Original Russian Text Copyright @ 2001 by Emelina, Petrov, Firsov.

Aminoazoles in Heterocycles Synthesis: II.* Trifluoromethyl-containing Diketones in the Synthesis of Pyrazolo[1,5-a]pyrimidines

E.E. Emelina, A.A. Petrov, and A.V. Firsov

St. Petersburg State University, St. Peresburg, 198504 Russia

Received July 20, 2000

Abstract—A regioselective synthesis was carried out of 7-trifluoromethylpyrazolo[1,5-a]pyrimidines by reaction of 3(5)aminopyrazoles with 1,3-diketones containing CF₃ group. The characteristic chemical shifts were established for C⁵ and C⁷ atoms of the pyrimidine ring and of substituents thereof in the ¹H, ¹³C, and ¹⁹F NMR spectra of pyrazolo[1,5-a]pyrimidines.

3(5)-Aminopyrazoles are widely applied to preparation of various polycyclic nitrogen-containing heterocycles [2–5]. However the rules governing the reactions between 3(5)-aminopyrazoles and nonsymmetrical dielectrophiles yielding regioisomers of pyrazolo[1,5-a]pyrimidines [3–9] are poorly studied, and definite proofs of the regiostructure of compounds obtained are seldom given. Note that the unambiguous proof of the regiostructure of the heterocycles formed is not an easy task. Just in a few works was independently obtained every regioisomer of pyrazolo[1,5-a]pyrimidines [1, 6, 10], and in [1,

10] were reported unambiguous proofs of their structure based on ¹H and ¹³C NMR spectra.

In the present study we investigated reactions of substituted 3(5)-aminopyrazoles **Ia-h** with trifluoromethyl-containing 1,3-diketones **IIa-c**. The structure of pyrazolo[1,5-a]pyrimidines obtained was determined from the ¹H, ¹⁹F, and ¹³C NMR spectra.

The reaction of 3(5)aminopyrazoles **Ib-h** with 1,1,1-trifluoropentane-2,4-dione (**IIc**) in ethanol gave rise to two isomeric pyrazolopyrimidines, **IIIb-h**, and **IVb-h** (Tables 1, 2).

Scheme.

I, III-VI, $R^1 = XC_6H_4$, $R^2 = H$: X = 4-t-Bu (a), 4-Me (b), H (c), 4-Br (d), 4-Cl (e), 3-Br (f); $R^2 = Ph$, $R^1 = H$ (g), Me (h); $R^3 = Me$ (IIIb-h, IVb-h), Ph (Va-h), t-Bu (VIc, d, f). II, $R^3 = Me$ (a), Ph (b), t-Bu (c).

Compounds	IIIb/IVb	IIIc/IVc	IIId/IVd	IIIe/IVe	IIIf/IVf	IIIg/IVg	IIIh/IVh
Isomers ratio, %	75/25	70/30	79/21	85/15	69/31	97/3	92/8

^{*} For communication I see [1].

Boiling in acetic acid and fusion of the reagents provides only pyrazolopyrimidines **IIIb-h**.

The determination of the regiostructure of pyrazol-pyrimidines **IIIb-h** and **IVb-h** is based on comparison of the chemical shifts of protons and carbons belonging to pyrimidine ring and methyl groups in the 1H and ^{13}C NMR spectra with the corresponding characteristic chemical shifts observed previously in the NMR spectra of model 2-phenylpyrazolo[1,5-a]-pyrimidines: 5-methyl- (**VII**) [10], 7-methyl- (**VIII**) [10], 7-methyl-6-ethoxycarbonyl- (**IX**) [1], 5,7-dimethyl- (**X**) [1, 10]: C^5CH_3 ($\delta \sim 2.6-2.7$ ppm, $\delta_C \sim 24$ and ~ 158 ppm), C^7CH_3 ($\delta \sim 2.8-2.9$ ppm, $\delta_C \sim 17$ and ~ 147 ppm).

The comparison of the chemical shifts in the ¹H and ¹³C NMR spectra of the model compounds **VII-X** (Table 3) and of pyrazolopyrimidines **IIIb-h** and **IVb-h** (Tables 1, 2) shows that the proton signals in the 2.64–2.70 ppm region and carbon signals at ~25 and ~158 ppm correspond to C⁵CH₃ group of pyrazolopyrimidines **IIIb-h**, and the resonances at 2.89–2.91 and ~17.2, ~147.5 ppm belong to C⁷CH₃ group of pyrazolopyrimidines **IVb-h**.

The above analysis of the characteristics of ¹H and ¹³C NMR spectra from the isomeric pyrazolopyrimidines **IIIb-h**, **IVb-h** showed that the reaction of aminopyrazoles **Ib-h** with 1,1,1-trifluoropentane-2,4-dione affords in ethanol predominantly and in acetic acid and at fusion solely **IIIb-h** isomers with trifluoromethyl group located in 7 position.

The assignment of carbon signal from CF_3 group and from C^5 and C^7 atoms at the CF_3 group of pyrazolopyrimidines **IIIb-h**, **IVc**, (Table 1, 2) is easy since they appear as characteristic quartets with the coupling constants $J(C-F) \sim 280$ Hz and $J(C-CF_3) \sim 37$ Hz respectively. The comparison of the ¹³C NMR spectra of compounds **IIIb-h**, **IVc** with that of a model compound 5,7-dimethyl-2-phenyl-pyrazolo[1,5-a]pyrimidine (**XI**) revealed that intro-

duction of the trifluoromethyl group in positions 5 and 7 respectively changed $\delta C^{5(7)}CF_3$ by 10–12 ppm, whereas the effect on the chemical shift of $C^{7(5)}CF_3$ from the pyrimidine ring was small. Besides the chemical shifts of the carbon atoms of the isomeric pyrazolopyrimidines **IIIb-h**, **IVc** are well consistent with those of the model symmetrical 5,7-bis(trifluoromethyl)-2-phenylpyrazolo[1,5-a]pyrimidine (**XI**), δ_C , ppm: 145.5 q (C^5CF_3 , C_F 37.0 Hz), 135.1 q (C^7CF_3 , C_F 38.5 Hz) (Table 3).

Thus the observed signals of C^5 and C^7 atoms from pyrimidine ring at CF_3 group in pyrazolopyrimidines **IIIb-h, IVc, XI** in the ¹³C NMR spectra appear as characteristic quartets with considerably different chemical shifts: \underline{C}^5CF_3 - δ_C ~147 ppm, \underline{C}^7CF_3 - δ_C ~134 ppm.

The cyclocondensation of substituted aminopyrazoles **Ia-h** with 4-phenyl-1,1,1-trifluorobutane-2,4-dione by boiling in acetic acid ot by fusion also gives rise to a single isomer of pyrazolopyrimidines. The regiostructure of compounds **Va-h** obtained was proved by 13 C NMR spectra with the use of the previously assigned characteristic signals of the *ipso*-atoms in the phenyl ring (C⁵C ipso), $\delta_{\rm C}$ ~136 ppm, C⁷C ipso), $\delta_{\rm C}$ ~131 ppm) [1, 10], and also by comparison of the chemical shifts of C⁵ and C⁷ atoms with those of the characteristic signals C⁷CF₃, C⁵CF₃ (Table 2). The presence of the characteristic quartet CCF₃ at δ ~134 ppm and of signal C ipso of the phenyl group at $\delta_{\rm C}$ 136 ppm permits an unambiguous assignment of the compounds obtained to the 7-trifluoromethyl-5-phenyl-containing isomers **Va-h**.

No.

6

Table 1. Yields, melting points, ¹H NMR spectra, and elemental analyses of pyrazolopyrimidines III – VI, XI

Compd.	Yield,	mp, °C	¹ H NMR, δ, ppm (CDCl ₃)	Found	l, %	Б. 1	Calculated, %		
no. % a			С	Н	- Formula -	С	Н		
IIIb	82	167.5	2.42 s (3H, CH ₃ C ⁶ H4), 2.67 s (3H, C5CH ₃), 6.97 s (C ³ H), 6.98 s (C ⁶ H), 7.27–7.94 m (4H, C ₆ H ₄)	61.90	4.21	$C_{15}H_{12}F_3N_3$	62.02	4.15	
IIIc	84	179.5-180	2.64 s (C ⁵ CH ₃), $6.97 s$ (2H, C ³ H, C ⁶ H), $7.48-8.05 m$ (5H, Ph)	60.59	3.77	$C_{14}H_{10}F_3N_3$	60.65	3.63	
IIId	83	188-189	2.69 s (3H, C^5CH_3), 6.95 s (1H, C^3H), 7.01 s (1H, C^6H), 7.57–7.90 m (4H, C_6H_4)	47.00	2.60	$C_{14}H_9BrF_3N_3$	47.21	2.55	
IIIe	85	184.5–185	2.68 s (3H, C^5CH_3), 6.94 s (1H, C^3H), 7.01 s (1H, C^6H), 7.42–7.96 m (4H, C^6H_4)	53.90	2.99	$C_{14}H_9C_1F_3N_3$	53.95	2.91	
IIIf	86	159-160	2.68 s (3H, C ⁵ CH ₃), 6.97 s (1H, C ³ H), 7.05 s (1H, C ⁶ H), 7.34–8.16 m (4H, C ⁶ H4)	47.25	2.60	$C_{14}H_9BrF_3N_3$	47.21	2.55	
$\mathbf{IIIg}^{\mathrm{b}}$	83	116	2.75 s (3H, C^5CH_3), 7.07 s (1H, C^6H), 7.25–8.10 m (5H, Ph), 8.51 s (1H, C^3H)	60.45	3.75	$C_{14}H_{10}F_3N_3$	60.65	3.63	
$\mathbf{IIIh}^{\mathrm{b}}$	84	126-127	2.67 s (6H, C ² CH ₃ , C ⁵ CH ₃), 7.00 s (1H, C ⁶ H), 7.36–7.71 m (5H, Ph)	62.10	4.20	$C_{15}H_{12}F_3N_3$	62.02	4.15	
IVc	с	С	2.89 s (3H, C7CH ₃), 6.95 s (1H, C ³ H), 7.14 s (1H, C ⁶ H), 7.50–7.98 m (5H, Ph)	60.53	3.71	$C_{14}H_{10}F_3N_3$	60.65	3.63	
Va	83	137.5	1.40 s (9H, 3CH ₃), 7.14 s (1H, C ³ H), 7.57 s (1H, C ⁶ H), 7.49–8.18 m (9H, Ar)	69.72	5.22	$C_{23}H_{20}F_3N_3$	69.86	5.10	
Vb	85	165-166	$2.44 \text{ s} (3\text{H}, \text{CH}_3), 7.13 \text{ s} (1\text{H}, \text{C}^3\text{H}), 7.57 \text{ s}$ $(1\text{H}, \text{C}^6\text{H}), 7.25 - 8.19 \text{ m} (9\text{H}, \text{Ar})$	67.78	4.15	$C_{20}H_{14}F_3N_3$	67.98	3.99	
Vc	87	150	7.10 s (1H, C^3 H), 7.62 s (1H, C^6 H), 7.56–8.18 m (10H, Ar)	67.50	3.71	$C_{19}H_{12}F_3N_3$	67.26	3.56	
Vd	88	176-178	7.10 s (1H, C^3 H), 7.62 s (1H, C^6 H), 7.54–8.14 m (9H, Ar)	54.42	2.77	$C_{19}H_{11}BrF_3N_3$	54.57	2.65	
Ve	87	154.5-156.5	7.11 s (1H, C^3 H), 7.61 s (1H, C^6 H), 7.37–8.20 m (9H, Ar)	60.95	3.10	$C_{19}H_{11}ClF_3N_3$	61.06	2.97	
Vf	87	169-170	7.10 s (1H, C^3 H), 7.62 s (1H, C^6 H), 7.32–8.20 m (9H, Ar)	54.39	2.85	$C_{19}H_{11}BrF_3N_3$	54.57	2.65	
$\mathbf{V}\mathbf{g}^{\mathrm{b}}$	85	201-202	7.62 s (1H, C^6 H), 8.55 s (1H, C^2 H), 7.30–8.29 m (10H, Ar)	67.28	3.62	$C_{19}H_{12}F_3N_3$	67.26	3.56	
\mathbf{Vh}^{b}	85	133-135	2.72 s (3H, C ₂ CH ₃), 7.60 s (1H, C ⁶ H), 7.30–8.29 m (10H, Ar)	67.83	4.15	C20Hi4F3N3	67.98	3.99	
VIc	78	94.5-96	1.45 (9H, t -Bu), 7.03 s (1H, C^3 H), 7.23 s (1H, C^6 H), 7.49–8.05 m (5H, Ph)	63.52	5.09	$C_{17}H_{16}F_3N_3$	63.94	5.05	
VId	79	93	1.46 (9H, t -Bu), 7.03 s (1H, C^3 H), 7.23 s (1H, C^6 H), 7.54–7.96 m (4H, Ar)	51.20	3.85	$C_{17}H_{15}BrF_3N_3$	51.26	3.80	
VIh	81	115.5–117.5	$1.45 \text{ s} (9\text{H}, t\text{-Bu}), 2.74 \text{ s} (3\text{H}, \text{C}^2\text{CH}_3), 7.21 \text{ s} (1\text{H}, \text{C}^6\text{H}), 7.30-7.89 \text{ m} (5\text{H}, \text{Ph})$		5.50	$C_{18}H_{13}F_3N_3$	64.86		
XI	75	128–129	7.36 s (1H, C^3 H), 7.45 s (1H, C^6 H),7.47–8.09 m (5H, Ph)	50.25	2.43	$C_{14}H_7F_6N_3$	50.77	2.11	

^a Yields of compounds **IIIb-h** (procedure b) and **Va-h** (procedure c) were not optimized.

^b Compounds **IIIg, IIIh, Vh, Vg** contain a phenyl group in position 4.

^c Compounds **IVb-h** were identified in mixtures with compounds **IIIb-h**. Chemical shifts in ^{1}H NMR spectra of compounds **Vb, IVd-h**, δ , ppm, (**IVb**): 2.44 s (3H, CH₃C₆H₄), 2.94 s (3H, C7CH₃), 7.00 s (1H, C³H), 7.15 s (1H, C⁶H), 7.30–8.10 m (4H, Ar); (IVd): 2.92 s (3H, C7CH₃), 7.02 s (1H, C³H), 7.13 s (1H, C⁶H), 7.50–7.90 m (4H, Ar); (**IVf**): 2.94 s (3H, C⁷CH₃), 7.03 s (1H, C³H), 7.14 s (1H, C⁶H), 7.40–8.00 m (4H, Ar); (**IVe**): 2.95 s (3H, C⁷CH₃), 7.04 s (1H, C³H), 7.16 s (1H, C⁶H), 7.30–8.26 m (4H, Ar); (**IVa-c**): 2.90 s (3H, C⁷CH₃), 7.07 s (1H, C³H), 7.22–8.14 m (5H, Ar), 8.60 s (1H, CH); (**IVh**): 2.74 s (3H, C²CH₃), 2.90 s (3H, C7CH₃), 7.00 s (1H, C³H), 7.30–7.80 m (5H, Ar).

Table 2. ¹³C NMR Spectra (δC, ppm) pirazolo[1,5-a]pirimidines (**III-VI**) in CDCl₃

Compd.no.	\mathbb{R}^{I}	\mathbb{R}^3	\mathbb{R}^4	\mathbf{C}^2	\mathbf{C}^3	C^{3a}	\mathbf{C}^{5}	c ^{6a}	c ⁷ 6 ^b	Ar	5-R	γ-R ^c
IIIb	4-CH ₃ C ₆ H ₄	CH ₃	CF ₃	157.73	93.85	150.91	158.28	106.91	133.87	21.76, 127.08, 129.87, 139.77	25.28	119.92
IIIc	Ph	CH ₃	CF ₃	156.9	93.4	150.1	157.7	106.4	133.08	126.4, 128.4, 129.0, 131.9	24.6	119.15
$\mathbf{IIIc}^{\mathrm{d}}$	Ph	CH ₃	CF_3	155.9	93.6	150.1	159.4	108.4	131.75	126.4, 129.0, 129.5, 131.9	24.53	119.50
IIId	4-BrC ₆ H ₄	CH ₃	CF ₃	156.39	94.09	150.94	158.69	107.36	133.88	123.92, 128.64, 131.60, 132.32	25.34	119.82
IIIe	4-ClC ₆ H ₄	CH ₃	CF ₃	156.36	94.09	150.94	158.66	107.32	133.88	128.37, 129.36, 131.16, 135.63	25.32	119.82
IIIf	3-BrCgH4	CH ₃	CF ₃	155.99	94.37	150.89	158.76	107.52	133.94	123.34, 125.76, 130.02, 130.69, 132.59, 134.75	25.35	119.81
IIIg	H ^e	CH ₃	CF ₃	143.28	110.69	145.03	157.96	106.93	133.37	126.23, 126.43, 128.44, 130.86	24.64	119.27
IIIh	Me ^e	CH ₃	CF ₃	154.29	110.35	147.12	158.37	106.87	133.47	127.18, 128.95, 129.52, 131.98	25.43, 14.71	119.97
$\mathbf{IVc}^{\mathrm{e}}$	Ph	CF ₃	CH ₃	157.00	95.01	148.00	146.04	102.69	147.54	126.36, 128.40, 129.06, 131.94	120.48 q [<i>J</i> (5-CF ₃) 277.8 Hz]	17.21
Va	4-(CH ₃)3C C ₆ H ₄	C ₆ H ₅	CF ₃	158.25	95.09	151.21	155.50	103.63	134.45	126.18, 127.01, 129.87, 153.07	C ^{ipso} 127.59, 129.52, 131.34, 136.61	120.07
Vb	4-CH ₃ C ₆ H ₄	C ₆ H ₅	CF ₃	158.15	95.00	151.20	155.50	103.63	134.85	21.81, 127.11, 127.60 129.92, 139.87	C ^{ipso} 127.60, 129.50, 131.33, 136.80	120.10
Vc	Ph	C ₆ H ₅	CF ₃	156.16	94.46	150.48	155.09	103.32	133.71	123.28, 127.91, 130.77, 1131.62	C ^{ipso} 126.86, 128.81, 131.62, 135.82	119.21
Vd	4-BrC ₆ H ₄	C ₆ H ₅	CF ₃	156.91	95.20	151.23	155.83	104.10	134.50	28.65, 124.03, 132.04 132.37	C ^{ipso} 127/62, 129.55, 131.51, 136.58	118.97

Table 2. (Contd.)

Compd.no.	\mathbb{R}^{I}	\mathbb{R}^3	\mathbb{R}^4	C^2	\mathbf{C}^3	C^{3a}	\mathbf{C}^{5}	c ^{6a}	c ⁷ 6 ^b	Ar	5-R	γ-R ^c
Vd	4-ClC ₆ H ₄	C_6H_5	CF ₃	156.88	95.22	151.23	155.82	104.05	134.49	128.41, 129.43, 131.12	C ^{ipso} 127.62, 129.55,	118.87
Ve	3-BrC ₆ H ₄	C_6H_5	CF ₃	156.47	95.49	151.17	155.87	104.21	134.54	135.75 123.38, 125.76, 130.04 130.72, 132.66, 134.70	131.52, 136.60 C ^{ipso} 127.63, 129.55, 131.53, 136.54	118.91
Va ^c	H ^e	C_6H_5	CF ₃	144.41	112.57	145.97	155.44	104.02	134.85	130.72, 132.00, 134.70 127.01, 127.25, 129.84 131.66	C ^{ipso} 127.70, 129.55, 131.58, 136.46	118.97
Vh	Me ^e	C_6H_5	CF ₃	154.76	111.36	147.29	155.17	103.29	134.19	14.95 (C ₂ CH ₃), 127.13,	C^{ipso} 127.61, 129.47,	120.14
VIc	Ph	C(CH ₃) ₃	CF ₃	157.59	94.56	150.57	168.83	103.68	134.08	128.02, 128.95, 132.09 127.16, 129.19, 129.60, 132.86	131.34, 136.66 29.77, 38.95	120.10
VId	4-BrC ₆ H ₄	$C(CH_3)_3$	CF ₃	156.38	94.52	150.59	169.10	103.96	134.08	123.82, 128.64, 131.83,	29.76, 39.00	120.01
VIh	Me ^d	C(CH ₃) ₃	CF ₃	154.13	110.16	146.57	168.58	103.38	133.65	132.35 126.82, 128.82, 129.20, 132.34	29.77, 39.07	120.15

Quartet, coupling constants for compounds IIIa-h J_{CF} 2.8 Hz, for compounds Va-h J_{CF} 3.3 Hz.

Table 3. ¹³C NMR spectra (δC, ppm) of model pyrazolo[l,5-a]pyrimidines (VII-XI) in CDCl₃

Compd.no.	\mathbf{R}^{I}	R^3	R ⁴	C^2	\mathbf{C}^3	C^{3a}	\mathbf{C}^{5}	c^{6a}	c ⁷ 6 ^b	Ar	5-R	γ-R ^c
VII [10]	C_6H_5	Н	CH ₃	155.68	93.65	149.98	148.57	107.40	146.03	126.60, 128.75,		17.24
VIII [10]	C_6H_5	CH_3	Н	156.05	92.22	149.05	158.68	108.39	133.84	128.89, 133.05 126.13, 128.43,		24.45
IX	C_6H_5	Н	CH_3	151.68	95.21	150.12	158.06	110.75	150.27	128.59, 132.49 127.09, 129.20,		15.46
X	Н	CH_3	CH_3	155.55	92.51	149.66	158.30	108.29	145.17	129.73, 132.76 126.51, 128.70,	24.60	17.04
XI	C_6H_5	CF ₃	CF ₃	159.19	96.76	149.31	145.48 q (J_{cp} 37.0)	101.76 q.q $(J_{cp} < 2)$	135.09 q (J _{cp} 38.5)	128.73, 133.22 126.94, 128.91, 130.07, 131.12	120.10 q $(J_{cp} 275.4)$	118.93 q $(J_{cp} 275.4)$
					l		37.0) 	$(J_{\rm cp} < 2)$	(J _{cp} 38.3)	130.07, 131.12	$(J_{\rm cp} 273.4)$	$(J_{\rm cp} 275.4)$

^b Quartet, coupling constants J_{CF} 37–38.5 Hz.

^c Quartet, coupling constants J_{CF} 274.8 Hz. ^d Solvent DMSO- d_6 .

 $e R^2 = Ph.$

^{f 13}C NMR spectra of compounds **IVb, d-h** were not registered because of low content of the isomer in the reaction mixture.

Even a bulky *tert*-butyl group does not hamper the regioselectivity of the cyclocondensation of aminopyrazoles **Ic**, **d**, **f** with 5,5-dimethyl-1,1,1-trifluoromethylhexane-2,4-dione, and as a result of the reaction arise substituted 5-*tert*-butyl-7-trifluoromethylpyrazolo[1,5-a]pyrimidines **VIc**, **d**, **f**, δ (\underline{C}^7 CF₃) 133.4 ppm (Table 2).

The analysis of ¹⁹F NMR spectra of pyrazolopyrimidines **IIIc**, **IVc**, **Vc**, **VIc**, **XI** showed that the chemical shifts of fluorine atoms from the groups $C^5C\underline{F}_3$ and $C^7C\underline{F}_3$ are quite similar and are not characteristic ($\delta_FC^7CF_3$ –65.64 **IIIc**, –65.50 **Vc**, –65.54 ppm **VIc**, δ_F C^5CF_3 –65.02 **IVc**, δ_F $C^5C\underline{F}_3$ and $C^7C\underline{F}_3$ of model compound **XI** –65.03 and –65.82 ppm respectively).

The analysis of data from Tables 2, 3 revealed the characteristic chemical shifts of the regioisomeric pyrazolopyrimidines, especially those in the ¹³C NMR spectra, that permit unambiguous assignment of isomer structure.

δ, p	pm	δ, ppm				
$\underline{\mathbf{C}}^{5}$ CH ₃	~158.5	$\underline{\mathbf{C}}^7 \operatorname{CH}_3$	147.5			
$\underline{\mathbf{C}}^{5} \mathbf{CF}_{3}$	146.0	$\underline{\mathbf{C}}^{7} \mathbf{CF}_{3}$	~133.5			
C^5CH_3	~25.0	C^7CH_3	17.2			
$\underline{\mathbf{C}}^{5}\mathbf{C}^{ipso}(\mathrm{Ph})$	155.7	$\underline{\mathbf{C}}^7 \mathbf{C}^{ipso}(\mathrm{Ph})$	146.0			
$C^5\underline{C}^{ipso}(Ph)$	~136.5	$C^7\underline{C}^{ipso}(Ph)$	~131.0			

Note that since the nitrogen atom in the $-C^{3}(R)=N-$ group is more electronegative than the nitrogen from the = C'(R)-N < group of the pyrazolo[1,5-a]pyrimidines then the C^5 atom is less shielded than C^7 and therefore the former has a larger chemical shift in the ¹³C NMR spectra. Consequently the carbon atoms of the methyl and trifluoromethyl groups and also ipso-atoms of the phenyl groups attached to C³ atom (in compounds IIIb-h, Va-h) are located more downfield than the signals of the same groups linked to C^7 atom {compound IVc, model compounds (Table 3), and data from [1, 10]} (Table 1). It is not correct to extend this statement to the protons of the methyl group and fluorine atoms of the trifluoromethyl group of the pyrazolo[1,5-a]pyrimidines. This invalid assumption in [8, 9] led to erroneous conclusions on regiostructure of trifluoromethyl-containing pyrazolopyrimidines synthesized in that study.

Thus significant alterations in the structure of the trifluoromethyl-containing 1,3-diketone $\mathbf{IIa-c}$ [R³ = Me, Ph, t-Bu, R⁴ = CF₃] and aminopyrazole $\mathbf{Ia-h}$ (the presence of a bulky phenyl group in 3 or 4 position) did not affect the regioisomeric structure of

the reaction product. Aminopyrazoles **Ia-h** react with 1,3-diketones **IIa-c** in acetic acid or at fusion giving rise to a single isomer in virtually quantitative yield. This pyrazolo[1,5-a] pyrimidine contains the trifluoromethyl group in 7 position.

EXPERIMENTAL

¹H and ¹³C NMR spectra were registered on spectrometers Bruker AM-500, Bruker DPX300, Bruker WP-200 (500, 300, 200 and 125.74, 75.47, 50.3 MHz respectively), ¹⁹F NMR spectra on spectrometer Bruker AM-500 (470.6 MHz, hexafluorobutadiene reference). CDCl₃ and DMSO-*d*₆ were used as solvents.

3(5)-Aminopyrazoles **Ia-h** were prepared according to procedures from [11, 12], compound **IX** as in [13]. The preparation procedure for fluoro-containing 1,3-diketones **IIa-c** was taken from [14].

Pyrazolo[1,5-a]pyrimidines. (a) Equimolar amounts of compounds **I** and **II** dissolved in ethanol were mixed at 18–20°C, and then heated at reflux for 2–4 h. The ethanol was distilled off at reduced pressure, and the compounds obtained were recrystallized from ethanol.

- (b) Equimolar amounts of compounds I and II dissolved in acetic acid were mixed at 18–20°C, and then heated at reflux for 2–4 h. The acetic acid was distilled off at reduced pressure, and the compounds obtained were recrystallized from ethanol.
- (c) Equimolar amounts of compounds **I** and **II** were mixed and heated at 160°C till the end of the reaction (TLC monitoring). The products were recrystallized from ethanol.

REFERENCES

- 1. Petrov, A.A., Emelina, E.E., and Firsov, A.V., *Zh. Org. Khim.*, 2000, vol. 36, no. 7, pp. 1058–1063.
- 2. Filler, R., Organofluorine Chemicals and Their Industrial Applications, Banks, R.E., Ed., Horwood: Chichester, 1979, pp. 123-153.
- 3. Elnagdi, M.H., Elmoghayar, M.R.H., and Elgemeie, G.E.H., *Adv. Heterocycl. Chem.*, Katritzky, A.R., Ed., New York: Academic Press, 1987, vol. 41, pp. 319–376.
- 4. Elnagdi, M.H., Abdel-Galid, F.M., and Riad, B.Y., *Heterocycles*, 1983, vol. 20, no. 12, pp. 2437–2470.
- Novinson, T., Miller, J.P., Scholten, M.B., Robins, R.K., Simon, L.N., O'Brien, D.E., and Meyer, R.B., Jr., *J. Med. Chem.*, 1975, vol. 18, no. 5, pp. 460-464.

- 6. Maquestiau, A., Target, H., and vanden Eyden, J.-J., *Bull. Soc. Chim. Belg.*, 1992, vol. 101, no. 2, pp. 131–136.
- 7. Quiroga, J., Insuasty, B., Rincon, R., Larrahondo, M., Hanold, N., and Meier, H., *J. Heterocyclic Chem.*, 1994, vol. 31, no. 6, pp. 1333–1335.
- 8. Balicki, R., *Pol. J. Chem.*, 1981, vol. 55, no. 10, pp. 1995–2005.
- 9. Joshi, K.C. and Dubey, K., *J. pr. Chem.*, 1979, vol. 321, no. 2, pp. 341–344.
- 10. Chimichi, S., Cosimelli, B., Bruni, F., and Selleri, S., Canad. J. Chem., 1992, vol. 70, no. 4,

- pp. 1093-1097.
- 11. German Patent 145750, 1981. *Chem. Abstr.*, 1981, vol. 95, 80952m.
- 12. Grandberg, I.I., Din Vei-Py, and Kost, A.N., *Zh. Org. Khim*, 1961, vol. 31, no. 7, pp. 2311–2315.
- 13. Auzzi, G., Checchi, S., Costanzo, A., Pecori Vettori, L., Bruni, F., Pirisino, R., and Ciottoly, G.B., *Farmaco Ed. Sci.*, 1979, vol. 34, no. 6, pp. 478–485.
- 14. Henne, A.L., Newman, M.S., Quill, L.L., and Stamiforh, R.A., *J. Am. Chem. Soc.*, 1947, vol. 69, p. 1819.