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Abstract: A racemic bisphenolato (OSSO)-type ligand that con-
tains a trans-1,2-cyclohexanediyl backbone can be obtained in two
steps from commercially available starting materials. In situ combi-
nation of this ligand with Ti(NMe2)4 or Zr(NMe2)4 results in the for-
mation of bis(phenolato) complexes that catalyze hydroaminations
of alkynes and alkenes.
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During the last few years, many metal complexes that cat-
alyze the addition of N–H across carbon–carbon multiple
bonds have been identified.1 In particular, neutral Ti- and
Zr-complexes have been shown to catalyze the hydro-
amination of alkynes2 and alkenes3 with primary amines.
Recently, corresponding cyclizations of aminoalkenes
have been achieved in an enantioselective fashion4 with ee
values up to 93% in the presence of a chiral zirconium
amidate complex.4b Inspired by a report from the Okuda
group5 that described the use of scandium complexes with
dithiaalkanediyl-bridged bisphenolato (OSSO)-type
ligands for the ring-opening polymerization of lactide we
decided to investigate Ti- and Zr-complexes with corre-
sponding chiral bisphenolato ligands as potential catalysts
for enantioselective hydroamination reactions. However,
in this context, it must be mentioned that during the course
of our study, the Okuda group reported the synthesis of an
enantiomerically pure chiral Ti-complex with an (OSSO)-
ligand that contains a trans-1,2-cyclohexanediyl back-
bone and its use for the polymerization of styrene.6 In this
letter we describe a short racemic synthesis of a closely

related but sterically more demanding chiral bisphenolato
(OSSO)-ligand and its use for initial Ti- and Zr-catalyzed
hydroamination reactions.

The synthesis of the desired ligand rac-3 (Scheme 1)
started with the reaction of commercially available phenol
1 with S2Cl2 in the presence of TiCl4 which gave the
disulfide 2 in 55% yield on a 50-gram scale.7,8 Subse-
quently, 2 was directly reacted with cyclohexene in the
presence of BF3·OEt2 to give rac-3 in 96% yield as a crys-
talline compound.9,10 Interestingly, the 500 MHz 1H NMR
spectrum of rac-3 in CD2Cl2 showed only two broad sin-
glets for the two pairs of diastereotopic methyl groups at
d = 1.64 (12 H) and 1.70 (12 H) ppm. The desired trans
configuration of the ligand rac-3 was confirmed by X-ray
crystallographic analysis (Figure 1).11

Since our original idea was to use a dimethyl titanium
complex as the catalyst for the planned hydroamination
reactions ligand rac-3 was initially treated with TiCl4 to
give the bis(phenolato)titanium dichloro complex rac-4
as a dark red crystalline compound (Scheme 2).12 In con-
trast to the free ligand, the 500 MHz 1H NMR spectrum of
rac-4 in CD2Cl2 showed four sharp singlets for the two
pairs of diastereotopic methyl groups at d = 1.65 (6 H),
1.70 (6 H), 1.73 (6 H) and 1.85 (6 H) ppm. To confirm the
monomeric structure of complex rac-4 an X-ray crystallo-
graphic analysis was carried out (Figure 2).13 As observed
before,5,6 the helical arrangement of the ligand around the
metal center causes an additional stereogenic unit. How-
ever, rac-4 was obtained as a single diastereomer with dis-
torted octahedral geometry around the titanium center.

Scheme 1 Two-step synthesis of bis(phenolato) ligand rac-3
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Due to the relatively strong binding chloro ligands rac-4
showed only poor activity as a hydroamination catalyst.
For example, in the presence of 5 mol% of rac-4, the
reaction between 1-phenylpropyne and 4-methylaniline
gave only trace amounts of hydroamination products after
48 hours at 105 °C. Consequently, we tried to exchange
the chloro ligands with more labile methyl groups. How-
ever, our attempts to convert rac-4 into the corresponding
dimethyl complex using methyllithium in diethyl ether at
temperatures between –20 °C and –80 °C failed. For that
reason, we turned our attention to an in situ generation of
the hydroamination catalyst from the combination of
equimolar amounts of the ligand rac-3 and Ti(NMe2)4.

4a,14

First of all, we tried to observe the involved amine elimi-
nation reaction by 1H NMR spectroscopy. Upon mixing
Ti(NMe2)4 and an equimolar amount of rac-3 in CD2Cl2
at 25 °C the singlet for the methyl groups of Ti(NMe2)4 at
d = 3.04 ppm as well as the broad signals for the phenolic
H-atoms (d = 6.83 ppm) and the methyl groups of rac-3
(vide supra) disappeared completely. On the other hand,
four new sharp singlets for the diastereotopic methyl
groups of the in situ formed Ti-complex appeared at d =
1.66 (6 H), 1.68 (6 H), 1.70 (6 H) and 1.83 (6 H) ppm
(compare with rac-4). Furthermore, a new dimethylamide
signal at d = 2.80 ppm (12 H) proved that a monomeric Ti-
species comparable to the dichloro complex rac-4 was
present in solution. Additionally, a doublet at d = 2.37
ppm caused by free dimethylamine was observed.

With this result in hand, we turned our attention to some
intermolecular hydroaminations of alkynes (Table 1). The
in situ formation of the catalyst was always carried out by
stirring 5 mol% of the ligand rac-3 and an equimolar
amount of Ti(NMe2)4 in toluene for 30 minutes at room
temperature. Subsequently, the alkyne and amine sub-

strates were added and all resulting mixtures were heated
to 105 °C for 24 hours (reaction times have not been
minimized). After subsequent reduction with NaBH3CN
in the presence of ZnCl2, secondary amines were obtained
from most of the test reaction sequences.15

As can be seen from Table 1, 4-methylaniline and cyclo-
pentylamine underwent smooth addition reactions with 1-
phenylpropyne (entries 1 and 2) to give the corresponding
anti-Markovnikov products with excellent regioselec-
tivity. Interestingly, sterically more demanding tert-butyl-
amine did not undergo a hydroamination reaction with 1-
phenylpropyne (entry 3). A similar behavior was observed
with the terminal alkyne 1-dodecyne (entries 7–9). Again,
no conversion was observed with tert-butylamine while
4-methylaniline and cyclopentylamine underwent a
hydroamination reaction. Interestingly, 1-dodecyne and
cyclopentylamine were selectively converted into the
Markovnikov product (entry 8). Formation of the
Markovnikov product was also favored with 4-methyl-
aniline (entry 7) but in this case, the selectivity was only
6:1. anti-Markovnikov-selective additions to 4-methoxy-
phenylacetylene could be realized with 4-methylaniline,

Figure 1 X-ray crystal structure of rac-311

Scheme 2 Synthesis of titanium complex rac-4
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cyclopentylamine and tert-butylamine (entries 4–6). Al-
though the best regioselectivity was achieved with tert-
butylamine the yield was only 28%. Increased yields
(51% and 64%) but decreased regioselectivities (2.4:1 and
7:1) were observed with 4-methylaniline and cyclopentyl-
amine. Additionally, it must be mentioned that reactions
of 3-hexyne with various amines did not result in the for-
mation of any hydroamination products. However, the re-
sults summarized in Table 1 clearly indicate that an in situ
generated Ti-complex with an (OSSO)-type ligand that
contains a trans-1,2-cyclohexanediyl backbone can
principally be used as a catalyst for the intermolecular
hydroamination of alkynes.

Finally, we performed two initial hydroamination experi-
ments with aminoalkene 5 using an in situ generated Ti-
or Zr-catalyst (Scheme 3). In both cases, formation of the
catalyst was carried out by stirring 5 mol% of the ligand
rac-3 and an equimolar amount of either Ti(NMe2)4 or
Zr(NMe2)4 in toluene for 30 minutes at room temperature.
Subsequent addition of aminoalkene 5 and heating to
105 °C for 24 hours resulted in the formation of the
desired cyclization product 6 in 76% and 82% yields,
respectively.

In summary, we have shown for the first time that a di-
thiaalkanediyl-bridged bisphenolato (OSSO)-type ligand
that contains a trans-1,2-cyclohexanediyl backbone can
be used for various group IV metal-catalyzed hydroami-
nation reactions. The helical arrangement of the chiral
ligand around the metal center suggests that correspond-
ing optically pure ligands6 can be used for enantioselec-
tive hydroamination reactions. Further studies in this area
are currently underway in our laboratories.
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