# Improved Synthesis of Substituted Quinoxalines from New N=N-Polymerbound 1,2-Diaza-1,3-butadienes

Orazio A. Attanasi, Lucia De Crescentini, Paolino Filippone,\* Fabio Mantellini,\* Stefania Santeusanio Istituto di Chimica Organica, Università degli Studi di Urbino, Piazza della Repubblica 13, 61029 Urbino, Italy Fax +39(0722)2907; E-mail: filippone@uniurb.it

Received 20 March 2003

**Abstract:** The first general protocol for the preparation of different N=N-polymer-bound 1,2-diaza-1,3-butadienes is reported. The utility of these supported reagents in the solid-phase in the preparation of 3-methyl quinoxaline-2-carboxylates by reaction with aromatic 1,2-diamines is presented.

**Key words:** 1,2-diaza-1,3-butadienes, hydrazones, Michael addition, quinoxalines, solid-phase synthesis

1,2-Diaza-1,3-butadienes are powerful tools in organic synthesis, particularly in the construction of heterocyclic rings.<sup>1–3</sup> Recently, we reported their synthesis on solid phase, starting from polymer-bound  $\beta$ -ketoester and free hydrazine derivatives.<sup>4,5</sup> In this case, the coupling site with the resin was the ester group at position 4 of the azo-ene system.

In this report, we describe a new protocol to obtain new N=N-polymer-bound 1,2-diaza-1,3-butadienes. The methodology uses PS-Ts-NH-NH<sub>2</sub>, a resin bound equivalent of *p*-toluenesulfonyl hydrazide, usually employed as a scavenger of aldehydes and ketones.<sup>6</sup> Such a resin is also potentially useful as a polymeric reagent: for example, its reaction with carbonyl compounds **2a–e** furnishes resinbound  $\alpha$ -alogenated sulfonyl hydrazones **4a–e**.

Two different routes are possible for this synthesis. When polymer-bound hydrazide **1** reacts with *i*-propyl or benzyl acetoacetate **2a,b**, the formation of corresponding polymer-bound hydrazones **3a,b** is observed. These are subjected to bromination with phenyltrimethylammonium tribromide (PTAB) in dichloromethane to permit the introduction of the leaving group at the  $\alpha$ -position of the C=N function to give the pertinent polymer-bound hydrazones **4a,b**. On the other hand, the reaction of **1** with methyl or ethyl 2-chloroacetoacetate **2c,d** or 2-chloro-*N,N*-dimethyl-acetoacetamide **2e** directly provides the  $\alpha$ -chloro-polymer-bound hydrazones **4c–e**.

Treatment of **4a**–**e** with diisopropylethylamine (DIPEA) in  $CH_2Cl_2$  furnishes N=N-polymer-bound 1,2-diaza-1,3-butadienes **5a**–**e** (Scheme 1, Table 1).

In order to test the reactivity of these new polymer-bound compounds and considering that quinoxaline derivatives are attractive due to their wide range of biological activi-

Art Id.1437-2096,E;2003,0,08,1183,1185,ftx,en;D06503ST.pdf.

© Georg Thieme Verlag Stuttgart · New York



Scheme 1

ties,<sup>7</sup> we decided to submit 1,2-diaza-1,3-butadienes in solid-phase **5a–e** to treatment with aromatic 1,2-diamines **6a–c**.<sup>8</sup>

Reaction occurs in tetrahydrofuran (THF) under reflux and gives directly free 3-methyl quinoxaline-2-carboxylates **9a**–**h** that were easily purified by chromatographic methods (Scheme 2, Table 2). The reaction takes place by the nucleophilic attack of an NH<sub>2</sub> group of compounds **6** at position four of the azo-ene systems with formation of 1,4 adducts **7**. Compounds **7** instantaneously result in further internal attack of the second amino group at the C=Nhydrazone group to give compounds **8** that, by loss of *p*toluenesulfonyl hydrazide and subsequent aromatization, lead to a solution of the final products **9a–h**.

In conclusion, the procedure described herein represents one of the few examples reported in literature for the synthesis of quinoxaline derivatives in solid phase.<sup>8,9</sup>

Synlett 2003, No. 8, Print: 24 06 2003.





In respect to our previous work in this field,<sup>8</sup> this new method simplifies the work-up procedure by avoiding the cleavage step and permits the introduction of different functional groups at position 2 of the quinoxaline system. Furthermore, in contrast with the article of Wu and Ede,<sup>9</sup>

which reported the synthesis of a mixture of quinoxaline isomers, we obtained pure final products.

#### Typical procedure for the synthesis of polymer-bound $\alpha$ -bromo-hydrazones 4a,b

*i*-Propyl- or benzyl acetoacetate **2a**,**b** (5 equiv) were added to a magnetically stirred mixture of PS-Ts-NH-NH<sub>2</sub> **1** (0.500 g, 1.5 mmol per gram of resin) in THF (15 mL). The reaction mixture was allowed to stand at room temperature for 8–10 h, to give polymerbound hydrazones **3a**,**b** that were washed with THF (5 × 10 mL) and CH<sub>2</sub>Cl<sub>2</sub> (5 × 10 mL). To polymer-bound hydrazones **3a**,**b** in CH<sub>2</sub>Cl<sub>2</sub> (150 mL) PTAB (1 equiv) was added portionwise with magnetic stirring. The reaction mixture was allowed to stand at room temperature for 4 h to give polymer-bound  $\alpha$ -bromo-hydrazones **4a**,**b**, that were washed with THF (5 × 10 mL).

# Typical procedure for the synthesis of polymer-bound $\alpha\text{-chlorohydrazones}$ 4c–e

Methyl or ethyl 2-chloroacetoacetate **2c**,**d** or 2-chloro-*N*, *N*-dimethyl-acetoacetamide **2e** (5 equiv) were added to a magnetically stirred mixture of PS-Ts-NH-NH<sub>2</sub> **1** (0.500 g, 1.5 mmol per gram of resin) in THF (15 mL). The reaction mixture was allowed to stand at room temperature for 5–10 h to give polymer-bound  $\alpha$ -chloro-hydrazones **4c**,**d**, that were washed with THF (5 × 10 mL) and CH<sub>2</sub>Cl<sub>2</sub> (5 × 10 mL).

#### Typical procedure for the synthesis of N=N-polymer-bound 1,2diaza-1,3-butadienes 5a–e

To polymer-bound  $\alpha$ -halogenated-hydrazones **4a–e** in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added under magnetic stirring DIPEA (2 equiv). The reaction mixture was allowed to stand at room temperature for 0.1 h to give N=N-polymer-bound 1,2-diaza-1,3-butadienes **5a–e** that were washed with THF (5 × 10 mL) and CH<sub>2</sub>Cl<sub>2</sub> (5 × 10 mL).

#### Typical procedure for the synthesis of 3-methyl quinoxaline-2carboxylates 9a-h

To N=N-polymer-bound 1,2-diaza-1,3-butadienes **5a–e** in THF (20 mL) 4,5-dimethylbenzene-1,2-diamine **2a**, benzene-1,2-diamine **2b** or naphtalene-2,3-diamine **2c** (3 equiv) were added. The reaction mixture was refluxed, with magnetic stirring, for 5–10 h furnishing 3-methyl quinoxaline-2-carboxylates **9a–h** in solution. The residue was washed with THF (5 × 10 mL) and CH<sub>2</sub>Cl<sub>2</sub> (5 × 10 mL). After evaporation of the solvent under reduced pressure, the residue was purified by chromatography on a silica gel column (cyclohexane/ ethyl acetate) to give **9a–h**, which were crystallized from diethyl ether/petroleum ether (40–60 °C).

Table 1Reaction Times for the Synthesis of Polymer Bound  $\alpha$ -Halogenated Hydrazones 4a–e and Polymer-bound 1,2-Diaza-1,3-Butadienes5a–e

| 2  | $\mathbb{R}^1$     | 3  | Reaction Time<br>(h) | 4          | Reaction Time<br>(h) | 5  | Reaction Time<br>(h) |
|----|--------------------|----|----------------------|------------|----------------------|----|----------------------|
| 2a | <i>i</i> -PrO      | 3a | 10.0                 | <b>4</b> a | 4.0 <sup>a</sup>     | 5a | 0.1                  |
| 2b | OBn                | 3b | 8.0                  | 4b         | 4.0 <sup>a</sup>     | 5b | 0.1                  |
| 2c | OMe                |    |                      | 4c         | 10.0                 | 5c | 0.1                  |
| 2d | OEt                |    |                      | 4d         | 5.0                  | 5d | 0.1                  |
| 2e | N(Me) <sub>2</sub> |    |                      | 4e         | 7.0                  | 5e | 0.1                  |

<sup>a</sup> Reaction time for the bromination of **3a**,**b**.

Table 2Yield and Reaction Time for the Synthesis of 3-Methyl Quinoxaline-2-carboxylates 9a-h

| 5  | $\mathbb{R}^1$     | 6  | $\mathbb{R}^2$ | R <sup>3</sup> | 9  | Reaction Time (h) | Yield (%) |
|----|--------------------|----|----------------|----------------|----|-------------------|-----------|
| 5a | O <i>i</i> -Pr     | 6a | Me             | Me             | 9a | 8.0               | 31        |
| 5b | OBn                | 6b | Н              | Н              | 9b | 7.0               | 28        |
| 5c | OMe                | 6a | Me             | Me             | 9c | 7.0               | 38        |
| 5c | OMe                | 6b | Н              | Н              | 9d | 5.0               | 24        |
| 5d | OEt                | 6a | Me             | Me             | 9e | 8.0               | 25        |
| 5d | OEt                | 6b | Н              | Н              | 9f | 6.0               | 27        |
| 5d | OEt                | 6c | Ę              |                | 9g | 10.0              | 19        |
| 5e | N(Me) <sub>2</sub> | 6b | Н              | Н              | 9h | 5.0               | 15        |

## Acknowledgment

This work was supported by financial assistance from the Ministero dell'Università e della Ricerca Scientifica e Tecnologica M.U.R.S.T.-Roma (National Project 'Buiding-blocks da e/o per sistemi eterociclici. Processi innovativi e sintesi di molecole di potenziale attività biologica'), and the Università degli Studi di Urbino.

## References

- (a) Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int. 1986, 18, 299. (b) Attanasi, O. A.; Filippone, P. Synlett 1997, 1128. (c) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. Arkivoc 2002, 274.
- (2) (a) Banert, K. In *Targets in Heterocyclic Systems Chemistry and Properties*, Vol. 3; Attanasi, O. A.; Spinelli, D., Eds.; Società Chimica Italiana: Rome, **2000**, 1.
  (b) Polanc, S. In *Targets in Heterocyclic Systems – Chemistry and Properties*, Vol. 3; Attanasi, O. A.; Spinelli, D., Eds.; Società Chimica Italiana: Rome, **2000**, 33; and references cited therein.
- (3) (a) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Foresti, E.; Mantellini, F. J. Org. Chem. 2000, 65, 2820. (b) Abbiati, G.; Arcadi, A.; Attanasi, O. A.; De Crescentini, L.; Rossi, E. Tetrahedron 2001, 57, 2031. (c) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Fringuelli, F.; Mantellini, F.; Matteucci, M.; Piermatti, O.; Pizzo, F. Helv. Chim. Acta 2001, 84, 513. (d) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F. New J. Chem. 2001, 25, 534. (e) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F. Synlett 2001, 557. (f) Attanasi, O. A.; Filippone, P.; Guidi, B.; Mantellini, F.; Santeusanio, S. Synthesis 2001, 1837. (g) Rossi, E.; Arcadi, A.; Abbiati, G.; Attanasi, O. A.; De Crescentini, L. Angew. Chem. Int. Ed. 2002, 41, 1400. (h) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Santeusanio, S. Synthesis 2002, 1546. (i) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Santeusanio, S. J. Org. Chem. 2002, 67, 8178. (j) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Giorgi, G.; Mantellini, F.; Santeusanio, S. J. Org. Chem. 2002, 68, 1947.

- (4) Attanasi, O. A.; Filippone, P.; Guidi, B.; Hippe, T.; Mantellini, F.; Tietze, L. F. *Tetrahedron Lett.* **1999**, *40*, 9277.
- (5) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Tietze, L. F. *Tetrahedron* **2001**, *57*, 5855.
- (6) (a) Emerson, D. W.; Emerson, R. R.; Joshi, S. C.; Sorensen, E. M.; Nrek, J. J. Org. Chem. 1979, 44, 4634.
  (b) Kamogawa, H.; Kanzawa, A.; Kodoja, M.; Naito, T.; Nanasawa, M. Bull. Chem. Soc. Jpn. 1983, 56, 762.
  (c) Galioglu, O.; Auar, A. Eur. Polym. J. 1989, 25, 313.
  (d) Hu, Y.; Baudart, S.; Porco, J. A. Jr. J. Org. Chem. 1999, 64, 1049.
- (7) (a) Sakata, G.; Makino, K.; Kurasawa, J. *Heterocycles* 1988, 27, 2481; and references cited therein. (b) Sato, N. *Pyrazines and Benzo Derivatives*, In *Comprehensive Heterocyclic Chemistry*, Vol. 6; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon Press: New York, 1996. (c) *Progress in Heterocyclic Chemistry*, Vol. 1-7; Suschitzky, H.; Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1989-1995. (d) *Progress in Heterocyclic Chemistry*, Vol. 8; Suschitzky, H.; Gribble, G. W., Eds.; Pergamon Press: Oxford, 1989-1995. (d) *Progress in Heterocyclic Chemistry*, Vol. 8; Suschitzky, H.; Gribble, G. W., Eds.; Pergamon Press: Oxford, 1996. (e) *Progress in Heterocyclic Chemistry*, Vol. 9-12; Gribble, G. W.; Gilchrist, T. L., Eds.; Pergamon Press: Oxford, 1997-2000.
- (8) Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. *Helv. Chim. Acta* 2001, 84, 2379.
- (9) Wu, Z.; Ede, N. J. Tetrahedron Lett. 2001, 42, 8115.