Cyclizations

Synthesis of Stereohomogeneous Cyclopropanecarbaldehydes and Cyclopropyl Ketones by Cycloalkylation of 4-Hydroxy-1alkenyl Carbamates**

Rainer Kalkofen, Sven Brandau, Birgit Wibbeling, and Dieter Hoppe*

Only a few methods are known for the synthesis of optically active cyclopropanecarbaldehydes and cyclopropyl ketones by ring-forming reactions.^[1–3] Taylor et al.^[4] very recently described the synthesis of several racemic, disubstituted cyclopropanecarbaldehydes by intramolecular cycloalkylation of (*Z*)-4-hydroxy-2-alkenyl *N*,*N*-diisopropylcarbamates **1** by activation of the hydroxy group with trifluoromethanesulfonic anhydride (Tf₂O; Scheme 1).

Scheme 1. Cyclopropane formation according to Taylor et al. $Cb = CONiPr_2$, Tf = triflate.^[4]

We found in our initial studies that this method can be extended to the synthesis of optically active, trisubstituted

cyclopropanecarbaldehydes and cyclopropyl ketones 8 starting from compounds 4, which in turn are readily obtained by enantioselective homoaldol reaction in the presence of (-)-sparteine^[5-7] (Scheme 2). According to Taylor et al., the (Z)-anti homoallylic alcohols 4 are converted into the corresponding triflates 5, which undergo immediate intramolecular attack by the weakly nucleophilic enol carbamate moiety.^[8] The substitution step (Scheme 3, Method A) proceeds with complete stereoinversion, leading to a cis arrangement of \mathbf{R}^2 and \mathbf{R}^3 and placing the acyl residue into the trans position to both of them via transition state 5.

 [*] Dipl.-Chem. R. Kalkofen, Dipl.-Chem. S. Brandau, B. Wibbeling, Prof. Dr. D. Hoppe Organisch-chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 40, 48149 Münster (Germany) Fax: (+49) 251-83-36531 E-mail: dhoppe@uni-muenster.de

- [**] This work was supported by the Deutsche Forschungsgemeinschaft (SFB 424) and the Fonds der Chemischen Industrie. S. Brandau thanks V. Trepohl for her skillful experimental assistance.
 - Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Scheme 2. Enantioselective synthesis of 4-hydroxy-1-alkenyl carbamates **4.** 4g-p: R^1 = Ph, 4a-f: R^1 = H, R^2 , and R^3 in Table 1.

During the course of our work we made a surprising observation: simply treating the homoaldol adducts **4** with sodium hydride furnished the cyclopropanes **8** with excellent diastereoselectivity and complete chirality transfer (Method B, Scheme 3, Table 1). When alcohols **4** and sodium hydride were heated in THF or DMF for several hours, the cyclopropanes **8a–p** formed smoothly with the same efficiency as that observed for Method A. Apparently the *N*,*N*-diisopropylcarbamoyl group in alkoxide **6** migrates to the O4 atom,^[9] forming the (*Z*)-enolate **7**, which undergoes cycloalkylation by nucleophilic substitution of the carbamate group with strict stereoinversion. The enolate moiety occupies an *anti* position in transition state **7** in order to avoid steric repulsion with R^2 and R^3 . Method B also works well

Scheme 3. Synthesis of highly enantioenriched disubstituted cyclopropanes.

even when a formyl group is generated (Table 1, entries 3 and 5).

The relative configuration of **8h** was confirmed by a single-crystal X-ray analysis.^[10] The absolute configuration of the precursor **4** is retained at C3, and the *ee* values of the products **8** correspond to those of the starting compounds **4** (Table 1). The combination of the cycloalkylation with the (-)-sparteine-mediated homoaldol reaction results in a two-step stereoselective route to cyclopropyl ketones.^[11] The *N*,*N*-diisopropylcarbamoyl group is required for the activation in the deprotonation step of the homoaldol reaction. Moreover,

Angew. Chem. Int. Ed. 2004, 43, 6667-6669

DOI: 10.1002/anie.200461136

Communications

Table 1:										
Entry	Route	Solv.	Substr. (% ee)	Prod. (% ee)	R ¹	R ²	R ³	Yield [%]	d.r.	$[\alpha]_{\rm D}^{\rm 20[a]}$
1	А	CH_2Cl_2	4a (30) ^[b]	8a (30) ^[c]	Н	(CH ₂) ₂ CH ₃	(CH ₂) ₂ Ph	70	98:2	+2
2	А	CH_2Cl_2	4b (71) ^[b]	8b (71) ^[c]	н	CH ₃	Ph	>99	95:5	+110
3	В	DMF	4b (71) ^[b]	8b (71) ^[b]	н	CH_3	Ph	71	95:5	+110
4	А	CH_2Cl_2	4c (87) ^[b]	8c (87) ^[c]	н	CH ₃	(CH ₂) ₂ Ph	48	95:5	+3
5	В	DMF	4c (87) ^[b]	8c (87) ^[b]	н	CH₃	(CH ₂) ₂ Ph	58	98:2	+3
6	Α	CH_2CI_2	4d (82) ^[c]	8d (82) ^[c]	н	CH_3	CH(CH ₃) ₂	>99	98:2	-4
7	Α	CH_2Cl_2	4e (83) ^[c]	8e (83) ^[c]	н	CH₃	cyclopropyl	39	88:12	_[d]
8	Α	CH_2Cl_2	4 f (86) ^[c]	8 f (>80) ^[c]	н	CH₃	$(CH_2)_4CH_3$	61	98:2	+1
9	A	CH_2CI_2	4g (96) ^[b]	8g (96) ^[b]	Ph	CH₃	Ph	80	98:2	+153
10	В	THF	4 g (92) ^[b]	8g (91) ^[b]	Ph	CH3	Ph	98	98:2	+142
11	A	CH_2Cl_2	4h (93) ^[b]	8h (93) ^[b]	Ph	CH₃	C(CH ₃) ₃	83	98:2	-17
12	В	DMF	4h (95) ^[b]	8h (94) ^[b]	Ph	CH_3	C(CH ₃) ₃	64	98:2	-17
13	А	CH_2Cl_2	4i (91) ^[b]	8i (91) ^[b]	Ph	CH3	p-BrC ₆ H ₄	41	92:8	+148
14	В	THF	4i (93) ^[b]	8i (93) ^[b]	Ph	CH3	p-BrC ₆ H ₄	91	98:2	+151
15	В	DMF	4 f (86) ^[b]	8 f (>80) ^[b]	н	CH₃	$(CH_2)_4CH_3$	62	98:2	+1
16	В	THF	4j (94) ^[b]	8j (92) ^[b]	Ph	CH3	naphthyl	84	98:2	+206
17	В	THF	4 k (92) ^[e]	8k (92) ^[e]	Ph	CH3	furyl	98	98:2	+177
18	В	THF	41 (91) ^[b]	8 I ^[f]	Ph	CH₃	CH3	84	98:2	-
19	В	THF	4 m (95) ^[b]	8 m ^[g]	Ph	CH3	CH ₂ CH ₃	96	98:2	-85
20	В	DMF	4n (96) ^[b]	8 n (96) ^[b]	Ph	CH3	$CH(CH_3)_2$	62	98:2	-19
21	В	THF	4o (95) ^[b]	8o (95) ^[b]	Ph	CH3	cyclopropyl	74	98:2	-50
22	В	THF	4p (95) ^[b]	8p (95) ^[c]	Ph	CH ₃	cyclohexyl	78	98:2	-9

[a] c = 0.15-0.92, CHCl₃. [b] Determined by HPLC, column: Chira Grom-2. [c] Determined by chiral GC, column: β -Dex 120. [d] Due to the volatility of the compound it was not possible to determine the specific optical rotation. [e] Determined by HPLC, column: Chira Grom-1, solvent: *n*-hexane/ isopropyl alcohol. [f] Achiral. [g] Not determined.

through the carbamoyl migration both the nucleophilic and the electrophilic properties of the stable precursors **4** are activated. These features fulfill in an exemplarily manner one demand of modern organic synthesis, namely minimizing the number of steps in a synthetic sequence.^[12]

Experimental Section

Synthesis of cyclopropanecarbaldehydes and cyclopropyl ketones:

Method A: A flame-dried flask was charged with **4b** (199 mg, 0.3 mmol, 1 equiv) in 10 mL CH₂Cl₂ under an argon atmosphere. 2,6-Lutidine (140 mg, 1.3 mmol, 4 equiv) was added by syringe, the solution was cooled to -78 °C, and then freshly distilled triflic anhydride (314 mg, 1.1 mmol, 3 equiv) was injected. The reaction mixture was stirred for 1 h, quenched with 1 mL water, and allowed to warm to room temperature. The mixture was diluted with 25 mL CH₂Cl₂, the aqueous phase was separated, and the organic layer was washed with saturated NaHCO₃ solution (1 × 10 mL). The organic phase was dried over MgSO₄ and the solvent evaporated in vacuum. The crude product was purified by flash chromatography on silica gel (diethyl ether/*n*-pentane 1:10).

Method B: To the *anti*-homoaldol adduct **4i** (169 mg, 0.37 mmol, 1 equiv) was added sodium hydride (60% in mineral oil; 20 mg, 0.5 mmol, 1.35 equiv). The flask was placed under argon, THF (2 mL) was injected, and the resulting solution was heated for 14 h at 60°C. When DMF was used as the solvent the solution was stirred 1 h at room temperature and then heated for 2–12 h at 60°C (tlc control). For workup 10 mL saturated sodium chloride solution was added. The aqueous phase was separated and extracted with diethyl ether (3 × 25 mL). The combined organic extracts were dried over MgSO₄ and the solvents evaporated in vacuum. The crude product **8i** was purified by flash chromatography on silica gel (diethyl ether/*n*-pentane 1:5). For yields and enantiomeric excesses see Table 1.

Received: June 30, 2004

6668

Keywords: asymmetric synthesis · cyclization · cyclopropanes · synthetic methods

- Reviews: a) R. E. Taylor, F. Engelhardt, F. C. Schmitt, M. J. Schmitt, *Tetrahedron* 2003, 59, 5623; b) H. Lebel, J.-F. Marcoux, C. Molinario, A. B. Charette, *Chem. Rev.* 2003, 103, 977; c) W. Kirmse, *Angew. Chem.* 2003, 115, 1120; *Angew. Chem. Int. Ed.* 2003, 42, 1088.
- [2] a) H. Abdallah, R. Greé, R. Carrié, *Tetrahedron Lett.* 1980, 23, 503; b) H. M. Walborsky, L. E. Allen *Tetrahedron Lett.* 1969, 11, 823; c) V. A. Aggarwal, E. Alonso, G. Fang, M. Ferra, G. Hynd, M. Porcelloni, *Angew. Chem.* 2001, 113, 1482; *Angew. Chem. Int. Ed.* 2001, 40, 1433; d) K. Yamaguchi, Y. Katzuta, H. Abe, A. Matsuda, S. Shuto, *J. Org. Chem.* 2003, 68, 9255.
- [3] For other examples of asymmetric syntheses of cyclopropane derivatives mediated by (-)-sparteine see: a) M. Paetow, F. Hintze, D. Hoppe, *Angew. Chem.* 1993, 105, 430; *Angew. Chem. Int. Ed. Engl.* 1993, 32, 394; b) M. Paetow, M. Kotthaus, M. Grehl, R. Fröhlich, D. Hoppe, *Synlett* 1994, 1034; c) S. Wiedemann, A. de Meijere, I. Marek, *Synlett* 2002, 679.
- [4] a) R. E. Taylor, C. A. Risatti, F. Engelhardt, F. Conrad, M. J. Schmitt, Org. Lett. 2003, 5, 1377; b) Prof. Taylor informed us after submission of our manuscript that he could successfully apply his cyclization conditions also to enantioenriched, higher substituted homoaldol products.
- [5] Reviews: a) D. Hoppe, T. Hense, Angew. Chem. 1997, 109, 2376; Angew. Chem. Int. Ed. Engl. 1997, 36, 2282; b) "Organolithiums in Enantioselective Synthesis": D. Hoppe, F. Marr, M. Brüggemann in Topics in Organometallic Chemistry, Vol. 5 (Ed.: D. M. Hodgson), Springer, Berlin, 2003, p. 61; c) "Organolithiums in Enantioselective Synthesis": P. Beak, T. A. Johnson, D. D. Kim, S. H. Lim in Topics in Organometallic Chemistry, Vol. 5 (Ed.: D. M. Hodgson), Springer, Berlin, 2003, p. 134.
- [6] a) D. Hoppe, O. Zschage, Angew. Chem. 1989, 101, 67; Angew. Chem. Int. Ed. Engl. 1989, 28, 69; b) M. Özlügedik, J. Kristensen,

© 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.angewandte.org

B. Wibbeling, R. Fröhlich, D. Hoppe, Eur. J. Org. Chem. 2002, 414.

- [7] a) M. Seppi, R. Kalkofen, J. Reupohl, R. Fröhlich, D. Hoppe, Angew. Chem. 2004, 116, 1447; Angew. Chem. Int. Ed. 2004, 43, 1423; b) J. Reuber, R. Fröhlich, D. Hoppe, Org. Lett. 2004, 6, 783.
- [8] For the direct reaction of vinyl carbamates as enolate equivalents: T. Krämer, C. F. Erdbrügger, E. Eggert, *Tetrahedron Lett.* 1989, 30, 1233.
- [9] For the generation of intermediate allenolates by carbamoyl migration: a) C. Schultz-Fademrecht, M. Tius, S. Grimme, B. Wibbeling, D. Hoppe, *Angew. Chem.* 2002, *114*, 1610; *Angew. Chem. Int. Ed.* 2002, *41*, 1532; b) M. Zimmermann, B. Wibbeling, D. Hoppe, *Synthesis* 2004, 765.
- [10] X-ray crystal structure analysis of **8h**: $C_{15}H_{20}O$, $M_w = 216.31$, colorless crystal $0.50 \times 0.15 \times 0.10$ mm, a = 5.975(1), b = 10.359(1), c = 11.161(1) Å, $\beta = 103.30(1)^{\circ}$, V = 672.3(1) Å³, $\rho_{calcd} = 1.069$ g cm⁻³, $\mu = 4.96$ cm⁻¹, empirical absorption correction ($0.790 \le T \le 0.952$), Z = 2, monoclinic, space group $P2_1$ (No. 4), $\lambda = 1.54178$ Å, T = 223 K, ω and ϕ scans, 3002 reflections collected ($\pm h, \pm k, \pm l$), [($\sin \theta$)/ λ] = 0.59 Å⁻¹, 1640 independent ($R_{int} = 0.036$) and 1590 observed reflections [$I \ge 2\sigma(I)$], 149 refined parameters, R = 0.039, $wR^2 = 0.111$, Flack parameter
- 0.1(4), max. residual electron density 0.09 (-0.12) $e^{\text{Å}^{-3}}$, hydrogens calculated and refined as riding atoms. Data set was collected with a Nonius KappaCCD diffractometer. Programs used: data collection COLLECT (Nonius B. V., 1998), data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326), absorption correction SORTAV (R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33-37; R. H. Blessing, J. Appl. Crystallogr. 1997, 30, 421-426), structure solution SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467-473), structure refinement SHELXL-97 (G.M. Sheldrick, Universität Göttingen, 1997), graphics SCHAKAL (E. Keller, 1997). CCDC-240544 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [11] For related work, see the following Communication in this issue:
 C. A. Risatti, R. E. Taylor, *Angew. Chem.* 2004, *116*, 6839;
 Angew. Chem. Int. Ed. 2004, *43*, 6671.
- [12] B. M. Trost, Angew. Chem. 1995, 107, 285; Angew. Chem. Int. Ed. Engl. 1995, 34, 259.