Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Peperomins as anti-inflammatory agents that inhibit the NF-κB signaling pathway

Chieko Tsutsui^a, Yuriko Yamada^a, Masayoshi Ando^{b,§}, Daisuke Toyama^c, Jian-lin Wu^{c,†}, Liyan Wang^{c,‡}, Shigeru Taketani^a, Takao Kataoka^{a,*}

^a Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

^b Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan

^c Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan

ARTICLE INFO

Article history: Received 10 February 2009 Revised 2 June 2009 Accepted 3 June 2009 Available online 13 June 2009

Keywords: Peperomin Secolignan NF-κB IκB kinase

ABSTRACT

The transcription factor nuclear factor κB (NF- κB) induces the expression of various inflammatory genes. In the common NF- κB signaling pathway, peperomin E and 2,6-didehydropeperomin B inhibited I κB degradation upon stimulation with TNF- α or interleukin-1. Consistent with these results, peperomin E and 2,6-didehydropeperomin B blocked the TNF- α -induced activation of I κB kinase, while they had no direct effect on the I κB kinase activity. Our present results clearly demonstrate that peperomins inhibit the NF- κB signaling pathway by blocking I κB kinase activation.

© 2009 Elsevier Ltd. All rights reserved.

Inflammatory cytokines, such as tumor necrosis factor- α (TNF)- α and interleukin-1 (IL-1), play an essential role in inflammation and induce a variety of genes responsible for inflammatory responses, such as intercellular adhesion molecule-1 (ICAM-1; CD54).¹ During inflammation, the inducible expression of ICAM-1 on the vascular endothelium is regulated mainly by inflammatory cytokines, thereby facilitating the adhesion and subsequent transmigration of leukocytes.^{2,3} The ICAM-1 expression is predominantly upregulated by the transcription factor nuclear factor κ B (NF- κ B).¹

The NF-κB signaling pathway is activated by various stimuli including inflammatory cytokines. Upon TNF-α stimulation, TNF receptor 1 recruits several adaptor proteins to form a membranebound complex.⁴ This complex is prerequisite to activating the IκB (inhibitor of κB) kinase (IKK) complex containing two catalytic subunits, IKKα and IKKβ, and a regulatory subunit IKKγ/NEMO.^{5,6} On the other hand, IL-1 receptor recruits different sets of adaptor proteins to its cytoplasmic domain, leading to the activation of the IKK complex.⁷ Once activated, the IKK complex phosphorylates

* Corresponding author. Tel./fax: +81 75 724 7752.

IκB that interacts with the NF-κB heterodimer in the cytosol, and phosphorylated IκB is ubiquitinylated and immediately hydrolyzed by proteasome.^{5–7} The NF-κB heterodimer becomes free and translocates to the nucleus where it activates a variety of genes responsible for inflammation as well as cancer development and progression.⁸

We have isolated 13 secolignans from the extract of *Peperomia dindygulensis* and investigated their SAR with focus on antiinflammatory and anticancer activities.⁹ Among these secolignans, peperomin E (Fig. 1A)⁹ and its structural derivatives were found to inhibit cell-surface ICAM-1 expression induced by inflammatory cytokines.⁹ Except for its anti-inflammatory activity,⁹ multidrug-resistant reversal activity,⁹ and anticancer activity,^{9,10} the biological activities of peperomins are little understood. In this study, we further investigated the anti-inflammatory activities of peperomin E and its structural derivatives at the cellular and molecular levels.

Peperomin A (1),⁹⁻¹² peperomin B (2),⁹⁻¹² and peperomin E (3)⁹⁻¹¹ were isolated from the dried material of *P. dindygulensis* as previously described.⁹ As 2,6-didehydropeperomin B (4) was not obtained from natural sources, **4** was synthesized from **2** as shown in Scheme 1 (experimental details in Supplementary data). The introduction of a double bond at C-2(6) position of **2** with a known method was unsuccessful, because the C-2 position of **2** is sterically hindered by the bulky substituent at C-3 of **2**. Enolsilylation of **2** with TMSOTf and Et₃N in CH₂Cl₂ and subsequent treatment of the resulting silyl enol ether with phenylselenyl chloride

E-mail address: takao.kataoka@kit.ac.jp (T. Kataoka).

[†] Present address: Department of Chemistry, Hong Kong Baptist University, SCT1207 Hong Kong.

[‡] Present address: Department of Pharmacy Engineering, College of Chemistry and Chemistry Engineering, Qiqihar University, 42 Wenhuadajie, Qiqihar, Heilongjiang Sheng 161006, China.

[§] Present address: 22-20 Keiwa-machi, Taihaku-ku, Sendai 982-0823, Japan.

Figure 1. Peperomin E and 2,6-didehydropeperomin B inhibit cell-surface ICAM-1 expression induced by TNF- α or IL-1. (A) Structures of peperomins. (B and C) A549 cells were pretreated with various concentrations of peperomin A (open circles), peperomin B (open squares), peperomin E (filled circles), and 2,6-didehydropeperomin B (filled squares) for 1 h, and then incubated with TNF- α (2.5 ng/mL) (B) or IL-1 (0.25 ng/mL) (C) for 6 h in the presence or absence of peperomins. Cell-surface ICAM-1 expression was measured by the Cell ELISA assay. Data points represent means ± SD of triplicate cultures. (D) A549 cells were incubated with various concentrations of peperomin A (open circles), peperomin B (filled squares) for 6 h. Cell viability (%) was measured by the MTT assay. Data points represent means ± SD of triplicate cultures.

Scheme 1. Synthesis of 2,6-didehydropeperomin B.

afforded a mixture of stereoisomers of phenylseleno lactones, the HPLC separation of which gave α -isomer **5** and β -isomer **6** in 17% and 47% yields, respectively. The structures of **5** and **6** were confirmed by the analyses of spectral data, including ¹H- and ¹³C-NMR spectra and HREIMS. The oxidative syn elimination of **5** with 26% H₂O₂ gave undesired endo-unsaturated γ -lactone **7** in 90% yield. On the contrary, the oxidative syn elimination of **6** with 26% H₂O₂ gave desired **4** in 97%.

Peperomin E and 2,6-didehydropeperomin B are structural analogues of peperomin A and peperomin B in which α -methylene γ -lactone groups are replaced by α -methyl γ -lactone groups, respectively (Fig. 1A). Human lung carcinoma A549 cells were pretreated with various concentrations of peperomins for 1 h and then incubated with TNF- α or IL-1 for 6 h in the presence of peperomins. Cell-surface expression of ICAM-1 was measured by the Cell ELISA assay.¹³ Peperomin A and peperomin B did not reduce cell-surface ICAM-1 expression up to a concentration of 100 μ M (Fig. 1B and C). By contrast, peperomin E and 2,6-didehydropeperomin B inhibited the cell-surface ICAM-1 expression induced by TNF- α or IL-1 in a dose-dependent manner and at almost equivalent concentrations (Fig. 1B and C). In human breast adenocarcinoma MCF7 cells, pep-

eromin E and 2.6-didehvdropeperomin B also inhibited the cellsurface expression induced by TNF- α or IL-1 as strongly as in A549 cells, while peperomin A and peperomin B exerted approximately 10-fold weaker inhibitory effects (Supplementary Fig. 1A and B). Therefore, it seems that the α -methylene γ -lactone moiety in peperomin E and 2,6-didehydropeperomin B is important for their inhibitory activities. Indeed, the inhibitory concentration of peperomin E and 2,6-didehydropeperomin B on the IL-1-induced ICAM-1 expression was comparable with that of santonin-related compound 2 harboring the α -methylene- γ -lactone moiety.¹⁴ As judged by the MTT assay,¹³ while peperomin E and 2,6-didehydropeperomin B did not reduce cell viability of MCF7 cells up to 100 μM (Supplementary Fig. 1C), they partially decreased cell viability of A549 cells (Fig. 1D). Therefore, peperomin E and 2,6-didehydropeperomin B may exert some nonspecific cytotoxic effects at concentrations higher than 100 µM.

It has been shown that ICAM-1 expression is highly NF-κBdependent in A549 cells.¹⁵ The amounts of cell-surface and intracellular proteins expressed in A549 cells were measured by Western blotting.¹⁶ The expression of ICAM-1 was barely detectable in unstimulated A549 cells, while stimulation with TNF- α or IL-1 induced a marked increase in ICAM-1 expression. Peperomin E and 2,6-didehydropeperomin B substantially decreased ICAM-1 expression at concentrations higher than 10 µM and almost completely decreased the expression at 100 µM, whereas peperomin A and peperomin B were inactive up to 100 µM (Fig. 2 and Supplementary Fig. 2). It is known that cyclooxygenase-2 (Cox-2) expression is induced by inflammatory cytokines in an NF-kB-dependent manner.⁸ The expression of Cox-2 was markedly increased when A549 cells were stimulated with TNF- α or IL-1 (Fig. 2). Likewise, peperomin E and 2,6-didehydropeperomin B, but neither peperomin A nor peperomin B, reduced the expression of Cox-2 to background levels at 100 µM (Fig. 2 and Supplementary Fig. 2). These results indicate that peperomin E and 2,6-didehydropeperomin B generally inhibit NF-kB-dependent gene expression induced by TNF- α or IL-1. It should be noted that the inhibitory effects of peperomin E and 2.6-didehvdropeperomin B on ICAM-1 expression are approximately 10-fold stronger than those on Cox-2 expression. Since ICAM-1 is a cell-surface glycoprotein, it might be possible that these compounds influence the ICAM-1 processing and/or its transport from the endoplasmic reticulum to the cell-surface.

TNF- α and IL-1 induce rapid phosphorylation of I κ B α , and phosphorylated I κ B α immediately undergoes proteasomal degradation.⁵⁻⁷ A549 cells constitutively expressed I κ B α , and stimulation with TNF- α or IL-1 induced rapid I κ B α degradation. Peperomin E and 2,6-didehydropeperomin B, but neither peperomin A nor peperomin B, inhibited the I κ B α degradation induced by TNF- α or IL-1

(Fig. 3 and Supplementary Fig. 3). Time-course experiments revealed that $I\kappa B\alpha$ is phosphorylated within 5 min following stimulation with TNF- α or IL-1, and then degraded to barely detectable levels within 10 min. Peperomin E prevented $I\kappa B\alpha$ phosphorylation as well as its subsequent degradation upon stimulation with TNF- α or IL-1 (Fig. 3 and Supplementary Fig. 4). The expression of two IKK catalytic subunits, IKK α and IKK β , was not obviously influenced by peperomin E during TNF- α and IL-1 stimulation (Fig. 3 and Supplementary Fig. 4).

The IKK complex directly phosphorylates IKBa at N-terminal two serine residues (Ser-32 and Ser-36).⁶ The IKK complex was pulled down from cell lysates by immunoprecipitation using anti-IKK α antibody and its kinase activity toward I κ B α (1–54) fused to glutathione S-transferase (GST) was measured as described in supplementary data. A549 cells were pretreated with peperomins or not pretreated for 1 h, and stimulated with TNF- α for 15 min in the presence or absence of peperomins. The IKK complex exhibited strong activity toward GST-IkBa (1-54) in an ATPdependent manner, as well as only when A549 cells were stimulated with TNF- α (Fig. 4A and Supplementary Fig. 5A). The IKK activity was completely blocked when A549 cells were pretreated with peperomin E or 2,6-didehydropeperomin B prior to TNF- α stimulation (Fig. 4A and Supplementary Fig. 5A). It seems that peperomin E and 2.6-didehydropeperomin B do not primarily disrupt the interaction of IKKβ with IKKα, as IKKβ was co-immunoprecipitated with IKKα even in the presence of peperomin E and 2,6-dide-

Figure 2. Peperomin E inhibits expression of ICAM-1 and Cox-2 upon stimulation with TNF- α or IL-1. A549 cells were pretreated with various concentrations of peperomin A or peperomin E for 1 h, and then incubated with (+) or without (-) TNF- α (2.5 ng/mL) (A) or IL-1 (0.25 ng/mL) (B) for 6 h in the presence (+) or absence (-) of peperomin A or peperomin E. Expression of ICAM-1, Cox-2, and β -actin was analyzed by Western blotting.

Figure 3. Peperomin E inhibits I κ B α phosphorylation and its subsequent degradation upon stimulation with TNF- α or IL-1. (A and B) A549 cells were pretreated with various concentrations of peperomin A or peperomin E for 1 h, and then incubated with (+) or without (-) TNF- α (2.5 ng/mL) (A) or IL-1 (0.25 ng/mL) (B) for 15 min in the presence (+) or absence (-) of peperomin A or peperomin E. I κ B α and β -actin expression was analyzed by Western blotting. (C and D) A549 cells were pretreated with peperomin E (100 μ M) or not pretreated for 1 h, and then incubated with (+) or without (-) TNF- α (2.5 ng/mL) (C) or IL-1 (0.25 ng/mL) (D) for the indicated times in the presence (+) or absence (-) of peperomin E. The expression of I κ B α , phospho-I κ B α , IKK β , RIK β , and β -actin was analyzed by Western blotting. The amounts of protein bands (C and D) were quantified by the ImageJ image processing program, and relative intensity compared with β -actin was shown in Supplementary Figure 4A and B, respectively.

Acknowledgments

We are grateful to Dr. J. Tschopp for the gift of the IKK β expression vector. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2009.06.029.

References and notes

- 1. Collins, T.; Read, M. A.; Neish, A. S.; Whitley, M. Z.; Thanos, D.; Maniatis, T. *FASEB J.* **1995**, *9*, 899.
- 2. Springer, T. A. Cell 1994, 76, 301.
- 3. Cook-Mills, J. M.; Deem, T. L. J. Leukocyte Biol. 2005, 77, 487.
- 4. Micheau, O.; Tschopp, J. Cell 2003, 114, 181.
- 5. Ghosh, S.; Karin, M. Cell 2002, 109, S81.
- 6. Hayden, M. S.; Ghosh, S. Cell 2008, 132, 344.
- 7. Chen, Z. J. Nat. Cell Biol. 2005, 7, 758.
- 8. Karin, M.; Greten, F. R. Nat. Rev. Immunol. 2005, 5, 749.
- Wu, J. L.; Li, N.; Hasegawa, T.; Sakai, J.; Mitsui, T.; Ogura, H.; Kataoka, T.; Oka, S.; Kiuchi, M.; Tomida, A.; Tsuruo, T.; Li, M.; Tang, W.; Ando, M. *J. Nat. Prod.* **2006**, 69, 790.
- Xu, S.; Li, N.; Ning, M. M.; Zhou, C. H.; Yang, Q. R.; Wang, M. W. J. Nat. Prod. 2006, 69, 247.
- 11. Govindachari, T. R.; Kumari, G. N. K.; Partho, P. D. *Phytochemistry* **1998**, 49, 2129.
- 12. Chen, C. M.; Jan, F. Y.; Chen, M. T.; Lee, T. S. Heterocycles 1989, 29, 411.
- Fu, L.; Zhang, S.; Li, N.; Wang, J.; Zhao, M.; Sakai, J.; Hasegawa, T.; Mitsui, T.; Kataoka, T.; Oka, S.; Kiuchi, M.; Hirose, K.; Ando, M. J. Nat. Prod. 2005, 68, 198.
- Kawai, S.; Kataoka, T.; Sugimoto, H.; Nakamura, A.; Kobayashi, T.; Arao, K.; Higuchi, Y.; Ando, M.; Nagai, K. Immunopharmacology 2000, 48, 129.
- Holden, N. S.; Catley, M. C.; Cambridge, L. M.; Barnes, P. J.; Newton, R. Eur. J. Biochem. 2004, 271, 785.
- Ogura, H.; Tsukumo, Y.; Sugimoto, H.; Igarashi, M.; Nagai, K.; Kataoka, T. *Exp.* Cell Res. 2008, 314, 1406.
- Rossi, A.; Kapahi, P.; Natoli, G.; Takahashi, T.; Chen, Y.; Karin, M.; Santoro, M. G. Nature 2000, 403, 103.
- Straus, D. S.; Pascual, G.; Li, M.; Welch, J. S.; Ricote, M.; Hsiang, C. H.; Sengchanthalangsy, L. L.; Ghosh, G.; Glass, C. K. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 4844.
- 19. Kapahi, P.; Takahashi, T.; Natoli, G.; Adams, S. R.; Chen, Y.; Tsien, R. Y.; Karin, M. J. Biol. Chem. **2000**, 275, 36062.
- Ahmad, R.; Raina, D.; Meyer, C.; Kharbanda, S.; Kufe, D. J. Biol. Chem. 2006, 281, 35764.
- 21. Yore, M. M.; Liby, K. T.; Honda, T.; Gribble, G. W.; Sporn, M. B. *Mol. Cancer Ther.* **2006**, *5*, 3232.
- Kwok, B. H. B.; Koh, B.; Ndubuisi, M. I.; Elofsson, M.; Crews, C. M. Chem. Biol. 2001, 8, 759.
- 23. Jeon, K. I.; Byun, M. S.; Jue, D. M. Exp. Mol. Med. 2003, 35, 61.

Figure 4. Peperomin E and 2,6-didehydropeperomin B inhibit TNF-α-induced activation of the IKK complex. (A) A549 cells were pretreated with various concentrations of peperomins for 1 h, and then incubated with (+) or without (-)TNF- α (2.5 ng/mL) for 15 min in the presence of peperomins. The IKK complex was immunoprecipitated with anti-IKK α antibody and the resultant immunoprecipitates were used for the kinase reaction using GST-I κ B α (1-54) as substrate in the presence (+) or absence (-) of ATP (10 μ M). Phospho-GST-I κ B α (1-54) was detected by Western blotting using anti-phospho-IkB antibody. The amounts of IKKa and $IKK\beta$ in the immunoprecipitates were determined by Western blotting. The amounts of protein bands were quantified, and relative intensity of phospho-I κ B α (1-54) and IKK β compared with IKK α was shown in Supplementary Figure 5A. (B) FLAG-IKK β was transiently overexpressed in HEK293 cells for 24 h and then immunoprecipitated with anti-FLAG antibody. The resultant immunoprecipitates containing FLAG-IKK β were incubated with (+) or without (-) peperomins, 15deoxy- $\Delta^{12,14}$ -PGJ₂ (50 μ M) or ATP (10 μ M) in the presence of GST-I κ B α (1-54). Phospho-GST-IkBa (1-54) was detected by Western blotting using anti-phospho-IκB antibody. The amounts of FLAG-IKKβ in the reaction mixtures were determined by Western blotting. The amounts of protein bands were quantified, and relative intensity of phospho-GST-I κ B α (1–54) compared with FLAG-IKK β was shown in Supplementary Figure 5B.

hydropeperomin B (Fig. 4A and Supplementary Fig. 5A). IKKβ is the major kinase responsible for IκBα phosphorylation in the classical NF-κB signaling pathway.^{5,6} To obtain active IKKβ, FLAG-IKKβ was transiently overexpressed in human embryonic kidney (HEK) 293 cells and collected by immunoprecipitation using anti-FLAG antibody. It has been shown that 15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂ (15-deoxy- $\Delta^{12,14}$ -PGJ₂) directly inhibits IKKβ activity.^{17,18} Consistent with this, we found that 15-deoxy- $\Delta^{12,14}$ -PGJ₂ strongly inhibited IKKβ activity (Fig. 4B and Supplementary Fig. 5B). However, under the same experimental conditions, peperomin E and 2,6didehydropeperomin B had no effect on IKKβ activity (Fig. 4B and Supplementary Fig. 5B). These data indicate that peperomin E and 2,6-didehydropeperomin B inhibit IKK complex activation in a manner distinct from 15-deoxy- $\Delta^{12,14}$ -PGJ₂.^{17,18}

Studies of SAR revealed that the α -methylene γ -lactone moiety is important for peperomin E and 2,6-didehydropeperomin B to exhibit the inhibitory activity. It is known that the α -methylene γ lactone moiety can bind covalently to reactive thiol residues, such