, add propiolate at 0 °C then stir 1-2 h at rt. ^{*b*}MgClO₄—0.2 equiv to deprotect bis-Boc and 1 equiv to deprotect *N*-Boc, *N*-acyl compounds.

77.0 ppm for ¹³C), dimethyl sulfoxide (DMSO) (2.50 ppm for ¹H; 39.51 ppm for ¹³C), MeOH (3.3 ppm for ¹H; 49.15 ppm for ¹³C), or D_2O (4.8 ppm for ¹H). Chemical shifts are expressed in parts per million (δ) downfield from tetramethylsilane. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, and br = broad), coupling constant (Hz), and integration. HRMS was carried out using a Waters Acquity UPLC coupled to a Waters Xevo XS ToF (pos/neg modes). Silica gel chromatography was performed on a Teledyne ISCO CombiFlash Rf + purification system using prepacked silica gel columns from either ISCO or Biotage (CV = column volume). Note: all ¹H NMR of β -aminoacrylates, with free N– H, were run in both $CDCl_3$ and $DMSO-d_6$ as the N-H proton is diagnostic for *E* vs *Z* in CDCl₃ due to H-bonding. The N–H proton in the *E* isomer is typically observed at 6.5-7.5 ppm in CDCl₃, whereas it is observed at 9–10 ppm for the H-bonded Z isomer. This effect was not observed in DMSO- d_6 . Additionally, ¹³C NMR were run in DMSO- d_6 as

small amounts of residual acid in older bottles of CDCl₃ can cause isomerization of the olefin during the longer acquisition times.

Wittig Chemistry for β -Aminoacrylate Preparation. Benzyl Formylcarbamate (12).²⁴ To a 1000 mL 1-neck flask, with a stir bar, are added benzyl carbamate (10) (100 g, 662 mmol), toluene (400 mL, anhydrous), and DMF-DMA (257 mL, 1819 mmol). The reaction is heated at reflux, under N₂, for 3 h. The reaction is cooled to ambient temperature and concentrated in vacuo to a white solid. The solids are slurried in hexanes (500 mL), collected by filtration, and washed with hexanes (3 \times 500 mL). The solids are dried on a funnel using a combination of house vacuum/nitrogen sweep via an inverted funnel connected to the nitrogen source to afford (E)-benzyl-((dimethylamino)methylene)carbamate as a white solid. Quantitative yield is assumed and used directly in the next reaction. The white solid from the previous step is placed in a 1000 mL 1-neck flask with a stir bar. 272 mL 70% aq HOAc (190 mL HOAc, 82 mL water) is added and the reaction is stirred overnight at ambient temperature (18 h). The reaction is concentrated in vacuo to remove HOAc, and then diluted with water (400 mL) and extracted with EtOAc (2×300 mL). The organic layer is washed with saturated NaCl solution $(2 \times 100 \text{ mL})$. dried over Na2SO4, filtered, and concentrated to give an oil, which crystallizes on standing at ambient temperature. The solids are slurried in hexanes (400 mL), filtered, washed with hexanes $(3 \times 200 \text{ mL})$, and then dried on a funnel using a combination of house vacuum/nitrogen sweep via an inverted funnel connected to the nitrogen source to afford to give (E)-benzyl((dimethylamino)methylene)carbamate 12 (109.27 g, 92%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 8.94 (d, J = 10.1 Hz, 1H), 8.70 (d, J = 8.9 Hz, 1H), 7.59–7.18 (m, 5H), 5.22 (s, 2H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): *δ* 163.6, 152.5, 134.4, 128.7, 128.6, 128.4, 68.2. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₉H₉NO₃, 178.0504; found, 178.0504.

tert-Butyl Formylcarbamate (13).²⁵ To a 1000 mL 1-neck flask, with a stir bar under N_2 , are added *tert*-butyl carbamate (11) (50 g, 427 mmol), toluene (400 mL, anhydrous), and DMF-DMA (181 mL, 1280 mmol). The reaction is heated at 90 °C for 3 h. The reaction is cooled to ambient temperature and concentrated in vacuo. The oily residue is reconcentrated from hexanes (400 mL) and let stand under house vacuum to give (E)-tert-butyl ((dimethylamino)methylene)carbamate as a waxy solid. Quantitative yield is assumed and used directly in the next reaction. The material from the previous step is placed in a 250 mL 1-neck flask and 70% HOAc/water (2×; 103 mL HOAc/44 mL water) is added. The reaction is stirred overnight at ambient temperature. The reaction is diluted with MTBE (500 mL), washed with water $(3 \times 250$ mL), saturated NaCl solution (150 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue is reconcentrated from chloroform $(2 \times 300 \text{ mL})$ to give *tert*-butyl formylcarbamate 13 (56.89 g 92%) as a white solid after drying under vacuum: ¹H NMR $(CDCl_{3}, 500 \text{ MHz}): \delta 8.86 \text{ (d, } I = 10.4 \text{ Hz}, 1\text{H}), 8.30 \text{ (d, } I = 10.4 \text{ Hz}, 10.4 \text{ Hz})$ 1H), 1.47 (s, 9H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 163.7, 151.3, 83.5, 27.9. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₆H₁₁NO₃, 144.0661: found. 144.0656.

Methyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (14E) and Methyl (Z)-3-(((Benzyloxy)carbonyl)amino)acrylate (14Z). To a 250 mL 1-neck flask, with a stir bar and an air condenser under nitrogen, are added methyl 2-(triphenylphosphoranylidene)acetate (18.66 g, 55.8 mmol), benzyl formylcarbamate 12 (5 g, 27.9 mmol), and toluene (100 mL, anhydrous). The reaction is heated at 90 °C (internal temperature) for 4 h. The reaction is cooled to ambient temperature and concentrated in vacuo. The residue is dry loaded onto silica gel (dissolved in DCM, added silica gel, and concentrated to dryness). The silica is packed into a dry load cartridge, placed on top of a silica gel column (ISCO 120 g gold), and chromatographed (conditioned column with hexanes, eluted with 1 CV of hexanes then gradient eluted with 40% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give the 1st eluting compound (Z)-methyl 3-(((benzyloxy)carbonyl)amino)acrylate 14Z (2.81 g, 42.8%) as an oil: ¹H NMR (CDCl₃, 500 MHz): δ ¹H NMR (500 MHz, CDCl₃): δ 9.79 (s, 1H), 7.41-7.17 (m, 6H), 5.19 (s, 2H), 5.06 (d, J = 8.6 Hz, 1H), 3.69 (s, 3H); ¹H NMR (DMSO- d_{6} , 500 MHz): δ 9.79 (d, J = 10.4 Hz, 1H), 7.53-7.28 (m, 6H), 5.22 (s, 2H), 5.12 (d, J = 8.9 Hz, 1H), 3.64 (s, 3H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 168.55,

152.52, 140.20, 135.59, 128.44, 128.25, 128.09, 94.60, 67.37, 51.01. HRMS (ESI) (m/z): $([M - H]^-)$ calcd for C₁₂H₁₃NO₄, 234.0767; found, 234.0767; and 2nd eluting compound (*E*)-methyl 3-(((benzyloxy)carbonyl)amino)acrylate 14*E* (3.6 g, 54.8%) as a white crystalline solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (t, *J* = 13.1 Hz, 1H), 7.47–7.29 (m, 5H), 6.94 (d, *J* = 12.0 Hz, 1H), 5.35 (d, *J* = 14.1 Hz, 1H), 5.19 (s, 2H), 3.69 (s, 3H); ¹H (DMSO-*d*₆, 500 MHz): δ 10.61– 10.38 (m, 1H), 7.65 (dd, *J* = 14.0, 11.1 Hz, 1H), 7.48–7.14 (m, 5H), 5.40 (d, *J* = 14.0 Hz, 1H), 5.18 (s, 2H), 3.61 (s, 3H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 167.2, 153.4, 140.6, 135.8, 128.5, 128.3, 128.2, 98.2, 67.0, 50.9. HRMS (ESI) (*m*/*z*): ([M - H]⁻) calcd for C₁₂H₁₃NO₄, 234.0767, found, 234.0768.

Ethyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (15E)¹³ and Ethyl (Z)-3-(((Benzyloxy)carbonyl)amino)acrylate (15Z). To a 40 mL vial, with a stir bar, are added benzyl formylcarbamate 12 (2.5 g, 13.95 mmol), ethyl(triphenylphosphoranylidene)acetate (7.29 g, 20.93 mmol), and then toluene (15 mL, anhydrous). The reaction is heated at 95 °C for 18 h. The reaction is then cooled to ambient temperature and loaded directly onto a 40 g ISCO gold column that is then placed on top of an 80 g ISCO gold (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 100% MTBE over 8 CV, and then held for 6 CV) to give the 1st eluting compound ethyl (Z)-3-(((benzyloxy)carbonyl)amino)acrylate 15Z (1.62 g, 46.6%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.84 (s, 1H), 7.52-7.01 (m, 6H), 5.19 (s, 2H), 5.04 (d, J = 8.9 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H),1.26 (t, J = 7.1 Hz, 3H); ¹H NMR (DMSO- d_{6} , 500 MHz): δ 9.82 (d, J =11.6 Hz, 1H), 7.46–7.22 (m, 6H), 5.21 (s, 2H), 5.10 (d, J = 8.9 Hz, 1H), 4.10 (q, J = 7.1 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H); ${}^{13}C{}^{1}H$ NMR (DMSO-d₆, 125 MHz): δ 168.2, 152.5, 140.2, 135.6, 128.4, 128.2, 128.1, 94.9, 67.3, 59.7, 14.0. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C13H15NO4, 248.0923; found, 248.0923; and the 2nd eluting compound ethyl (E)-3-(((benzyloxy)carbonyl)amino) acrylate 15E (1.65 g, 47.4%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.80 (t, *J* = 13.1 Hz, 1H), 7.36–7.33 (d, *J* = 4.4 Hz, 5H), 6.97 (d, *J* = 12.1 Hz, 1H), 5.34 (d, J = 14.0 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H); ¹H (DMSO- d_6 500 MHz): δ 10.50 (s, 1H), 7.63 (dd, J = 14.0, 11.1 Hz, 1H), 7.51–6.98 (m, 5H), 5.38 (d, J = 14.0 Hz, 1H), 5.18 (s, 2H), 4.07 (q, J = 7.1 Hz, 2H), 1.18 (t, J = 7.1 Hz, 3H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6} , 125 MHz): δ 166.7, 153.4, 140.4, 135.8, 128.5, 128.3, 128.2, 98.6, 67.0, 59.3, 14.2. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₁₃H₁₅NO₄, 248.0923; found, 248.0924.

tert-Butyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (16E)^{10f} and tert-Butyl (Z)-3-(((Benzyloxy)carbonyl)amino)acrylate (16Z).^{10f} To a 40 mL vial, with a stir bar, are added benzyl formylcarbamate 12 (2.5 g, 13.95 mmol), (tert-butoxycarbonylmethylene)triphenylphosphorane (7.88 g, 20.93 mmol), and then toluene (15 mL, anhydrous). The reaction is heated at 95 °C for 18 h. The reaction is then cooled to ambient temperature and loaded directly onto a 40 g ISCO gold column that is then placed on top of an 80 g ISCO gold (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 100% MTBE over 8 CV, and then held for 6 CV) to give the 1st eluting compound tert-butyl (Z)-3-(((benzyloxy)carbonyl)amino)acrylate 16Z (1.98 g, 51.2%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.96–9.80 (m, 1H), 7.37–7.31 (m, 5H), 7.19 (t, J = 10.1 Hz, 1H), 5.18 (s, 2H), 4.96 (d, J = 8.6 Hz, 1H), 1.59–1.33 (m, 9H); ¹H NMR (DMSO- d_{6} , 500 MHz): δ 9.82 (d, J = 11.5 Hz, 1H), 7.47–7.33 (m, 5H), 7.25 (dd, J = 11.6, 8.9 Hz, 1H), 5.20 (s, 2H), 5.01 (d, J = 8.9 Hz, 1H), 1.43 (s, 9H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6} , 125 MHz): δ 168.0, 152.5, 139.6, 135.6, 128.4, 128.2, 128.1, 96.5, 80.3, 67.3, 27.8. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for $C_{15}H_{19}NO_4$, 276.1236; found, 276.1236; and the 2nd eluting compound (E)-3-(((benzyloxy)carbonyl)amino)acrylate 16E (1.74 g, 45.0%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.69 (dd, J = 14.0, 12.0 Hz, 1H), 7.39–7.30 (m, 5H), 6.76 (s, 1H), 5.27 (d, J = 14.1 Hz, 1H), 5.18 (s, 2H), 1.45 (s, 9H); ¹H NMR (DMSO- d_6 , 500 MHz): δ 10.41 (s, 1H), 7.53 (dd, J = 14.0, 11.1 Hz, 1H), 7.45–7.22 (m, 5H), 5.28 (d, J = 14.0 Hz, 1H), 5.17 (s, 2H), 1.41 (s, 9H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6} , 125 MHz): δ 166.1, 153.4, 139.7, 135.8, 128.5, 128.3, 128.2, 100.4, 79.0, 66.9, 27.9. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₁₅H₁₉NO₄, 276.1236; found, 276.1236.

Methyl (E)-3-((tert-Butoxycarbonyl)amino)acrylate (17E) and Methyl (Z)-3-((tert-Butoxycarbonyl)amino)acrylate (17Z).¹⁴ To a 250 mL 1-neck flask, with a stir bar and an air condenser under N2, are added methyl 2-(triphenylphosphoranylidene)acetate (34.6 g, 103 mmol), tert-butyl formylcarbamate 13 (7.5 g, 51.7 mmol), and toluene (100 mL, anhydrous). The reaction is heated at 90 °C (internal temperature) for 18 h. The reaction is cooled to ambient temperature and concentrated in vacuo. The residue is dry loaded onto silica gel (dissolved in DCM, added silica gel, and concentrated to dryness). The silica is packed into a dry load cartridge, placed on top of a silica gel column (ISCO 120 g gold), and chromatographed (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 40% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give the 1st eluting compound (Z)-methyl 3-((tert-butoxycarbonyl)amino)acrylate 17Z (3.729 g, 35.9%) as an oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.56 (s, 1H), 7.23 (t, J = 12.0 Hz, 1H), 4.98 (d, J = 8.9 Hz, 1H), 3.68 (s, 3H), 1.46 (s, 9H); ¹H NMR (DMSO- d_6 , 500 MHz): δ 9.53 (d, J = 11.8 Hz, 1H), 7.27 (dd, J = 11.8, 8.8 Hz, 1H), 5.05 (d, J = 8.9 Hz, 1H), 3.64 (s, 3H), 1.46 (s, 9H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_6 , 125 MHz): δ 168.7, 151.2, 140.4, 93.4, 81.6, 50.8, 27.5. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₉H₁₅NO₄, 200.0923; found, 200.0921; and the 2nd eluting compound (E)-methyl 3-((tert-butoxycarbonyl)amino)acrylate 17E (5.857 g, 56.3%) as a white solid, which is spectroscopically identical to the material previously reported herein or in the literature:¹⁰ ¹H NMR (CDCl₃, 500 MHz): $\delta 7.78$ (t, J = 13.0 Hz, 1H), 6.73 (d, J = 12.3Hz, 1H), 5.29 (d, J = 14.0 Hz, 1H), 3.69 (s, 3H), 1.47 (s, 9H); ¹H NMR (DMSO- d_6 , 500 MHz): δ 10.12 (s, 1H), 7.60 (dd, J = 14.0, 11.2 Hz, 1H), 5.34 (d, J = 14.0 Hz, 1H), 3.59 (s, 3H), 1.44 (s, 9H); ${}^{13}C{}^{1}H$ NMR (DMSO-d₆, 125 MHz): δ 167.3, 152.2, 140.9, 97.2, 80.9, 50.7, 27.7. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₉H₁₅NO₄, 200.0923; found. 200.0923.

Ethyl (E)-3-((tert-Butoxycarbonyl)amino)acrylate (18E) and Ethyl (Z)-3-((tert-Butoxycarbonyl)amino)acrylate (18Z).¹⁴ To a 40 mL vial, with a stir bar, are added *tert*-butyl formylcarbamate 13 (2.03 g, 13.95 mmol), ethyl (triphenylphosphoranylidene)acetate (7.29 g, 20.93 mmol), and then toluene (15 mL, anhydrous). The reaction is heated at 95 °C for 18 h. The reaction is then cooled to ambient temperature and loaded directly onto a 40 g ISCO gold column that is then placed on top of an 80 g ISCO gold (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 100% MTBE over 8 CV, and then held for 6 CV) to give the 1st eluting compound ethyl (Z)-3-((tertbutoxycarbonyl)amino)acrylate 18Z (1.35 g, 45.0%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.60 (s, 1H), 7.21 (t, J = 10.5 Hz, 1H), 4.97 (d, J = 8.9 Hz, 1H), 4.14 (d, J = 7.2 Hz, 2H), 1.46 (s, 9H), 1.26 $(t, J = 7.1 \text{ Hz}, 3\text{H}); {}^{1}\text{H} \text{NMR} (\text{DMSO-}d_{6}, 500 \text{ MHz}): \delta 9.57 (d, J = 11.7)$ Hz, 1H), 7.26 (dd, J = 11.7, 8.8 Hz, 1H), 5.04 (d, J = 8.9 Hz, 1H), 4.11 $(q, J = 7.1 \text{ Hz}, 2\text{H}), 1.46 (s, 9\text{H}), 1.21 (t, J = 7.1 \text{ Hz}, 3\text{H}); {}^{13}\text{C}{}^{1}\text{H} \text{NMR}$ (DMSO-*d*₆, 125 MHz): δ 168.4, 151.2, 140.4, 93.7, 81.5, 59.5, 27.5, 14.0. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₁₀H₁₇NO₄, 216.1236; found, 216.1238; and the 2nd eluting compound ethyl (E)-3-((tertbutoxycarbonyl)amino)acrylate 18E (1.52 g, 50.9%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.77 (t, J = 13.1 Hz, 1H), 6.83 (d, J = 12.3 Hz, 1H), 5.27 (d, J = 14.1 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 1.47 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H); ¹H NMR (DMSO- d_{61} 500 MHz): δ 7.59 (dd, J = 14.0, 11.3 Hz, 1H), 5.32 (d, J = 14.0 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 1.44 (s, 9H), 1.18 (t, J = 7.1 Hz, 3H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6}) 125 MHz): δ 166.9, 152.3, 140.7, 97.5, 80.9, 59.1, 27.8, 14.2. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for $C_{10}H_{17}NO_4$, 216.1236; found, 216.1234.

tert-Butyl (E)-3-((tert-Butoxycarbonyl)amino)acrylate (**19E**) and tert-Butyl (Z)-3-((tert-Butoxycarbonyl)amino)acrylate (**19Z**).^{10d} To a 40 mL vial, with a stir bar, are added *tert*-buty formylcarbamate **13** (2.03 g, 13.95 mmol), (*tert*-butoxycarbonylmethylene)triphenylphosphorane (7.88 g, 20.93 mmol), and then toluene (15 mL, anhydrous). The reaction is heated at 95 °C for 18 h. The reaction is then cooled to ambient temperature and loaded directly onto a 40 g ISCO gold column that is then placed on top of an 80 g ISCO gold (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 100% MTBE over 8 CV, and then held for 6 CV) to give the 1st eluting compound *tert*-Butyl (Z)-3-((*tert*-butoxycarbonyl)amino)acrylate **19Z** (2.0 g, 58.9%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.61 (s, 1H), 7.18–7.11 (m, 1H), 4.89 (d, *J* = 8.9 Hz, 1H), 1.46 (s, 18H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 9.60 (d, *J* = 11.7 Hz, 1H), 7.19 (dd, *J* = 11.7, 8.9 Hz, 1H), 4.95 (d, *J* = 8.9 Hz, 1H), 1.46 (s, 9H), 1.44 (s, 9H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 168.2, 151.2, 139.7, 95.4, 81.4, 80.0, 27.8, 27.6; HRMS (ESI) (*m*/*z*): ([M – H]⁻) calcd for C₁₂H₂₁NO₄, 242.1393; found, 242.1391 and the 2nd eluting compound *tert*-butyl (*E*)-3-((*tert*-butoxycarbonyl)amino)acrylate **19E** (1.22 g, 35.9%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.66 (t, *J* = 13.1 Hz, 1H), 6.58 (s, 1H), 5.20 (d, *J* = 14.0 Hz, 1H), 1.47 (s, 9H), 1.45 (s, 9H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 10.05 (s, 1H), 7.51 (dd, *J* = 14.0, 11.2 Hz, 1H), 5.24 (d, *J* = 14.0 Hz, 1H), 1.45 (s, 9H), 1.41 (s, 9H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 166.3, 152.3, 139.9, 99.3, 80.8, 78.8, 27.9, 27.8. HRMS (ESI) (*m*/*z*): ([M – H]⁻) calcd for C₁₂H₂₁NO₄, 242.1393; found, 242.1393.

Acid-Catalyzed Conversion of 10Z to 10E Acrylate Using Crystallization to Drive the Reaction. *Methyl (E)-3-(((Benzyloxy)-carbonyl)amino)acrylate (14E)*. To a 20 mL vial with a stir bar are added *methyl (Z)-3-(((benzyloxy)carbonyl)amino)acrylate 14Z (2.5 g, 10.63 mmol)*, ACN (5 mL), and 5 N aqueous HCl (5 mL). The reaction is stirred at ambient temperature for 18 h. The reaction was seeded with 14E after 1 h. After 18 h, a thick precipitate forms that is collected by filtration, washed first with 1:1 ACN/water (30 mL) then hexanes (20 mL), and dried under house vacuum/nitrogen sweep (inverted funnel) to give methyl (*E*)-3-(((benzyloxy)carbonyl)amino)acrylate 14E (2.027 g, 81%) as a white solid. The material is spectroscopically identical to that described herein.

E-Selective Acid-Promoted Synthesis of β -Aminoacrylates. Methyl (E)-3-((Methoxycarbonyl)amino)acrylate (30E).²⁶ Method A: To a 1000 mL 4-neck round bottom flask with a large egg-shaped stir bar are added methyl carbamate 27 (56.8 g, 757 mmol), methyl (E)-3methoxyacrylate (102 mL, 946 mmol), and 5 N aqueous HCl (500 mL). The reaction is stirred at ambient temperature for 18 h. The solution turns yellow and a thick precipitate is generated. The solids are collected by filtration, washed with water $(2 \times 200 \text{ mL})$, hexanes $(2 \times 200 \text{ mL})$, and dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give methyl (E)-3-((methoxycarbonyl)amino)acrylate 30E (108.7 g, 90%) as a light yellow solid: ¹H NMR (CDCl₂, 500 MHz): δ 7.86–7.76 (m, 1H), 6.95 (d, J = 12.1 Hz, 1H), 5.37 (d, J = 14.1 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 3H); ¹H (DMSO-*d*₆, 500 MHz): δ 10.36 (d, J = 10.6 Hz, 1H), 7.61 (dd, J = 14.0, 11.2 Hz, 1H), 5.37 (d, J = 14.0 Hz, 1H), 3.69 (s, 3H), 3.60 (s, 3H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6} , 125 MHz): δ 167.3, 154.0, 140.8, 98.0, 52.8, 50.9. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₆H₉NO₄, 158.0454; found, 158.0453

Method B: To a 1-neck (29/42)1000 mL flask with a stir bar are added methyl carbamate 27 (25 g, 333 mmol), methyl 3,3dimethoxypropionate (61.4 mL, 433 mmol), and 5 N aqueous HCl (300 mL). The reaction is stirred at ambient temperature for 18 h. The solution turns yellow with a thick precipitate. The solids were collected by filtration, washed with water (2 × 200 mL) and hexanes (2 × 200 mL), and dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give *methyl* (*E*)-3-((*methoxycarbonyl*)*amino*)*acrylate* **30E** (46.69 g, 88%) as a light yellow solid. ¹H NMR matches reported values (vide supra).

Ethyl (E)-3-((Methoxycarbonyl)amino)acrylate (31E). Method A: To a 200 mL 1-neck flask, with a stir bar, are added methyl carbamate 27 (5.0 g, 66.6 mmol) and 5 N aqueous HCl (50 mL). Then, ethyl 3ethoxyacrylate (12.51 mL, 87 mmol) is added. All solids dissolve before a white solid begins to precipitate within approximately 30 min. The reaction is stopped after 3.5 h. The initial crystalline material from this reaction can redissolve under extended reaction times resulting in an unfilterable gel. The solids are collected by filtration, washed with water (100 mL) followed by hexanes (100 mL), and finally dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give ethyl (E)-3-((methoxycarbonyl)amino)acrylate 31E (9.75 g, 84.6%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.78 (t, *J* = 13.0 Hz, 1H), 7.39 (d, J = 11.9 Hz, 1H), 5.36 (d, J = 14.0 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹H (DMSO- d_{6} , 500 MHz): δ 10.36 (d, J = 9.8 Hz, 1H), 7.60 (dd, J = 14.0, 11.1 Hz, 1H), 5.36 (d, J = 14.0 Hz, 1H), 4.07 (q, J = 7.1 Hz, 2H), 3.70 (s, 3H), 1.18 (t, J = 7.1 Hz,

3H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_6 , 125 MHz): δ 166.8, 154.0, 140.6, 98.3, 59.3, 52.8, 14.2. HRMS (ESI) (m/z): ([M – H]⁻) calcd for C₇H₁₁NO₄, 172.0610; found, 172.0610.

Method B: To a 200 mL 1-neck flask, with a stir bar, are added methyl carbamate **27** (5.0 g, 66.6 mmol) and 5 N aqueous HCl (50 mL). Then, ethyl 3,3-diethoxypropanoate (16.84 mL, 87 mmol) is added. All solids dissolve before a white solid begins to precipitate within approximately 30 min. The reaction is stopped after 2.5 h. The solids are collected by filtration, washed with water (100 mL) followed by hexanes (100 mL), and finally dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give *ethyl* (*E*)-3-((*methoxycarbonyl*)*amino*)*acrylate* **31E** (9.7 g, 84.1%) as a white solid. The material is spectroscopically identical to that described in Method A.

Methyl (E)-3-((Ethoxycarbonyl)amino)acrylate (**32E**).²⁷ To a 500 mL 1-neck flask, with a stir bar, are added ethyl carbamate 28 (25 g, 281 mmol), methyl (E)-3-methoxyacrylate (37.7 mL, 351 mmol), and 5 N aqueous HCl (250 mL). The reaction is stirred at ambient temperature for 18 h. The reaction turns yellow and a thick precipitate forms. The slurry is filtered, washed with water (150 mL) followed by hexanes (100 mL), and then dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give methyl (E)-3-((ethoxycarbonyl)amino)acrylate 32E (42.3 g, 87%) as a light-yellow solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.78 (t, J = 12.9 Hz, 1H), 7.63 (s, 1H), 5.37 (d, J = 13.9 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.67 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹H $(DMSO-d_{6}, 500 \text{ MHz}): \delta 10.35 \text{ (d, } J = 10.8 \text{ Hz}, 1 \text{ H}), 7.62 \text{ (dd, } J = 14.0,$ 11.2 Hz, 1H), 5.37 (d, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 (s, J = 14.0 Hz, 1H), 3.60 (s, J = 14.03H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (DMSO- d_6 , 125 MHz): δ 167.3, 153.4, 140.8, 97.8, 61.6, 50.8, 14.2. HRMS (ESI) (m/z): ([M -H]⁻) calcd for C₇H₁₁NO₄, 172.0610; found, 172.0611.

Methyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (14E). Method A: To a 1 L 3-neck flask fitted with an overhead stirrer are added benzyl carbamate 10 (50 g, 331 mmol), ACN (165 mL), (*E*)-methyl 3-methoxyacrylate (45 mL, 419 mmol), and finally 5 N aqueous HCl (165 mL). After approximately 30–40 min, all solids dissolve. The reaction is stirred for 18 h at ambient temperature. A thick white precipitate is formed during this time. The solids are collected by filtration, washed first with 70:30 water/ACN (400 mL) then hexanes (400 mL), and finally dried under a combination of house vacuum/nitrogen sweep (inverted funnel) for 2 h to give (*E)-methyl 3-(((benzyloxy)carbonyl)-amino)acrylate* 14E (72.44 g, 93%) as a white solid. The material is spectroscopically identical to that previously prepared herein.

Method B: To a 500 mL 1-neck flask, with a stir bar, are added benzyl carbamate **10** (20 g, 132 mmol), ACN (66 mL), methyl 3,3dimethoxypropanoate (23.82 mL, 168 mmol), and then 5 N aqueous HCl (66 mL). All solids dissolved after approximately 30–40 min. The reaction is stirred at ambient temperature for 18 h. A thick white precipitate formed during this time. The solids are collected by filtration, washed first with 70:30 water/CAN (250 mL) then hexanes (200 mL), and finally dried under a combination of house vacuum/ nitrogen sweep (inverted funnel) for 2 h to give *methyl* (*E*)-3-(((*benzyloxy*)*carbonyl*)*amino*)*acrylate* **14***E* (25.32 g, 81%) as a white solid. Note: A large stir bar or an overhead stirrer is essential on a larger scale as inefficient stirring, due to the thick precipitate, can lead to diminished yields. The material is spectroscopically identical to that described in Method A.

*Ethyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (15E).*¹³ To a 250 mL 1-neck flask, with stir bar, are added benzyl carbamate **10** (20.6 g, 136 mmol), ACN (68 mL), (*E*)-ethyl 3-ethoxyacrylate (24.95 g, 173 mmol), and then 5 N aqueous HCl (68 mL). All solids dissolved though reaction remain cloudy and never become fully clear. The reaction is stirred at ambient temperature for 18 h. A thick white precipitate forms during this time. The solids are collected by filtration, washed first with 30% ACN/water (200 mL) then hexanes (200 mL), then dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give (*E)-ethyl 3-(((benzyloxy)carbonyl)amino)acrylate* **15E** (27.49 g, 81%) as a white solid. The material is spectroscopically identical to that previously prepared herein.

Allyl (E)-3-ethoxyacrylate (**33a**). To a 200 mL 1-neck flask, with a stir bar, are added 3-ethoxyacrylic acid (20 g, 172 mmol), K₂CO₃ (35.7 g, 258 mmol), DMF (100 mL anhydrous), and allyl bromide (25 g, 207

mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is partitioned between water (400 mL) and EtOAc (400 mL). The organic layer is washed with 10% aqueous lithium chloride solution (2×100 mL), saturated sodium chloride solution (100 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give *allyl* (*E*)-3-*ethoxyacrylate* **33a** (26.29 g, 98%) as a clear, colorless oil. ¹H NMR is consistent with the known desired product.²⁸ No further purification is required.

Allyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (33E). To a 500 mL 1-neck flask, with a stir bar, are added benzyl carbamate 10 (15 g, 99 mmol), ACN (130 mL), 5 N aqueous HCl (150 mL), and then allyl (E)-3-ethoxyacrylate 33a (20.15 g, 129 mmol) in ACN (20 mL). The reaction is further diluted with water (100 mL) and stirred at RT for 48 h. The reaction slowly produces a crystalline precipitate. The solids are collected by filtration, washing first with 1:2 ACN/water (100 mL) then hexanes (100 mL), and then dried using a combination of house vacuum/nitrogen sweep (inverted funnel) to give allyl (E)-3-(((benzyloxy)carbonyl)amino)acrylate 33E (17.94 g, 70%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.83 (t, J = 13.0 Hz, 1H), 7.42-7.29 (m, 5H), 6.95 (d, J = 12.1 Hz, 1H), 5.91 (ddt, J = 17.2, 10.4, 5.7 Hz, 1H), 5.37 (d, J = 14.1 Hz, 1H), 5.30 (dd, J = 17.2, 1.6 Hz, 1H), 5.23-5.15 (m, 3H), 4.72–4.47 (m, 2H); ¹H (DMSO-*d*₆, 500 MHz): δ 10.55 (d, J = 10.2 Hz, 1H), 7.66 (dd, J = 14.0, 11.1 Hz, 1H), 7.49–7.00 (m, 5H), 5.93 (ddt, J = 17.3, 10.6, 5.4 Hz, 1H), 5.41 (d, J = 14.0 Hz, 1H), 5.28 (dd, J = 17.2, 1.7 Hz, 1H), 5.21–5.18 (d, J = 14.3 Hz, 3H), 4.57 (dt, J = 5.5, 1.5 Hz, 2H; ¹³C{¹H} NMR (DMSO- d_{6} , 125 MHz): δ 166.3, 153.4, 140.8, 135.8, 133.1, 128.5, 128.3, 128.2, 117.5, 98.1, 67.0, 63.9. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₁₄H₁₅NO₄, 260.0923; found, 260.0923.

Prop-2-yn-1-yl 3,3-Dimethoxypropanoate (34a). To a 200 mL 1neck flask, with a stir bar, are added methyl 3,3-dimethoxypropanoate (15 mL, 106 mmol) and 2 N aqueous sodium hydroxide solution (61.0 mL, 122 mmol). The mixture is heated at 50 °C (internal temp) for 1 h and then cooled to ambient temperature. The reaction is diluted with DCM (150 mL) and transferred to a separatory funnel with the aid of water (25 mL). 5 N aqueous HCl (25.6 mL) is added and mixed well. The aqueous layer is washed with DCM (2×100 mL). The combined organic layers are dried over Na2SO4, filtered, and concentrated in vacuo to give the intermediate, 3,3-dimethoxypropanoic acid,²⁹ as a clear, colorless oil, which is used directly in the next step. To the acid from the previous step, in a 1 L 1-neck flask, with a stir bar, are added DCM (200 mL), followed by EDCI (23.37 g, 122 mmol), 4-dimethylaminopyridine (DMAP) (0.648 g, 5.30 mmol), and prop-2-yn-1-ol (7.10 mL, 122 mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is washed with 1 N aqueous HCl (100 mL), saturated NaHCO₃ solution (100 mL), saturated NaCl solution (100 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give prop-2-yn-1-yl 3,3dimethoxypropanoate 34a (12.17 g, 66.7%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 4.82 (t, J = 5.9 Hz, 1H), 4.68 (d, J = 2.4 Hz, 2H), 3.34 (s, 6H), 2.68 (d, J = 6.0 Hz, 2H), 2.46 (t, J = 2.5 Hz, 1H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (CDCl₃, 125 MHz): δ 168.8, 100.9, 77.3, 74.9, 53.4, 52.0, 38.5. LRMS (ESI) (m/z): $([M - H]^+)$ calcd for C₈H₁₂O₄, 173.0; found, 173.0.

Prop-2-yn-1-yl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (34E). To a 250 mL 1-neck flask, with a stir bar, are added benzyl carbamate 10 (8.3 g, 54.9 mmol) and prop-2-yn-1-yl 3,3-dimethoxypropanoate 34a (12.29 g, 71.4 mmol) in ACN (50 mL), followed by 5 N aqueous HCl (50 mL). The reaction is stirred at ambient temperature for 2 days. The solids are collected by filtration, first washing with water $(2 \times 25 \text{ mL})$ then hexanes (50 mL), and then drying under a combination of house vacuum/nitrogen sweep (inverted funnel) to give prop-2-yn-1-yl (E)-3-(((benzyloxy)carbonyl)amino)acrylate 34E (10.2 g, 71.7%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.85 (t, J = 13.0 Hz, 1H), 7.37– 7.30 (m, 5H), 7.23 (s, 1H), 5.38 (d, J = 14.1 Hz, 1H), 5.18 (s, 2H), 4.70 $(d, J = 2.4 \text{ Hz}, 2\text{H}), 2.44 (t, J = 2.5 \text{ Hz}, 1\text{H}); {}^{1}\text{H} (DMSO-d_{6}, 500 \text{ MHz}):$ δ 10.61 (s, 1H), 7.69 (dd, J = 14.0, 11.2 Hz, 1H), 7.45–7.23 (m, 5H), 5.42 (d, J = 14.0 Hz, 1H), 5.19 (s, 2H), 4.72 (d, J = 2.5 Hz, 2H), 3.51 (t, J = 2.4 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_6 , 125 MHz): δ 166.0, 153.3, 141.5, 135.7, 128.5, 128.3, 128.2, 97.4, 78.8, 77.3, 67.1, 51.1. HRMS

(ESI) (m/z): ([M – H]⁻) calcd for C₁₄H₁₃NO₄, 258.0767; found, 258.0767.

Benzyl (E)-3-Ethoxyacrylate (35a). To a 200 mL 1-neck flask, with a stir bar, are added 3-ethoxyacrylic acid (20 g, 172 mmol), K_2CO_3 (35.7 g, 258 mmol), DMF (100 mL, anhydrous), and benzyl bromide (21.51 mL, 181 mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is partitioned between water (300 mL) and MTBE (500 mL). The organic layer is washed with 10% aqueous LiCl solution (3 × 150 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give *benzyl (E)-3-ethoxyacrylate* **35a** (34.77 g, 98%) as a clear, colorless oil. ¹H NMR is consistent with the known desired product.²⁸ No further purification is required.

Benzyl (E)-3-(((Benzyloxy)carbonyl)amino)acrylate (35E).³⁰ To a 1 L 4-neck flask, with an extra-large stir bar, are added benzyl carbamate 6 (25.5 g, 169 mmol), a solution of benzyl (E)-3-ethoxyacrylate 35a (34.77 g, 169 mmol) in ACN (200 mL), and then 5 N aqueous HCl (200 mL). The reaction is stirred at ambient temperature for 18 h. A thick suspension forms during this period. The solids are collected by filtration, first washing with 1:1 ACN/water (500 mL) then hexanes (300 mL), and then drying using a combination of house vacuum/ nitrogen sweep (inverted funnel) to give benzyl (E)-3-(((benzyloxy)carbonyl)amino)acrylate 35E (48.07 g, 92%) as a white solid: ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta 7.84 \text{ (dd, } I = 14.0, 12.0 \text{ Hz}, 1\text{H}), 7.40-7.29 \text{ (m,}$ 10H), 6.99 (d, J = 12.1 Hz, 1H), 5.39 (d, J = 14.1 Hz, 1H), 5.18 (s, 2H), 5.15 (s, 2H); ¹H (DMSO- d_{6} , 500 MHz): δ 10.56 (s, 1H), 7.68 (d, J = 14.0 Hz, 1H), 7.54–7.00 (m, 10H), 5.43 (d, J = 14.0 Hz, 1H), 5.18 (s, 2H), 5.12 (s, 2H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6} , 125 MHz): δ 166.6, 153.3, 141.0, 136.5, 135.8, 128.5, 128.4, 128.3, 128.2, 127.9, 127.9, 98.2, 67.0, 64.9. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for $C_{18}H_{17}NO_{47}$ 310.1080; found, 310.1079.

Methyl (E)-3-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)acrylate (36E). To a 20 mL vial, with a stir bar, are added 9fluorenylmethyl carbamate 29 (1.0 g, 4.18 mmol), pTsOH monohydrate (0.040 g, 0.209 mmol), ACN (8 mL), and methyl (E)-3methoxyacrylate (0.584 mL, 5.43 mmol). The suspension is stirred at 50 °C (heating block temperature) for 18 h. The reaction is monitored by UPLC/MS. The solids never completely dissolve. The reaction is cooled to ambient temperature and the solids are collected by filtration, washed with ACN (30 mL) and hexanes (50 mL), and then dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give methyl (E)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)acrylate 36E (1.29 g, 95%) as a white solid: ¹H (DMSO- d_6 , 500 MHz): δ 10.41 (d, J = 10.6 Hz, 1H), 7.90 (dt, J = 7.5, 0.9 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H), 7.59 (dd, J = 14.1, 11.0 Hz, 1H), 7.48 - 7.38 (m, 2H),7.35 (td, J = 7.4, 1.2 Hz, 2H), 5.39 (d, J = 14.0 Hz, 1H), 4.57 (d, J = 6.3 Hz, 2H), 4.31 (t, J = 6.3 Hz, 1H), 3.60 (s, 3H); ${}^{13}C{}^{1}H$ NMR (DMSOd₆, 125 MHz): δ 167.2, 153.4, 143.4, 140.8, 140.5, 127.7, 127.1, 125.0, 120.2, 98.3, 66.5, 50.9, 46.4. HRMS (ESI) (*m*/*z*): ([M + H]⁺) calcd for C₁₉H₁₇NO₄, 324.1236, found, 324.1232.

Ethyl (E)-3-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)acrylate (37E). To a 40 mL vial, with stir bar, are added 9-fluorenylmethyl carbamate 29 (2.0 g, 8.36 mmol), pTsOH monohydrate (0.079 g, 0.418 mmol), ACN (8 mL), and ethyl (E)-3-ethoxyacrylate (1.567 g, 10.87 mmol). The suspension is stirred at 50 °C (heating block temperature) for 18 h. The reaction is monitored by UPLC/MS. The solids never completely dissolve. The reaction is cooled to ambient temperature and the solids are collected by filtration, washed with ACN (50 mL) and hexanes (50 mL), and then dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give ethyl (E)-3-((((9Hfluoren-9-yl)methoxy)carbonyl)amino)acrylate 37E (1.974 g, 70%) as a white solid: ¹H (DMSO- d_6 , 500 MHz): δ 10.39 (d, J = 11.1 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 7.4 Hz, 2H), 7.57 (dd, J = 14.0, 11.1 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.35 (dd, J = 8.1, 6.8 Hz, 2H), 5.36 (d, J = 14.0 Hz, 1H), 4.58 (d, J = 6.2 Hz, 2H), 4.31 (t, J = 6.3 Hz, 1H), 4.06 (q, J = 7.0 Hz, 2H), 1.23–1.08 (m, 2H); ¹³C{¹H} NMR (DMSO- d_{6} , 125 MHz): δ 166.7, 153.4, 143.4, 140.8, 140.4, 127.7, 127.1, 124.9, 120.2, 98.7, 66.5, 59.3, 46.4, 14.3. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₂₀H₁₉NO₄, 338.1392; found, 338.1388.

Benzyl (E)-3-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)acrylate (38E). To a 40 mL vial, with a stir bar, are added 9-

I

fluorenylmethyl carbamate 29 (2.0 g, 8.36 mmol), pTsOH monohydrate (0.079 g, 0.418 mmol), ACN (16 mL), and benzyl (E)-3ethoxyacrylate 35a (2.241 g, 10.87 mmol). The suspension is stirred at 50 °C (heating block temperature) for 18 h. The reaction is monitored by UPLC/MS. The solids never completely dissolve. The reaction is cooled to ambient temperature and the solids are collected by filtration, washed with ACN (50 mL) and hexanes (50 mL), and then dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give benzyl (E)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)acrylate **38E** (3.1475 g, 94%) as a white solid.: ¹H (DMSO- d_6 500 MHz): δ^{-1} H NMR 10.48–10.39 (m, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H), 7.63 (dd, J = 14.0, 11.1 Hz, 1H), 7.47–7.22 (m, 9H), 5.43 (d, J = 14.0 Hz, 1H), 5.11 (s, 2H), 4.58 (d, J = 6.3 Hz, 2H), 4.31 (t, J = 6.2 Hz, 1H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_{6} , 125 MHz): δ 166.6, 153.4, 143.4, 140.9, 140.8, 136.5, 128.4, 127.93, 127.91, 127.7, 127.1, 124.9, 120.2, 98.3, 66.5, 64.9, 46.4. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₂₅H₂₁NO₄, 400.1549; found, 400.1544.

Z-Selective Acid-Promoted Synthesis of β -Aminoacrylates. Methyl (Z)-3-((Methoxycarbonyl)amino)acrylate (30Z).³¹ To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added methyl carbamate 27 (2 g, 26.6 mmol), (1S)-(+)-10-CAS (0.309 g, 1.332 mmol), toluene (52 mL, anhydrous), and then methyl (E)-3methoxyacrylate (3.72 mL, 34.6 mmol). The reaction is heated at 65 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 40 g ISCO gold silica gel column, which is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV of hexanes then gradient eluted with 60% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (Z)-3-((methoxycarbonyl)amino)acrylate 30Z (2.82 g, 67%) as a clear, colorless oil: ¹H NMR (CDCl₂, 500 MHz): δ 9.73 (s, 1H), 7.31-7.10 (m, 1H), 5.03 (d, J = 8.9 Hz, 1H), 3.77 (s, 3H), 3.69 (s, 3H); ¹H NMR $(DMSO-d_6, 500 \text{ MHz}): \delta 9.71 \text{ (d, } J = 11.5 \text{ Hz}, 1\text{H}), 7.33 \text{ (dd, } J = 11.7,$ 8.9 Hz, 1H), 5.12 (d, J = 8.9 Hz, 1H), 3.77 (s, 3H), 3.68 (s, 3H); $^{13}C{^{1}H} NMR (DMSO-d_{6}, 125 MHz): \delta 168.6, 153.1, 140.3, 94.3, 53.1, 140.3, 54.3, 5$ 51.0. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₆H₉NO₄, 158.0454; found, 158.0449.

Methyl (Z)-3-((Ethoxycarbonyl)amino)acrylate (32Z).²⁷ To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added ethyl carbamate [urethane] 28 (2 g, 22.45 mmol), (1S)-(+)-10-CAS (0.261 g, 1.122 mmol), toluene (44 mL, anhydrous), and then methyl (E)-3methoxyacrylate (3.14 mL, 29.2 mmol). The reaction is heated at 65 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 40 g ISCO gold silica gel column, which is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV of hexanes then gradient eluted with 60% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (Z)-3-((ethoxycarbonyl)amino)acrylate 32Z (2.56 g, 66%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.70 (s, 1H), 7.24 (t, J = 5.8 Hz, 1H), 5.03 (d, J = 8.9 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.69 (d, J = 0.8 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹H NMR (DMSO- d_{6} , 500 MHz): δ 9.65 (d, J = 11.7 Hz, 1H), 7.30 (dd, J = 11.7, 8.9 Hz, 1H), 5.09 (d, J = 8.9 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.65 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H); $^{13}C{^{1}H} NMR (DMSO-d_{6}, 125 MHz): \delta 168.6, 152.5, 140.3, 94.2, 62.1,$ 51.0, 14.0. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for $C_7H_{11}NO_{41}$ 174.0766; found, 174.0762.

Methyl (*Z*)-3-((*Propoxycarbonyl*)*amino*)*acrylate* (**44Z**). To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added propyl carbamate **39** (2 g, 19.39 mmol), (1S)-(+)-10-CAS (0.225 g, 0.970 mmol), toluene (40 mL, anhydrous), and then methyl (*E*)-3-methoxyacrylate (2.71 mL, 25.2 mmol). The reaction is heated at 65 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 40 g ISCO gold silica gel column, which is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV of hexanes then gradient eluted with 50% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (*Z*)-3-((*propoxycarbonyl*)*amino*)*acrylate* **44Z** (2.43 g, 67%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.76 (s, 1H), 7.35–7.22 (m, 4.9 Hz, 1H), 5.08 (d, *J* = 8.9 Hz, 1H), 4.16 (t, *J* = 6.7 Hz, 2H), 3.74 (s, 3H), 1.71 (q, *J* = 7.1 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 9.67 (d, *J* = 11.7 Hz, 1H), 7.30 (dd, *J* = 11.8, 8.8 Hz, 1H), 5.09

(d, *J* = 8.9 Hz, 1H), 4.09 (t, *J* = 6.6 Hz, 2H), 3.65 (s, 3H), 1.84–1.43 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 168.6, 152.6, 140.4, 94.2, 67.4, 51.0, 21.6, 9.9. HRMS (ESI) (*m*/*z*): ([M – H]⁻) calcd for C₈H₁₃NO₄, 186.0767; found, 186.0766.

Methyl (Z)-3-((Isopropoxycarbonyl)amino)acrylate (45Z). To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added propyl carbamate 40 (2 g, 19.39 mmol), (1S)-(+)-10-CAS (0.225 g, 0.970 mmol), toluene (40 mL, anhydrous), and then methyl (E)-3methoxyacrylate (2.71 mL, 25.2 mmol). The reaction is heated at 65 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 40 g ISCO gold silica gel column, which is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV of hexanes then gradient eluted with 50% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (Z)-3-((isopropoxycarbonyl)amino)acrylate 45Z as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz) d ¹H NMR (500 MHz, CDCl₃): δ 9.62 (s, 1H), 7.27-7.16 (m, 1H), 5.16-4.78 (m, 2H), 3.66 (s, 3H), 1.23 (d, J = 6.3 Hz, 6H); ¹H NMR (DMSO- d_{61} 500 MHz): δ 9.60 (d, J = 11.7 Hz, 1H), 7.30 (dd, J = 11.7, 8.9 Hz, 1H), 5.08 (d, J = 8.9 Hz, 1H), 4.91 (p, J = 6.2 Hz, 1H), 3.65 (s, 3H), 1.24 (d, J = 6.3 Hz, 6H); ¹³C{¹H} NMR (DMSO-d₆, 125 MHz): δ 168.7, 152.0, 140.4, 94.0, 69.9, 51.0, 21.4. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₈H₁₃NO₄, 186.0767; found, 186.0764.

Methyl (Z)-3-(((Benzyloxy)carbonyl)amino)acrylate (14Z). To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added benzyl carbamate 10 (8.0 g, 52.9 mmol), (1S)-(+)-10-CAS (0.615 g, 2.65 mmol), toluene (120 mL, anhydrous), and then methyl (E)-3-methoxyacrylate (7.40 mL, 68.8 mmol). The reaction is heated at 65 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 125 g ISCO column, which is then placed on top of a 220 g ISCO gold column (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 30% MTBE/hexanes over 6 CV, and then held for 6 CV) to give methyl (Z)-3-(((benzyloxy)carbonyl)-amino)acrylate 14Z (9.07 g, 73%) as a clear colorless oil. The material is spectroscopically identical to that previously prepared herein.

Ethyl (*Z*)-3-(((*Benzyloxy*)*carbony*)*amino*)*acrylate* (**15***Z*). To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added benzyl carbamate **10** (8.0 g, 52.9 mmol), (1S)-(+)-10-CAS (0.615 g, 2.65 mmol), toluene (120 mL, anhydrous), and then ethyl (*E*)-3-ethoxyacrylate (10.01 mL, 68.8 mmol). The reaction is stirred at 65 °C (heating block temp) for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 125 g ISCO column, which is then placed on top of a ISCO 220 g gold column (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 30% MTBE/hexanes over 6 CV, and then held for 4 CV) to give *ethyl* (*Z*)-3-(((*benzyloxy*)*carbony*)*amino*)*acrylate* **15Z** (9.0 g, 68%) as a clear, colorless oil. The material is spectroscopically identical to that previously prepared herein.

(1R,2S,5R)-2-IsopropyI-5-methylcyclohexyl Carbamate (41). To a 500 mL 1-neck flask, with a stir bar, is added tetrahydrofuran (THF) (100 mL, anhydrous). The flask is cooled in an ice/water bath and then (–)-menthyl chloroformate (15 mL, 70.6 mmol) is added, followed by the careful addition of ammonium hydroxide solution (150 mL, 956 mmol, 28–30 wt %) over 10 min. The reaction is stirred for 5 min under cooling and then for 18 h at ambient temperature. The reaction is diluted with EtOAc (350 mL) and water (200 mL). The organic layer is washed with saturated aqueous NaHCO₃ solution (100 mL), saturated aqueous NaCl solution (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give (1R,2S,5R)-2-isopropyI-5-methylcyclohexyl carbamate 41 (14.01 g, 100%) as a white crystalline solid. ¹H NMR is consistent with the known desired product.³² No further purification is required.

Methyl (Z)-3-((((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)carbonyl)amino)acrylate (**46Z**). To a 40 mL vial, with a stir bar, are added (1S)-(+)-10-CAS (0.117 g, 0.502 mmol), (1R,2S,5R)-2isopropyl-5-methylcyclohexyl carbamate **41** (2 g, 10.04 mmol), toluene (20 mL, anhydrous), and then methyl (E)-3-methoxyacrylate (1.403 mL, 13.05 mmol). The capped vial is heated at 65–70 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 40 g ISCO gold column, which is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 20% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (Z)-3-(((((1R,2S,5R)-2-isopropyl-5methylcyclohexyl)oxy)carbonyl)amino)acrylate 46Z (2.02 g, 71%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 9.77–9.56 (m, 1H), 7.32–7.21 (m, 1H), 5.02 (d, J = 8.9 Hz, 1H), 4.62 (td, J = 10.9, 4.4 Hz, 1H), 3.69 (s, 3H), 2.02 (dt, J = 11.6, 3.5 Hz, 1H), 1.88 (pd, J = 7.0, 2.7 Hz, 1H), 1.65 (dt, J = 12.8, 2.9 Hz, 2H), 1.53-1.41 (m, 1H), 1.35 (t, *J* = 11.7 Hz, 1H), 1.08–0.96 (m, 2H), 0.91–0.82 (m, 7H), 0.74 (d, *J* = 6.9 Hz, 3H); ¹H NMR (DMSO- d_6 , 500 MHz): δ 9.65 (d, J = 11.7 Hz, 1H), 7.31 (dd, J = 11.7, 8.9 Hz, 1H), 5.10 (d, J = 8.9 Hz, 1H), 4.59 (td, J = 10.9, 4.4 Hz, 1H), 3.65 (s, 3H), 1.99–1.91 (m, 1H), 1.84 (pd, J = 7.0, 2.6 Hz, 1H), 1.63 (dt, J = 13.4, 3.5 Hz, 2H), 1.52–1.42 (m, 1H), 1.39 (ddt, J = 14.4, 11.3, 3.2 Hz, 1H), 1.03 (qd, J = 11.7, 8.8 Hz, 2H), 0.87 (t, J = 7.1 Hz, 7H), 0.74 (d, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (DMSO- d_{4} , 125 MHz): δ168.6, 152.2, 140.4, 94.2, 75.7, 51.0, 46.4, 40.4, 33.6, 30.8, 25.8, 23.0, 21.7, 20.3, 16.2. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₁₅H₂₅NO₄, 282.1706; found, 282.1701.

Methyl (Z)-3-((Phenoxycarbonyl)amino)acrylate (47Z). To a 200 mL 1-neck flask, with a stir bar and an air condenser, are added phenyl carbamate 42 (2 g, 14.58 mmol), (1S)-(+)-10-CAS (0.169 g, 0.729 mmol), toluene (30 mL, anhydrous), and then methyl (E)-3methoxyacrylate (2.04 mL, 19.0 mmol). The reaction is heated at 65 °C for 18 h. The reaction is cooled to ambient temperature and loaded directly onto a 40 g ISCO gold silica gel column, which is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV of hexanes then gradient eluted with 30% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (Z)-3-((phenoxycarbonyl)amino)acrylate 47Z (2.46 g, 76%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ ¹H NMR (500 MHz, Chloroform-*d*): δ 10.08 (d, *J* = 11.3 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 2H), 7.31 (dd, J = 11.5, 8.9 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.18-7.09 (m, 2H), 5.17 (d, J = 8.9 Hz, 1H), 3.74 (s, 3H); ¹H NMR (DMSO- d_{6} , 500 MHz): δ 10.06 (d, J = 11.6 Hz, 1H), 7.45 (dd, J = 8.6, 7.4 Hz, 2H), 7.39 (dd, *J* = 11.6, 8.9 Hz, 1H), 7.30 (td, *J* = 7.4, 1.2 Hz, 1H), 7.27 (dd, *J* = 8.5, 1.4 Hz, 2H), 5.24 (d, J = 8.9 Hz, 1H), 3.70 (s, 2H); ${}^{13}C{}^{1}H$ NMR (DMSO-d₆, 125 MHz): δ 168.4, 151.2, 150.1, 139.9, 129.5, 126.1, 121.6, 95.8, 51.2. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₁₁H₁₁NO₄, 222.0766; found, 222.0759.

2,2,2-Trichloroethyl Carbamate (43). To a 250 mL 1-neck flask, with a stir bar, and cooled in ice/water is added ammonium hydroxide solution (145 mL, 1090 mmol, 28–30 wt %), followed by 2,2,2-trichloroethyl chloroformate (15 mL, 109 mmol) over 10 min. The reaction is stirred for 45 min at 0 °C. The reaction is diluted with DCM (400 mL). The organic layer is washed with water (50 mL), saturated NaCl solution (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give 2,2,2-trichloroethyl carbamate 43 (20.9 g, 100%) as a white solid. ¹H NMR is consistent with the known desired product.³³ No further purification is required.

Methyl (Z)-3-(((2,2,2-trichloroethoxy)carbonyl)amino)acrylate (48Z). To a 40 mL vial, with a stir bar, are added 2,2,2-trichloroethyl carbamate 43 (1.0 g, 5.20 mmol), (1S)-(+)-10-CAS (0.060 g, 0.260 mmol), toluene (10 mL, anhydrous), and then methyl (E)-3methoxyacrylate (0.726 mL, 6.76 mmol). The reaction is heated at 65 °C for 5 h and then stirred for 18 h at ambient temperature. The reaction is cooled to ambient temperature and loaded directly onto a 24 g ISCO gold column that is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 40% MTBE/hexanes over 8 CV, and then held for 8 CV) to give methyl (Z)-3-(((2,2,2-trichloroethoxy)carbonyl)amino)acrylate 48Z (0.9002 g, 63%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 10.00 (d, J = 11.2 Hz, 1H), 7.31-7.11 (m, 1H), 5.17 (d, J = 8.9 Hz, 1H),4.80 (s, 2H), 3.73 (s, 3H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 9.97 (d, J = 11.5 Hz, 1H), 7.34 (dd, J = 11.5, 8.9 Hz, 1H), 5.23 (d, J = 8.9 Hz, 1H), 4.98 (s, 2H), 3.68 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 168.5, 151.2, 139.6, 96.2, 95.0, 74.3, 51.2. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₇H₈Cl₃NO₄, 275.9597; found, 275.9593.

Imide Nucleophiles for Synthesis of (E)- β -Aminoacrylates. Methyl (E)-3-((Bis-tert-butoxycarbonyl)amino)acrylate (62E). To a 1 L 1-neck flask, with a stir bar, are added DiBOC amine 55 (36.6 g, 169 mmol), DABCO (1.891 g, 16.86 mmol), DCM (100 mL), and then methyl propiolate (15 mL, 169 mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is concentrated in vacuo and the residue is dissolved in a minimum volume and DCM and loaded on to a 50 g Biotage Snap column, which is then placed on top of a 220 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 20% MTBE/hexanes over 3 CV, and then held for 6 CV) to give *methyl* (*E*)-3-((*bis-tert-butoxycarbonyl*)-*amino*)*acrylate* **62E** (49.18 g, 97%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 7.83 (d, *J* = 14.5 Hz, 1H), 5.59 (d, *J* = 14.5 Hz, 1H), 3.70 (s, 3H), 1.52 (s, 18H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 167.53, 150.06, 138.61, 101.60, 84.75, 51.31, 27.64. HRMS (ESI) (*m*/*z*): ([M - H]⁻) calcd for C₁₄H₂₃NO₆, 300.1447; found, 300.1443.

Methyl (E)-3-((tert-Butoxycarbonyl)amino)acrylate (17E).¹⁷ To a 40 mL vial, with a stir bar, is added magnesium perchlorate (0.370 g, 1.66 mmol), followed by a solution of methyl (E)-3-((tertbutoxycarbonyl)amino)acrylate 62E (1.66 g, 8.26 mmol) in ACN (20 mL, anhydrous). The reaction is stirred at ambient temperature for 24 h. The reaction is diluted with MTBE (200 mL), washed with saturated aqueous NaHCO₃ solution (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude is chromatographed on silica, loaded in a minimal amount of DCM onto a 24 g ISCO gold column, and then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 40% MTBE/ hexanes over 6 CV, and then held for 6 CV) to give methyl (E)-3-((tert-butoxycarbonyl)amino)acrylate 17E (1.51 g, 91%) as a white solid. The material is spectroscopically identical to that previously prepared herein.

Ethyl (E)-3-((Bis-tert-butoxycarbonyl)amino)acrylate (63E). To a 500 mL 1-neck flask, with a stir bar and cooled in an ice/water bath, are added DiBOC amine 55 (21.44 g, 99 mmol), DABCO (1.107 g, 9.87 mmol), DCM (200 mL), and then ethyl propiolate (10 mL, 99 mmol) in DCM (40 mL). After addition is complete, the cooling bath is removed, and the reaction is stirred at ambient temperature for 1 h. The reaction is split into batches and each is loaded directly onto a 125 g ISCO column that is then placed on top of a 220 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 20% MTBE/hexanes over 4 CV, and then held for 4 CV) to give *ethyl* (E)-3-(bis(tert-butoxycarbonyl)amino)acrylate 63E (29.6 g, 95%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (d, J = 14.5 Hz, 1H), 5.56 (d, J = 14.5 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 1.50 (s, 18H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 167.1, 150.1, 138.4, 102.1, 84.7, 60.1, 27.7, 14.3. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C15H25NO6, 316.1760; found, 316.1768.

Ethyl (*E*)-3-((*tert-Butoxycarbonyl*)*amino*)*acrylate* (**18E**).¹⁴ To a 40 mL vial, with stir bar, are added ethyl (*E*)-3-(bis(*tert*-butoxycarbonyl)-amino)acrylate **63E** (2.5 g, 7.93 mmol), ACN (20 mL, anhydrous), and then magnesium perchlorate (0.354 g, 1.585 mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is diluted with EtOAc (200 mL), saturated aqueous NaHCO₃ solution (50 mL), and saturated aqueous NaCl solution (25 mL). The organic layer is dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude is loaded in DCM onto a 24 g ISCO gold column that is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 40% EtOAc/hexanes over 6 CV, and then held for 6 CV to give *ethyl* (*E*)-3-((*tert-butoxycarbonyl)amino*)*acrylate* **18E**) (1.613 g, 95%) as a white solid. The material is spectroscopically identical to that previously prepared herein.

tert-Butyl (E)-3-((Bis-tert-butoxycarbonyl)amino)acrylate (64E). To a 500 mL 1-neck flask, with a stir bar and cooled in an ice/water bath, are added DiBOC amine 55 (25.8 g, 119 mmol), DABCO (1.334 g, 11.89 mmol), DCM (260 mL), and then *tert*-butyl propiolate (16.32 mL, 119 mmol) in DCM (40 mL). After addition is complete, the cooling bath is removed, and the reaction is stirred at ambient temperature for 1 h. The reaction is concentrated in vacuo then redissolved in a minimum amount of DCM and loaded onto a 125 g ISCO column that is then placed on top of a 330 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 20% MTBE/hexanes over 5 CV, and then held for 5 CV) to give *tert-butyl* (E)-3-(bis(tert-butoxycarbonyl)amino)acrylate 64E (40.34 g, 99%) as a clear, colorless oil that solidifies on standing: ¹H NMR

 $(\text{CDCl}_3, 500 \text{ MHz}): \delta$ 7.68 (d, J = 14.5 Hz, 1H), 5.46 (d, J = 14.5 Hz, 1H), 1.48 (s, 18H), 1.41 (s, 9H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 166.4, 150.2, 137.6, 103.9, 84.5, 80.0, 28.1, 27.6. HRMS (ESI) (m/z): ([M + H]⁺) calcd for C₁₇H₂₉NO₆, 344.2073; found, 344.2068.

tert-Butyl (E)-3-((tert-Butoxycarbonyl)amino)acrylate (19E).^{10d} To a 40 mL vial, with a stir bar, are added tert-butyl (E)-3-(bis(tertbutoxycarbonyl)amino)acrylate 64E (2.5 g, 7.28 mmol), ACN (20 mL, anhydrous), and then magnesium perchlorate (0.325 g, 1.456 mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is diluted with EtOAc (200 mL), saturated aqueous NaHCO₃ solution (50 mL), and saturated aqueous NaCl solution (25 mL). The organic layer is dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude material is loaded in a minimal amount of DCM onto a 24 g ISCO gold column that is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 40% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give tert-butyl (E)-3-((tert-butoxycarbonyl)amino)acrylate 19E (1.65 g, 93%) as a clear, colorless oil that solidified on standing. The material is spectroscopically identical to that previously prepared herein.

Methyl (E)-3-(((Methoxycarbonyl),(tert-butoxycarbonyl))amino)acrylate (65E). To a 200 mL 1-neck flask, with a stir bar, are added tertbutyl methyl iminodicarbonate 56 (5.0 g, 28.5 mmol), DABCO (0.320 g, 2.85 mmol), and DCM (100 mL, anhydrous), and then methyl propiolate (2.54 mL, 28.5 mmol) is added dropwise. The reaction is stirred at ambient temperature for 18 h. The reaction is concentrated to reduce the volume of DCM to ~20 mL and loaded onto a 24 g ISCO gold column, which is then placed on top of an ISCO 120 g gold column (conditioned with DCM and eluted with 16 V of 100% DCM) to give methyl (E)-3-((tert-butoxycarbonyl) (methoxycarbonyl)amino)acrylate 65E (6.75 g, 91%) as a clear, colorless liquid: ¹H NMR matches the desired product: ¹H NMR (CDCl₃, 500 MHz): δ ¹H NMR 7.82 (d, J = 14.5 Hz, 1H), 5.70 (d, J = 14.5 Hz, 1H), 3.88 (s, 3H), 3.71 (s, 3H), 1.52 (s, 10H); ${}^{13}C{}^{1}H$ NMR (CDCl₃, 125 MHz): δ 167.2, 152.2, 149.6, 138.2, 103.3, 85.3, 54.4, 51.3, 27.4. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₁₁H₁₇NO₆, 260.1134; found, 260.1133.

Methyl (E)-3-((Methoxycarbonyl)amino)acrylate (**30E**). To a 40 mL vial, with a stir bar, are added methyl (E)-3-((*tert*-butoxycarbonyl) (methoxycarbonyl)amino)acrylate **65E** (2.5 g, 9.64 mmol), ACN (20 mL, anhydrous), and then magnesium perchlorate (0.430 g, 1.929 mmol). The reaction is stirred at ambient temperature for 18 h. The reaction is diluted with EtOAc (200 mL), saturated aqueous NaHCO₃ solution (25 mL), and saturated aqueous NaCl solution (25 mL). The organic layer is dried over Na₂SO₄, filtered, and concentrated in vacuo. The solid is slurried in DCM (50 mL) and hexane (50 mL) is added. The solids are collected by filtration, washed with hexanes (30 mL), and then dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give *methyl* (*E*)-3-((*methoxycarbonyl*)*amino*)*acrylate* **30E** (1.444 g, 95%) as a white solid. The material is spectroscopically identical to that described herein.

Ethyl (E)-3-(N-(tert-Butoxycarbonyl)acetamido)acrylate (66E). To a 200 mL 1-neck flask, with a stir bar, are added tert-butyl acetylcarbamate 57 (8.48 g, 53.3 mmol), DABCO (0.598 g, 5.33 mmol), and DCM (100 mL, anhydrous) and then ethyl propiolate (5.4 mL, 53.3 mmol) is added dropwise over 5 min at 0 °C. The reaction is stirred for 5 min under cooling and then at ambient temperature for 18 h. The reaction is concentrated to a minimal volume of DCM, loaded onto a 50 g Biotage Snap column, and then placed on top of an ISCO 120 g gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 20% EtOAc/hexanes over 8 CV, and then held for 8 CV) to give ethyl (E)-3-(N-(tert-butoxycarbonyl)acetamido)acrylate 66E (13.22 g, 96%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 7.89 (d, J = 14.6 Hz, 1H), 5.96 (d, J = 14.6 Hz, 1H), 4.18 (q, J =7.1 Hz, 2H), 2.40 (s, 3H), 1.56 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H); ${}^{13}C{}^{1}H$ NMR (CDCl₃, 125 MHz): δ 170.4, 167.0, 151.0, 137.0, 107.2, 85.6, 60.1, 27.5, 25.6, 14.0. HRMS (ESI) (m/z): $([M + H]^+)$ calcd for C₁₂H₁₉NO₅, 258.1341; found, 258.1343.

Ethyl (E)-3-Acetamidoacrylate (71E). To a 40 mL vial, with a stir bar, are added magnesium perchlorate (0.868 g, 3.89 mmol), ethyl (*E*)-3-(N-(tert-butoxycarbonyl)acetamido)acrylate**66***E*(1.0 g, 3.89 mmol), and ACN (10 mL, anhydrous). The reaction is stirred at ambient

temperature for 18 h. The reaction is diluted with EtOAc (80 mL) then washed with saturated aqueous NaHCO₃ solution (40 mL), 10% aqueous NH₄Cl solution (40 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude was purified by loading in DCM onto an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 50% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give *ethyl* (*E*)-3-*acetamidoacrylate* 71*E* (0.57 g, 93%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 7.99 (dd, *J* = 14.1, 11.7 Hz, 1H), 7.82 (d, *J* = 11.9 Hz, 1H), 5.41 (d, *J* = 14.1 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.12 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 10.68 (d, *J* = 11.2 Hz, 1H), 7.79 (dd, *J* = 14.2, 11.1 Hz, 1H), 5.41 (d, *J* = 14.2 Hz, 1H), 4.08 (q, *J* = 7.1 Hz, 2H), 2.01 (s, 3H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 168.7, 167.0, 138.3, 99.3, 59.4, 22.9, 14.24. HRMS (ESI) (*m*/*z*): ([M – H]⁻) calcd for C₇H₁₁NO₃, 156.0661; found, 156.0664.

tert-Butyl Benzoylcarbamate (58). To a 200 mL 1-neck flask, with a stir bar, are added methyl benzoate (2.132 mL, 17.07 mmol), tert-butyl carbamate (2 g, 17.07 mmol), and THF (23 mL, anhydrous). The reaction is cooled to an internal temp of -20 to -25 °C and lithium tertbutoxide (34.1 mL, 34.1 mmol, 1.0 M in THF) is added dropwise over 10 min maintaining the temperature below -20 °C. After addition is complete, the reaction is stirred for 10 min under cooling then at ambient temperature over 18 h. The reaction is partitioned between EtOAc (200 mL) and saturated aqueous NH₄Cl (100 mL). 2 N aqueous HOAc is added until the pH of the aqueous layer becomes less than 4. The organic layer is washed with saturated aqueous NaCl solution (50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude is slurried in minimal EtOAc and hexane (~100 mL) is added. The solids are filtered, washed with hexanes, and then dried under a combination of house vacuum/nitrogen stream (inverted funnel) to give tert-butyl benzoylcarbamate 58 (3.02 g, 80%) as an off-white solid. ¹H NMR is consistent with the known desired product.³⁴ No further purification is required.

Methyl (E)-3-(N-(tert-Butoxycarbonyl)benzamido)acrylate (67E). To a 40 mL vial, with a stir bar, are added tert-butyl benzoylcarbamate 58 (1.0 g, 4.52 mmol), DABCO (0.051 g, 0.452 mmol), and DCM (12 mL, anhydrous). The reaction is cooled in an ice/water bath and methyl propiolate (0.402 mL, 4.52 mmol) is added. After addition is complete, the cooling bath is removed, and the reaction is stirred at ambient temperature for 1 h. The reaction is loaded directly on a 24 g ISCO gold column that is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 30% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (E)-3-(N-(tert-butoxycarbonyl)benzamido)acrylate 67E (1.32 g, 96%) as a clear, colorless oil: ¹H NMR (CDCl₂, 500 MHz): δ 8.02 (d, J = 14.6 Hz, 1H), 7.70 (dd, J = 8.4, 1.3 Hz, 2H), 7.62-7.55 (m, 1H), 7.47-7.40 (m, 2H), 5.80 (d, J = 14.6 Hz, 1H), 3.70 (s, 3H), 1.18 (s, 9H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 170.6, 167.6, 150.6, 138.7, 134.5, 133.5, 128.8, 128.7, 103.7, 85.0, 51.4, 27.3. HRMS (ESI) (*m*/*z*): $([M - H]^{-})$ calcd for $C_{16}H_{19}NO_5$, 304.1185; found, 304.1185.

Methyl (E)-3-Benzamidoacrylate (72E).³⁵ To a 40 mL vial, with a stir bar, are added magnesium perchlorate (0.951 g, 4.26 mmol) and then a solution of methyl (E)-3-(N-(tert-butoxycarbonyl)benzamido)acrylate 67E (1.3 g, 4.26 mmol) in ACN (15 mL, anhydrous). The reaction is stirred at ambient temperature for 2 days. The reaction is diluted with EtOAc (200 mL) and saturated aqueous NaHCO₃ solution (50 mL). The organic layer is washed with 10% aqueous LiCl solution $(2 \times 75 \text{ mL})$, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude is purified on silica (80 g ISCO gold column, conditioned with hexanes, loaded directly onto the column in DCM, eluted with 1 CV hexanes, gradient eluted with 50% EtOAc over 4 CV, and then held for 6 CV) to give methyl (E)-3-benzamidoacrylate 72E (0.745 g, 85%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, *J* = 11.7 Hz, 1H), 8.23 (dd, J = 14.3, 11.8 Hz, 1H), 7.89–7.71 (m, 2H), 7.57 (td, J = 7.4, 1.4 Hz, 1H), 7.51–7.33 (m, 2H), 5.62 (d, J = 14.2, Hz, 1H), 3.73 (s, 3H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 11.20–11.03 (m, 1H), 8.08 (dd, J = 14.1, 9.7 Hz, 1H), 8.04–7.92 (m, 2H), 7.70–7.62 (m, 1H), 7.60-7.52 (m, 2H), 5.79 (dd, J = 14.2, 2.2 Hz, 1H), 3.67 (s, 3H); ¹³C{¹H} NMR (DMSO- d_6 , 125 MHz): δ 167.4, 165.0, 139.0, 132.8, 132.3, 128.7, 128.0, 100.9, 51.0. HRMS (ESI) (m/z): ([M – H][–]) calcd for C₁₁H₁₁NO₃, 204.0661; found, 204.0665.

Methyl 4-((tert-butoxycarbonyl)carbamoyl)benzoate (59). To a 100 mL 1-neck flask, with a stir bar, are added methyl 4-(((tertbutoxycarbonyl)amino)methyl)benzoate (2.0 g, 7.54 mmol), sodium periodate (5.64 g, 26.4 mmol), ruthenium(IV) oxide hydrate (0.114 g, 0.754 mmol), and then EtOAc (25 mL) and water (50 mL). The reaction is stirred at ambient temperature for 5 h. The reaction is diluted with EtOAc (125 mL), filtered through Celite, and washed with EtOAc (25 mL). The organic layer is separated, 2-propanol (2 mL) is added, and the solution is stirred for 18 h at ambient temperature (consumes residual Ru oxidant). The solution is filtered through Celite, washed with EtOAc, and concentrated in vacuo. The residual yellow solid is taken up 1:1 DCM/MTBE (50 mL) and hexane (200 mL) is added. The precipitated solids are collected by filtration, washed with hexane, and dried under a combination of house vacuum/nitrogen sweep (inverted funnel) to give methyl 4-((tert-butoxycarbonyl)carbamoyl)benzoate 59 (1.96 g, 93%) as an off-white solid. ¹H NMR is consistent with the known desired product.³⁶ No further purification is required.

Methyl (E)-4-((3-(tert-Butoxy)-3-oxoprop-1-en-1-yl)(tertbutoxycarbonyl)carbamoyl)benzoate (68E). To a 40 mL vial, with a stir bar, are added DABCO (0.072 g, 0.644 mmol) and a solution of methyl 4-((tert-butoxycarbonyl)carbamoyl)benzoate 59 (1.8 g, 6.44 mmol) in DCM (7 mL, anhydrous). The mixture is cooled in an ice/ water bath and a solution of *tert*-butyl propiolate (0.813 g, 6.44 mmol) in DCM (7 mL, anhydrous) is added. After the addition is complete, the cooling bath is removed, and the reaction is stirred at ambient temperature for 4 h. The reaction mixture is loaded directly onto a 24 g ISCO gold column that is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 2 CV hexanes then gradient eluted with 20% MTBE/hexanes over 8 CV, and then held for 6 CV) to give methyl (E)-4-((3-(tert-butoxy)-3-oxoprop-1-en-1-yl) (tertbutoxycarbonyl)carbamoyl)benzoate 68E (2.53 g, 97%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 8.11 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 14.6 Hz, 1H), 7.75 (d, J = 8.5 Hz, 2H), 5.85 (d, J = 14.6 Hz, 1H), 3.94 (s, 3H), 1.46 (s, 9H), 1.18 (s, 9H); ¹H NMR (DMSO-*d*₆, 500 MHz): δ 8.12 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 14.5 Hz, 2H), 5.82 (d, J = 14.6 Hz, 1H), 3.91 (s, 3H), 1.45 (s, 9H), 1.13 (s, 9H); ¹³C{¹H} NMR (DMSO-*d*₆, 125 MHz): δ 170.0, 165.5, 165.3, 150.0, 138.5, 137.5, 133.3, 129.6, 128.6, 106.3, 85.4, 79.9, 52.5, 27.8, 26.8. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for $C_{21}H_{27}NO_{7}$, 404.1710; found, 404.1709.

Methyl (E)-4-((3-(tert-Butoxy)-3-oxoprop-1-en-1-yl)carbamoyl)benzoate (73E). To a 100 mL 1-neck flask, with a stir bar, are added methyl (E)-4-((3-(tert-butoxy)-3-oxoprop-1-en-1-yl) (tertbutoxycarbonyl)carbamoyl)benzoate 68 (2.28 g, 5.62 mmol), ACN (28 mL, anhydrous), and then magnesium perchlorate (1.255 g, 5.62 mmol). The reaction is stirred at ambient temperature for 2 days. The reaction is diluted with EtOAc (200 mL), saturated aqueous NaHCO3 solution (50 mL), and saturated NaCl solution (50 mL). The organic layer is dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude is loaded in a minimal amount of DCM onto a 24 g ISCO gold column and then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 80% EtOAc/hexanes over 8 CV, and then held for 6 CV) to give methyl (E)-4-((3-(tert-butoxy)-3-oxoprop-1-en-1-yl)carbamoyl)benzoate 73E (1.51 g, 88%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 8.32 (s, 1H), 8.13-8.02 (m, 3H), 7.88 (d, J = 8.5 Hz, 2H), 5.57 $(d, J = 14.2 \text{ Hz}, 1\text{H}), 3.93 (s, 3\text{H}), 1.48 (s, 9\text{H}); {}^{1}\text{H} \text{ NMR} (\text{DMSO-}d_{6})$ 500 MHz): δ 11.19 (d, J = 10.3 Hz, 1H), 8.14-8.10 (m, 2H), 8.09-8.05 (m, 2H), 7.94 (dd, J = 14.1, 10.3 Hz, 1H), 5.70 (d, J = 14.2 Hz, 1H), 3.90 (s, 3H), 1.46 (s, 9H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_6 , 125 MHz): δ 166.2, 165.5, 164.3, 137.8, 136.4, 132.9, 129.4, 128.3, 103.8, 79.4, 52.5, 27.9. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₁₆H₁₉NO₅, 304.1185; found, 304.1187.

tert-Butyl (2-Bromobenzoyl)carbamate (60). To a 200 mL 1-neck flask, with a stir bar, are added ethyl 2-bromobenzoate (5 mL, 31.5 mmol), *tert*-butyl carbamate (3.69 g, 31.5 mmol), and anhydrous THF (40 mL). The reaction was cooled to -20 to -25 °C (monitored with internal thermometer) and a lithium *tert*-butyaide solution (63.0 mL,

63.0 mmol, 1.0 M in THF) is added dropwise over 10 min at a rate to maintain the temperature below -20 °C. After addition is complete, the reaction is stirred for 10 min after which the cooling bath is removed and the reaction is stirred at ambient temperature for 18 h. The reaction is partitioned between EtOAc (300 mL) and 2 N aqueous HOAc (150 mL). The organic solvent layer is washed with saturated NaCl solution (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude is purified on silica (loaded in DCM onto a 25 g Biotage SNAP column and placed on top of an ISCO 120 g gold column that was conditioned with hexane, eluted with 1 CV hexanes then gradient eluted with 50% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give tert-butyl (2-bromobenzoyl)carbamate 57 (6.63 g, 70.1%) as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ7.86 (s, 1H), 7.55 (dd, J = 8.0, 1.1 Hz, 1H), 7.39 (dd, J = 7.6, 1.9 Hz, 1H), 7.34 (td, J = 7.5, 1.2 Hz, 1H), 7.27 (td, J = 7.7, 1.8 Hz, 1H), 1.39 (s, 9H); ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 125 MHz): δ 167.4, 149.3, 137.1, 132.9, 131.4, 128.7, 127.4, 118.7, 83.1, 27.7. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for $C_{12}H_{14}BrNO_{3y}$ 298.0079; found, 298.0078.

tert-Butyl (E)-3-(2-Bromo-N-(tert-butoxycarbonyl)benzamido)acrylate (69E). To a 200 mL 1-neck flask, with a stir bar, are added tert-butyl (2-bromobenzoyl)carbamate 60 (6.6 g, 21.99 mmol), DABCO (0.247 g, 2.199 mmol), and DCM (100 mL, anhydrous). The mixture is cooled in an ice/water bath and methyl propiolate (1.956 mL, 21.99 mmol) is added dropwise over 2-3 min. After addition is complete, the cooling bath is removed and the reaction is stirred at ambient temperature for 24 h. The reaction is concentrated in vacuo and then loaded in a minimal volume of DCM onto a 24 g ISCO gold column that is then placed on top of a 120 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 30% MTBE/hexanes over 6 CV, and then held for 6 CV) to give methyl (E)-3-(2-bromo-N-(tert-butoxycarbonyl)benzamido)acrylate 69E (8.4 g, 99%) as a clear, colorless oil (contains trace amounts of Z isomer that is not separable at this stage using silica gel chromatography): ¹H NMR (CDCl₃, 500 MHz): δ 8.00 (d, J = 14.7 Hz, 1H), 7.58 (dd, J = 7.8, 1.2 Hz, 1H), 7.40–7.28 (m, 3H), 6.27 (d, J = 14.6 Hz, 1H), 3.73 (s, 3H), 1.15 (s, 9H); ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 168.6, 167.6, 150.2, 138.0, 137.3, 133.3, 131.9, 129.0, 127.4, 119.6, 107.5, 85.7, 51.6, 27.1. HRMS (ESI) (*m*/*z*): ([M + H]⁺) calcd for C16H18BrNO5, 384.0446; found, 384.0448.

tert-Butyl (E)-3-(2-Bromobenzamido)acrylate (74E). To a 500 mL 1-neck flask, with stir bar, are added methyl (E)-3-(2-bromo-N-(tertbutoxycarbonyl)benzamido)acrylate 69E (8.5 g, 22.12 mmol), ACN (100 mL, anhydrous), and then magnesium perchlorate (4.94 g, 22.12 mmol). The reaction is stirred at ambient temperature for 2 days. The reaction is diluted with EtOAc (400 mL), saturated aqueous NaHCO₃ solution (100 mL), and water (100 mL). The organic layer is washed with saturated aqueous NaCl solution (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude material is dissolved in a minimal amount of DCM and loaded onto a 50 g Biotage Snap column that is then placed on top of a 120 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 50% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give *methyl* (E)-3-(2-bromobenzamido)acrylate 74E (6.1 g, 97%) as a clear, colorless oil: ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (d, J = 11.6 Hz, 1H), 8.12 (dd, J = 14.1, 11.5 Hz, 1H), 7.60 (dd, J = 7.9, 1.2 Hz, 1H), 7.56 (dd, J = 7.6, 1.8 Hz, 1H), 7.38 (td, J = 7.5, 1.3 Hz, 1H), 7.32 (td, J = 7.7, 1.8 Hz, 1H), 5.58 (d, J = 14.1 Hz, 1H), 3.71 (s, 3H); ¹H NMR (DMSO- d_6 , 500 MHz): δ 11.26 (d, J = 10.8 Hz, 1H), 7.97 (dd, J = 14.2, 10.8 Hz, 1H), 7.75 (dd, J = 7.9, 1.2 Hz, 1H), 7.58 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.53 (td, *J* = 7.4, 1.3 Hz, 1H), 7.47 (td, J = 7.7, 1.8 Hz, 1H), 5.67 (d, J = 14.2 Hz, 1H), 3.68 (s, 3H); ${}^{13}C{}^{1}H$ NMR (DMSO- d_6 , 125 MHz): δ 167.1, 165.9, 138.0, 136.9, 133.0, 132.1, 129.1, 127.8, 118.9, 101.6, 51.1. HRMS (ESI) (m/ *z*): $([M - H]^{-})$ calcd for C₁₁H₁₀BrNO₃, 281.9766; found, 281.9766.

tert-Butyl (4-Bromobenzoyl)carbamate (61). To a 100 mL 1-neck flask, with a stir bar, are added *tert*-butyl (4-bromobenzyl)carbamate (2.0 g, 6.99 mmol), sodium periodate (5.23 g, 24.46 mmol), ruthenium(IV) oxide hydrate (0.106 g, 0.699 mmol), and then EtOAc (25 mL) and water (50 mL). The reaction is stirred at ambient temperature for 5 h. The reaction is diluted with EtOAc (125 mL) and filtered through Celite (washing with 50 mL EtOAc). The EtOAc layer

The Journal of Organic Chemistry

is separated and 2-propanol (2 mL) is added to it. The mixture is stirred at ambient temperature for 18 h to consume the residual Ru oxidant. The solution is filtered through Celite, washed with EtOAc (50 mL), and concentrated in vacuo. The residual yellow solid is taken up 1:1 DCM/MTBE (50 mL) and hexane (200 mL) is added to cause precipitation. The solids are collected by filtration, washed with hexane (50 mL), and dried under a combination of house vacuum/nitrogen sweep (inverted funnel connected to the N₂ source) to give *tert*-butyl (4-bromobenzoyl)carbamate **61** (1.73 g, 82%) as an off-white solid. ¹H NMR is consistent with the known desired product.³⁷ No further purification is required.

tert-Butyl (E)-3-(4-Bromo-N-(tert-butoxycarbonyl)benzamido)acrylate (70E). To a 40 mL vial, with a stir bar, are added tert-butyl (4-bromobenzoyl)carbamate 61 (1.5 g, 5.00 mmol), DABCO (0.056 g, 0.500 mmol), and DCM (20 mL, anhydrous). The solution is cooled in an ice/water bath and methyl propiolate (0.445 mL, 5.00 mmol) is added dropwise over 2-3 min. After addition is complete, the cooling bath is removed, and the reaction is stirred at ambient temperature for 2 h. The reaction is loaded directly on a 24 g ISCO gold column that is then placed on top of an 80 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 30% MTBE/hexanes over 6 CV, and then held for 6 CV) to give methyl (E)-3-(4-bromo-N-(tert-butoxycarbonyl)benzamido)acrylate 70E (1.9 g, 99%) as a clear, colorless oil (LCMS shows a small amount of the Z isomer, which is not separable on silica): ¹H NMR (CDCl₂, 500 MHz): δ 7.99 (d, J = 14.6 Hz, 1H), 7.65–7.53 (m, 4H), 5.78 (d, J = 14.6 Hz, 1H), 3.70 (s, 3H), 1.24 (s, 9H); ${}^{13}C{}^{1}H$ NMR (CDCl₃, 125 MHz): δ 169.8, 167.5, 150.4, 138.5, 133.3, 132.1, 130.2, 128.6, 104.1, 85.4, 51.5, 27.5. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for $C_{16}H_{18}BrNO_{5}$, 382.0290; found, 382.0293.

tert-Butyl (E)-3-(4-Bromobenzamido)acrylate (75E). To a 200 mL 1-neck flask, with a stir bar, are added magnesium perchlorate (2.300 g, 10.31 mmol) and a solution of methyl (E)-3-(4-bromo-N-(tertbutoxycarbonyl)benzamido)acrylate 70E (3.6 g, 9.37 mmol) in ACN (60 mL, anhydrous). The reaction is stirred at ambient temperature for 2 days. The reaction is diluted with EtOAc (250 mL) and saturated aqueous NaHCO₃ solution (100 mL). The organic layer is washed with 10% aqueous LiCl solution $(2 \times 50 \text{ mL})$, saturated aqueous NaCl solution (50 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude was dry loaded onto silica and placed on top of a 120 g ISCO gold column (conditioned with hexanes, eluted with 1 CV hexanes then gradient eluted with 50% EtOAc/hexanes over 6 CV, and then held for 6 CV) to give methyl (E)-3-(4-bromobenzamido)acrylate 75E as a white solid: ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 11.7 Hz, 1H), 8.19 (dd, J = 14.1, 11.6 Hz, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 5.63 (d, J = 14.1 Hz, 1H), 3.73 (s, 3H); ¹H NMR (MeOD, 500 MHz): δ 8.16 (d, J = 14.2 Hz, 1H), 7.83 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 5.76 (d, J = 14.2 Hz, 1H), 3.72 (s, 3H); ¹³C{¹H} NMR (MeOD, 125 MHz): *δ* 170.1, 166.8, 140.3, 133.2, 133.1, 130.9, 128.7, 103.0, 52.1. HRMS (ESI) (m/z): $([M - H]^{-})$ calcd for C₁₁H₁₀BrNO₃, 281.9766; found, 281.9768.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c01212.

Results from repeating previously reported acetal condensation reaction; reaction monitoring details and data; and copies of 1 H and 13 C spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

Scott R. Pollack – Department of Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States; orcid.org/0000-0001-8292-2989; Email: scott pollack2@merck.com Amélie Dion – Department of Process Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States; Email: Amelie.dion@merck.com

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c01212

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Danielle Schultz for reviewing the manuscript.

REFERENCES

(1) Pollack, S. R.; Kuethe, J. T. Chemoselective Reduction of α -Cyano Carbonyl Compounds: Application to the Preparation of Heterocycles. *Org. Lett.* **2016**, *18*, 6388–6391.

(2) (a) Elaridi, J.; Thaqi, A.; Prosser, A.; Jackson, W. R.; Robinson, A. J. An enantioselective synthesis of β^2 -amino acid derivatives. *Tetrahedron* **2005**, *16*, 1309–1319. (b) The *Z* isomer is generally a poorer substrate than the *E*, both in terms of conversion and ee.

(3) Sewell, A. L.; Villa, M. V. J.; Matheson, M.; Whittingham, W. G.; Marquez, R. Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801. *Org. Lett.* **2011**, *13*, 800–803.

(4) Goldflam, M.; Ullman, C. G. Recent Advances Toward the Discovery of Drug-Like Peptides De novo. *Front. Chem.* **2015**, *3*, 69.

(5) Lelais, G.; Seebach, D. β^2 -Amino Acids – Syntheses, Occurrence in Natural Products and Components of β -Peptides. *Biopolymers* **2004**, *76*, 206–243.

(6) (a) Villa, M. V. J.; Targett, S. M.; Barnes, J. C.; Whittingham, W. G.; Marquez, R. An Efficient Approach to the Stereocontrolled Synthesis of Enamides. *Org. Lett.* **2007**, *9*, 1631–1633. (b) Kardile, R. D.; Liu, R.-S. Two Distinct Ag(I)- and Au(I)-Catalyzed Olefinations between α -Diazo Esters and N-Boc-Derived Imines. *Org. Lett.* **2019**, *21*, 6452– 6456. (c) Spry, C.; Sewell, A. L.; Hering, Y.; Villa, M. V. J.; Weber, J.; Hobson, S. J.; Harnor, S. J.; Gul, S.; Marquez, R.; Saliba, K. J. Structureactivity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation. *Eur. J. Med. Chem.* **2018**, *143*, 1139–1147.

(7) Xing, L.; Li, C. Stereoselective Chlorination and Bromination of Enamides and Enamines via an Electrostatic Attraction Effect Using (1,1-Diacetoxyiodo)benzene and a Halide Source. *J. Org. Chem.* **2015**, *80*, 10000–10008.

(8) Ji, X.; Huang, H.; Wu, W.; Jiang, H. Palladium-Catalyzed Intermolecular Dehydrogenative Aminohalogenation of Alkenes under Molecular Oxygen: An Approach to Brominated Enamines. *J. Am. Chem. Soc.* **2013**, *135*, 5286–5289.

(9) (a) Lee, J. M.; Ahn, D.-S.; Jung, D. Y.; Lee, J.; Do, Y.; Kim, S. K.; Chang, S. Hydrogen-Bond-Directed Highly Stereoselective Synthesis of Z-Enamides via Pd-Catalyzed Oxidative Amidation of Conjugated Olefins. J. Am. Chem. Soc. **2006**, 128, 12954–12962. (b) Panda, N.; Mothkuri, R. Stereoselective Synthesis of Enamides by Pd-Catalyzed Hydroamidation of Electron Deficient Terminal Alkynes. J. Org. Chem. **2012**, 77, 9407–9412. (c) López, A.; Clark, T. B.; Parra, A.; Tortosa, M. Copper-Catalyzed Enantioselective Synthesis of β -Boron β -Amino Esters. Org. Lett. **2017**, 19, 6272–6275. (d) Panda, N.; Jena, A. K.; Raghavender, M. Stereoselective Synthesis of Enamides by Palladium Catalyzed Coupling of Amides with Electron Deficient Olefins. ACS Catal. **2012**, 2, 539–543. (e) Ragaini, F.; Longo, T.; Cenini, S. Addition of ethyl urethane to olefins: A new approach to the synthesis of aliphatic carbamates. J. Mol. Catal. A: Chem. **1996**, 110, L171–L175.

(10) (a) Cartwright, K. C.; Tunge, J. A. Decarboxylative Elimination of N-Acyl Amino Acids via Photoredox/Cobalt Dual Catalysis. *ACS Catal.* **2018**, *8*, 11801–11806. (b) Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Dang, H. T.; Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B. S.; Arman, H. D.; Larionov, O. V. Alkene Synthesis by Photocatalytic Chemoenzymatically Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass. ACS Catal. **2019**, 9, 9485–9498. (c) Cartwright, K. C.; Joseph, E.; Comadoll, C. G.; Tunge, J. A. Photoredox/Cobalt Dual-Catalyzed Decarboxylative Elimination of Carboxylic Acids: Development and Mechanistic Insight. Chem.—Eur. J. **2020**, 26, 12454–12471. (d) Cartwright, K. C.; Lang, S. B.; Tunge, J. A. Photoinduced Kochi Decarboxylative Elimination for the Synthesis of Enamides and Enecarbamates from N-Acyl Amino Acids. J. Org. Chem. **2019**, 84, 2933–2940. (e) Min, G. K.; Hernández, D.; Lindhardt, A. T.; Skrydstrup, T. Enamides Accessed from Aminothioesters via a Pd(0)-Catalyzed Decarbonylative/ β -Hydride Elimination Sequence. Org. Lett. **2010**, 12, 4716–4719. (f) García-Reynaga, P.; Carrillo, A. K.; VanNieuwenhze, M. S. Decarbonylative Approach to the Synthesis of Enamides from Amino Acids: Stereoselective Synthesis of the (Z)-Aminovinyl-D-Cysteine Unit of Mersacidin. Org. Lett. **2012**, 14, 1030–1033.

(11) Szewczyk, S. M.; Zhao, Y.; Sakai, H. A.; Dube, P.; Newhouse, T. R. α , β -Dehydrogenation of esters with free O H and N H functionalities via allyl-palladium catalysis. *Tetrahedron* **2018**, *74*, 3293–3300.

(12) Han, C.; Shen, R.; Su, S.; Porco, J. A., Jr. Copper-Mediated Synthesis of N-Acyl Vinylogous Carbamic Acids and Derivatives: Synthesis of the Antibiotic CJ-15,801. *Org. Lett.* **2004**, *6*, 27–30.

(13) (a) Matsumura, Y.; Ohishi, T.; Sonoda, C.; Maki, T.; Watanabe, M. A Convenient Method for Synthesis of Optically Active β -Hydroxyamines from Primary Amines through Enecarbamates as Key Intermediates. *Tetrahedron* **1997**, *53*, 4579–4592. (b) Adamek, J.; Mazurkiewicz, R.; Październiok-Holewa, A.; Grymel, M.; Kuźnik, A.; Zielińska, K. 1-(N-Acylamino)alkyl Sulfones from N-Acyl- α -amino Acids or N-Alkylamides. *J. Org. Chem.* **2014**, *79*, 2765–2770. (c) Nicolaou, K. C.; Mathison, C. J. N. Synthesis of Imides,N-Acyl Vinylogous Carbamates and Ureas, and Nitriles by Oxidation of Amides and Amines with Dess-Martin Periodinane. *Angew. Chem., Int. Ed.* **2005**, *44*, 5992–5997.

(14) Dmitriev, M. E.; Ragulin, V. V. Acetals and N,N'alkylidenebiscarbamates in the synthesis of N-protected α -aminophosphinic acids. *Russ. J. Gen. Chem.* **2012**, *82*, 1882–1885.

(15) Marafon, G.; Crisma, M.; Moretto, A. Tunable E-Z Photoisomerization in $\alpha_{,\beta}$ -Peptide Foldamers Featuring Multiple (E/Z)-3-Aminoprop-2-enoic Acid Units. Org. Lett. **2019**, 21, 4182–4186.

(16) (a) Kurita, J.; Kojima, H.; Tsuchiya, T. Studies on Diazepines XXIV. Reactions of Monocyclic 1H-1,3-Diazepines. (2). Photosensitized Oxygenation. *Chem. Pharm. Bull.* 1986, 34, 4871-4874.
(b) Millan, D. S.; Prager, R. H. The chemistry of 5-oxodihydroisoxazoles. Part 22.1 The synthesis of 1,3-oxazin-6-ones from N-thioacylisoxazol-5(2H)-ones. *J. Chem. Soc., Perkin Trans.* 1 1998, 3245-3252. (c) Farkaš, J.; Hapala, J.; Jindrová, O.; Škoda, J. Reaction of 2,3-dihydro-1,3-6H-oxazine-2,6-dione with aliphatic amines and amino acids. *Collect. Czech. Chem. Commun.* 1982, 47, 2932-2945.

(17) In ref 11, Table 4, The compounds with an N–H are incorrectly identified as E isomers. The α -protons (adjacent to the ester) which are at $\sim \delta$ 5.0–5.3 ppm have reported $J \approx 8.4-8.8$ Hz. In this and other papers that proton has $J \approx 14$ Hz for the *E* isomers. The *Z* isomers are $J \approx 8.5-8.9$.

(18) Delforge, A.; Georgiou, I.; Kremer, A.; Wouters, J.; Bonifazi, D. Synthesis of Tertiary Enamides by $Ag_2CO_3Promoted$ Pd-Catalyzed Alkenylation of Acyclic Secondary Amides. *Org. Lett.* **2016**, *18*, 4844–4847.

(19) Suh, E. M.; Kishi, Y. Synthesis of Palytoxin from Palytoxin Carboxylic Acid. J. Am. Chem. Soc. 1994, 116, 11205–11206.

(20) (a) See Supporting Information for detailed procedures and data. (b) Concentration (mg/g) is amount of substrate (14E or 14Z) in each gram of reaction mixture. This ratio is used since density and volume may change over time due to crystallization and/or loss of solvent to evaporation making concentration determination by volume less accurate.

(21) Bures, J.; Armstrong, A.; Blackmond, D. Downstream Paradigm in Enamine Catalysis: Comment on "Stereocontrol in Organocatalytic α -Chlorination of Aldehydes. **2021**, ChemRxiv. Preprint. May 3, 2021 [accessed 2021 July 7]. chemrxiv:14519733.v1. (22) (a) Fan, M.-J.; Li, G.-Q.; Liang, Y.-M. DABCO catalyzed reaction of various nucleophiles with activated alkynes leading to the formation of alkenoic acid esters, 1,4-dioxane, morpholine, and piperazinone derivatives. *Tetrahedron* **2006**, *62*, 6782–6791. (b) Mola, L.; Font, J.; Bosch, L.; Caner, J.; Costa, A. M.; Etxebarría-Jardí, G.; Pineda, O.; de Vicente, D.; Vilarrasa, J. Nucleophile-Catalyzed Additions to Activated Triple Bonds. Protection of Lactams, Imides, and Nucleosides with MocVinyl and Related Groups. *J. Org. Chem.* **2013**, *78*, 5832–5842.

(23) Stafford, J. A.; Brackeen, M. F.; Karanewsky, D. S.; Valvano, N. L. A Highly Selective Protocol for the Deprotection of BOC-Protected Amides and Carbamates. *Tetrahedron Lett.* **1993**, *34*, 7873–7876.

(24) Klinge, M.; Cheng, H.; Zabriskie, T. M.; Vederas, J. C. Irreversible inhibition of mammalian and insect peptidylglycine α -hydroxylating monooxygenases (PHMS), peptide amidating enzymes, by N-formyl amides. *Chem. Commun.* **1994**, 1379–1380.

(25) Ticconi, B.; Mazzonna, M.; Lanzalunga, O.; Lapi, A. Oxidation of α -amino acids promoted by the phthalimide N-oxyl radical: A kinetic and product study. *Tetrahedron* **2019**, *75*, 3579–3585.

(26) Prager, R.; Were, S. On the Reaction of Vinyl Isocyanates With Enamines. *Aust. J. Chem.* **1991**, *44*, 1635–1641.

(27) Ragaini, F.; Longo, T.; Cenini, S. Addition of ethyl urethane to olefins: A new approach to the synthesis of aliphatic carbamates. *J. Mol. Catal. A: Chem.* **1996**, *110*, L171–L175.

(28) Álvarez-Calero, J. M.; Jorge, Z. D.; Massanet, G. M. TiCl4/Et3N-Mediated Condensation of Acetate and Formate Esters: Direct Access to β -Alkoxy- and β -Aryloxyacrylates. *Org. Lett.* **2016**, *18*, 6344–6347.

(29) Molino, B. F.; Liu, S.; Sambandam, A.; Guzzo, P. R.; Hu, M.; Zha, C.; Nacro, K.; Manning, D. D.; Isherwood, M. L.; Fleming, K. N.; Cui, W.; Olson, R. E. Aryl- and heteroaryl-substituted tetrahydrobenzazepines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin. U.S. Paten 7,956,050 B2, June 7, 2011.

(30) Chabala, J. C.; Mrozik, H.; Tolman, R. L.; Eskola, P.; Lusi, A.; Peterson, L. H.; Woods, M. F.; Fisher, M. H.; Campbell, W. C.; Egerton, J. R.; Ostlind, D. A. Ivermectin, a New Broad-Spectrum Antiparasitic Agent. *J. Med. Chem.* **1980**, *23*, 1134–1136.

(31) Matsumura, Y.; Ohishi, T.; Sonoda, C.; Maki, T.; Watanabe, M. A convenient method for synthesis of optically active β -hydroxyamines from primary amines through enecarbamates as key intermediates. *Tetrahedron* **1997**, *53*, 4579–4592.

(32) Hajra, S.; Bhowmick, M.; Maji, B.; Sinha, D. Design and Synthesis of ChiralN-Chloroimidodicarbonates: Application to Asymmetric Chlorination of Silyl Enol Ethers. *J. Org. Chem.* **2007**, *72*, 4872–4876.

(33) Gwon, D.; Hwang, H.; Kim, H. K.; Marder, S. R.; Chang, S. Synthesis of 8-Aminoquinolines by Using Carbamate Reagents: Facile Installation and Deprotection of Practical Amidating Groups. *Chem.*—*Eur. J.* **2015**, *21*, 17200–17204.

(34) Kanbayashi, N.; Takenaka, K.; Okamura, T.-a.; Onitsuka, K. Asymmetric Auto-Tandem Catalysis with a Planar-Chiral Ruthenium Complex: Sequential Allylic Amidation and Atom-Transfer Radical Cyclization. *Angew. Chem., Int. Ed.* **2013**, *52*, 4897–4901.

(35) Laha, J. K.; Hunjan, M. K.; Bhimpuria, R. A.; Kathuria, D.; Bharatam, P. V. Geometry Driven Intramolecular Oxidative Cyclization of Enamides: An Umpolung Annulation of Primary Benzamides with Acrylates for the Synthesis of 3-Methyleneisoindolin-1-ones. J. Org. Chem. 2017, 82, 7346-7352.

(36) Tanaka, K.-I.; Yoshifuji, S.; Nitta, Y. A New Method for the Synthesis of Amides from Amines : Ruthenium Tetroxide Oxidation of N-Protected Alkylamines. *Chem. Pharm. Bull.* **1988**, *36*, 3125–3129.

(37) Dong, G.; Li, C.; Liu, H. Rh(III)-Catalyzed Annulation of Boc-Protected Benzamides with Diazo Compounds: Approach to Isocoumarins. *Molecules* **2019**, *24*, 937–955.

0