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Abstract—An efficient stereocontrolled synthesis of enantio-enriched N-Boc-N-allyl-�-amino alkylstannanes and N,N-diallylic
�-amino alkylstannanes starting from enantio-enriched �-hydroxy alkylstannane has been developed. The aza-Wittig rearrange-
ment of enantio-defined N,N-diallyl-�-amino alkyllithium, generated by tin–lithium exchange, is shown to proceed predominantly
with inversion of configuration at the Li-bearing carbon terminus. © 2003 Elsevier Science Ltd. All rights reserved.

The Wittig rearrangement of allyl ether systems
(Scheme 1, Y=O), particularly its asymmetric version
using enantio-enriched substrates, has enjoyed wide-
spread application in stereocontrolled synthesis.1 In
contrast, despite its potential utility, the aza-Wittig
rearrangement (Scheme 1, Y=NR��) is far less exploited
in asymmetric synthesis because of the considerable
difficulty encountered in the generation of enantio-
enriched �-amino carbanions.2 In their pioneering
work, Gawley and co-workers have reported the aza-
Wittig rearrangement of (R)-N-allyl-2-lithiopyrrolidine,
generated by a tin-lithium transmetalative protocol,3

which affords the aza-Wittig product in moderate enan-
tiomeric purity.4 However, no aza-Wittig rearrange-
ment of acyclic �-amino alkylstannanes, initiated by
tin–lithium exchange, has been reported yet except for
the examples of primary �-amino methylstannane sys-
tems.5 We now report a new efficient synthetic
approach to acyclic enantio-enriched N,N-disubstituted
�-amino alkylstannanes A and our preliminary results
of the aza-Wittig rearrangement thereof, which involves
an enantio-defined �-amino alkyllithium B generated by
tin–lithium exchange (Scheme 2).

As a substrate for this rearrangement, initially we chose
N-allylic �-amino alkylstannanes which contained a
Boc group on nitrogen to stabilize the configuration of
the resulting �-amino carbanion due to its coordination
effect.6 While the preparation of this class of com-

pounds, i.e. �-amino alkylstannanes, had so far been
tedious,7 at first we examined improvement of its syn-
thetic route from easily available �-hydroxy alkylstan-
nane (S)-18 via mesylation followed by the SN2 reaction
with amino reagents (Scheme 3).9,10

As the result, the required N-allyl aminostannane (R)-2
(>95% ee) was obtained in 65% overall yield from
�-hydroxy phenylpropylstannane (S)-1 (>95% ee) with-
out loss of stereochemical integrity.11,12 The key feature
of this method is the high degree of inversion of
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Scheme 3.

configuration in the SN2 process. Similar reactions
using N-Boc-benzylamine and phthalimide provide the
corresponding stannane (R)-3 and (R)-4 as an enan-
tiopure form, respectively.11,13 Next, we examined the
transmetalative rearrangement of the thus-obtained
(R)-2. However, disappointingly, reaction of (R)-2 with
n-BuLi provided neither [1,2]- nor [2,3]-Wittig rear-
rangement product, and, instead, deuterated product 5
was obtained by quenching with D2O at that tempera-
ture (Scheme 4).14

This result suggests that the Boc-protected �-amino
alkyllithium thus generated is still not reactive enough
to undergo the aza-Wittig rearrangement, probably due
to the remarkable dipole stabilization of the �-amino
carbanion. These observations prompted us to redesign
the rearrangement system for a non-Boc substituted

one. The requisite stannane (R)-7 was prepared from
phthalimide derived (R)-4 via reaction with hydrazine
hydrate followed by bis-allylation.15 Reaction of N,N-
diallyl aminostannane (R)-7 with n-BuLi was found to
afford the desired aza-Wittig rearrangement product 8
in 50% yield (Scheme 5).16,17 The absolute stereochem-
istry and enantiopurity of 8 was determined to be 48%
ee (R) by the HPLC analysis of its (S)-methylbenzyl
urea derivative 9.18

Since tin–lithium exchange proceeds with retention of
configuration,19 it appears that the rearrangement pro-
ceeds predominantly with inversion at the Li-bearing
carbon terminus. While a complete explanation of the
loss of enantiospecificity is not possible at present, it
might be taken into account that the �-amino alkyl-
lithium intermediate might be configurationally labile
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Scheme 6.

and/or aza-Wittig rearrangements would proceed with
low stereospecificity. Furthermore, a similar reaction of
(R)-10 (E/Z mixture) was found to afford a mixture of
[1,2]-rearrangement product 11 and [2,3]-rearrangement
product 12, which means that this class of rearrange-
ment proceeds with low periselectivity (Scheme 6).20

In summary, we have developed a convenient method
for the preparation of enantio-enriched N-Boc-N-allyl-
�-amino alkylstannanes and N,N-diallylic �-amino
alkylstannanes from enantio-enriched �-hydroxy alkyl-
stannane. Furthermore, we have demonstrated that the
first example of aza-Wittig rearrangement of acyclic
enantio-enriched N,N-diallylic �-amino alkylstannanes
via tin-lithium exchange proceeds predominantly with
inversion of configuration at the lithium-bearing carbon
terminus. Further work is in progress to elucidate the
mechanism of this rearrangement and to enhance the
synthetic potential thereof.
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