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ABSTRACT
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Titanium ate enolate up to 81% yield
The radical trifluoromethylation of ketone titanium ate enolates gave o-CF; ketones in good yields. The use of excess amount of LDA and

Ti(OPr)4 in the preparation of titanium ate enolates is the key to the efficient radical trifluoromethylation.

Organofluorine compounds continue to attract much attention synthetic difficulty is due to the defluorination of tlkeCF;
because of their important applications as biological active ketone product by the parent enolate or base during the
agents, liquid crystalline materials, and so on. One of the reaction (Scheme £)Recently we have reported the efficient
most important fluorine-containing compounds is az;CF

compound, which exhibits specific physical and biological || NN QR

properties. However, the synthesis of-CF; carbonyl Scheme 1
compounds has not been fully established. Radical trifluo- OM:  CE. o
romethylation of enolates is in principle one of the simplest R,J\ : R/U\/c,:3
ways to introduce a GFunit at theo. position of a carbonyl
group; however, there are only limited examples, especially H Enclate or Base
in the case of ketonés> It has been reported that the oM
RS CFs
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tion” and successive defluorination. On the basis of the fact LDA and Ti(OPr), was found to be important in increasing
that titanium enolates otr-CF; ketones are stable to the yield (Table 1). When the enolatea] was formed by
defluorination, we report here that titanium ate enolates can

be applied to radical trifluoromethylation for the synthesis || NG

of a-Chs ketones.. . Table 1. Trifluoromethylation of Titanium Ate Enolates
First, several titanium enolates of cyclohexanone were

o
. . . ) CF;l (ca. 5eq.)
reacted with Ckradical, which was generated by {kca. H LDA Ti(OPr), ELB (1.0 q.) H CF,

5 equiv) and EB (1.0 equiv)? The reaction was carried out THE/78°C  78°C 78°C/2h
at—78°C for 2 h. The yields were determined B NMR 1a 30 min 30 min -
using BTF as an internal standard (Figure 1). In the case of

entry LDA (equiv) Ti(O"Pr)4 (equiv) yield (%)*

2 1.3 1.3 72
Titanium ate enolate 3 1.6 1.6 81
_TiCly _Ti(OPr), _Ti(O'Pr), Li* 4 2.0 2.0 80
0 o 0 5 1.0 1.6 52
@ @ @ aDetermined by**F NMR using BTF as an internal standard.
0% yield 23% yield 2 56% yield
a
Figure 1. Trifluoromethylation of various titanium enolates. 1.0 equiv of LDA and 1.0 equiv of Ti(®r), the product

(3a) was formed in 56% yield (entry 1). When 1.6 equiv of

. . _ LDA and 1.6 equiv of Ti(CPr), were used, the yield
TiCls enolate (formed by TiGland EgN in CH,Cl, at —78 increased up to 81% (entry 3). Using 1.0 equiv of LDA and
°C), noa-CF; ketone 8a) was obtained. In the case of Ti- 1 g equiv of Ti(OPr), gave then-CF; ketone 8a) in almost
(OPr); enolate (formed by the addition of Ti(er):Cl to the the same yield as in entry 1 (52%, entry 5). Therefore, both
corresponding lithium enolate in THF &f78 °C), thea-CF; LDA and Ti(OPr) should be used in excess amounts.
ketone Ba) was formed, but in low yield (23%). To increase  The titanjum ate enolate is prepared from the correspond-
the reactivity of the enolate, the titanium ateenolate was ing lithium enolate. When LDA was used for the preparation
examined. Titanium ate enolates could be easily formed just of Jithium enolate, 1 equiv ofP,NH was formed simulta-

by adding Ti(OPr), to lithium enolate at low temperatufe. neously. To investigate the effectiBi,NH, "BuLi was added

Upon treatment of titanium ate enolags with CF; radical, to silyl enol ethei! to generate the lithium enolates without
the a-CF; ketone was obtained in an increased yield (56%). formation of Pr,NH (Table 2) and the amount éPrLNH
Radical trifluoromethylation of titanium ate enolats| could be controlled at will). When the reaction was carried

was further investigated and the use of excess amount of
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(5) There are some reports of trifluoromethylation usings CF(a)
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2547-2549. 3 1.6 1.6 68
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A.; Cavicchioli, M.; Marchionni, C.; Potenza, D.; Scolastico, L.0rg. 5 1.6 ‘ProNH (1.6) 1.6 74
ghemc.lh994 53, 3?8853?9291. gczg&a%%g.; (Sd;"rﬁ)kUb%’ HY Oshima, ﬁ. 6 1.0  2,2,6,6-Meg-piperidine (1.0) 1.0 57
m. Chem. Soc . an, Z.; Yorimitsu, H.; Moo 4
Shinokubo, H.; Oshima, KTetrahedron Lett200Q 41, 4415-4418. 7 16 2.2,66-Mespiperidine (1.6) 1.6 2
(10) Some reactions involving other titanium ate comlexes: (a) Reetz, 8 1.0 Et;NH (1.0) 1.0 6
M. T.; Wenderoth, BTetrahedron Lett1982 23, 5259-5262. (b) Reetz, 9 16  EtNH (1.6) 16 11
M. T.; Westermann, J.; Steinbach, R.; Wenderoth, B.; Peter, R.; Ostarek, . ) .
R.; Maus, SChem. Ber1985 118 1421-1440. (c) Reetz, M. T.; Steinbach, a Determined byF NMR using BTF as an internal standard.

R.; Westermann, J.; Peter, R.; WenderothCBem. Ber1985 118 1441~
1454. (d) Takahashi, H.; Kawabata, A.; Niwa, H.; HigashiyamaCKem.
Pharm. Bull.1988 36, 803—806. (e) Takahashi, H.; Tsubuki, T.; Higash- . . . .
iyama, K. Synthesis1988 238-240. (f) Takahashi, H.; Tsubuki, T, ~ Out without addition of P.NH, the yields did not change
Higashiyama, K.Chem. Pharm. Bull1991, 39, 260-265. (g) Bernardi, significantly even by increasing the amount"BiiLi and/or

A.; Cavicchioli, M.; Scolastico, CTetrahedron1993 49, 10913-10916. N
(h) Bernardi, A.; Marchionni, C.; Pilati, T.; Scolastico, Getrahedron Lett. TI(O Pr)“ (Table 2, entry 1_3)' On the contrary, when three

1994 35, 6357-6360. (i) Mahrwald, RTetrahedrorl995 51, 9015-9022. reagents"BulLi, 'PLNH, Ti(O'Pr)) were used in 1.0 equiv
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each, the yield was decreased (entry 4 (vs entry 1)). In the(Scheme 2) to ketoneld). In fact, when EINH was used

case that the three reagents were used in 1.6 equiv each, tha 1.0 equiv (entry 8) and 1.6 equiv (entry 9), the yield was
yield was increased (entry 5). Although the yield of entries dramatically decreased. It should be noted that the LDA/Ti-
4 and 5 in Table 2 were slightly decreased compared to (O'Pr); complex, which might act as a base, works not for

entries 1 and 3 in Table 1, a similar tendency was observedthe decomposition of the-CF; ketone products but for

in the relationship of the yields and the amounts of the
reagents.

From these results, the effect'Bf,NH could be proposed
as follows (Scheme 2)PrLNH, which is formed by using

Scheme 2
Titanium ate enolate
o oLi o/Tr(O Pr),Li

TiOP
é—% @ + HNR, OPNs_ @ +  HNR,

2a
o THOPINRLI

ij + HOPr

(0]

é + Ti(OPr)(NRy)LI*

1a I
LDA + Ti(OPr),

LDA in the preparation of titanium ate enolat2af, would
exchange with"O'Pr ligand to give'PrOH. 'PrOH could

increasing the yield.
Several ketonic substrates were thus investigated (Figure
2). Acyclic substrates3c,d) as well as cyclic substrates

From ketone
LDA=1.6 eq., Ti(O'Pr),=1.6 eq.

(o}
CF CFs 2
8 \(\M Ph%CFs
CF,
3a 81%° 3p 61%° 3c 64%° 3d 65%°

From silyl enol ether
"BuLi=1.6 eq., 'Pr,NH=1.6 eq., Ti(O'Pr),=1.6 eq.

o o
Ph
éLCR CF,
2o 429%° 3 43%°

Figure 2. Trifluoromethylation of various substratesa) (yield
determined by*°F NMR, (b) isolated yield.

(3a,b) provided then-CF; ketones in good yields. Although
LDA could generate only kinetic lithium enolate, both kinetic
and thermodynamic enolate could easily be prepared from
silyl enol ethers. Therefore, thermodynamic titanium ate
enolate ofa-substituted ketone could be generated by silyl-

protonate the enolate to form ketone and titanium amide to-lithium method to obtain quaternary carbon center attached

complex (LDA/Ti(OPr)).*2 This mechanism rationalizes not
only the decrease in yield upon addition'Bf,NH (Table

with CF; substituent®*4In the case ofx-Me*® and a-Ph'¢
substituted cyclohexanone, the products were obtained in

2, entry 4) (protonation of the enolate to reduce the amount reasonable yields3gf).

of the reactive enolate species) but also the increase in yield

using excess amount of LDA and Ti@), (the equilibrium

shifts to titanium ate enolate). To support the mechanism,

2,2,6,6-tetramethylpiperidine and,EH were investigated.
2,2,6,6-Tetramethylpiperidine is more bulky tHBrNH and
its coordinating ability is lower than that &r.NH to shift

In conclusion, we have developed radical trifluorometh-
ylation of titanium ate enolates. The key to the success is
the use of an excess amount'BfiLi, 'PLNH, and Ti(OPr),
to generate the titanium ate enolates. By this method, the
CF; substituent can be introduced to give various ketones
even witho-CF; quaternary carbon centers.

the proposed equilibrium (Scheme 2) to titanium ate enolate Supporting Information Available: Detailed experi-

(2a). In fact, when 2,2,6,6-tetramethylpiperidine was used
in 1.0 equiv (entry 6), the decrease in the yield was not
significant relative to'PLNH (entry 4). When 2,2,6,6-
tetramethylpiperidine was used in 1.6 equiv (entry 7), the
yield was increased as in the cas€RENH (entry 5). On
the other hand, EWH is less bulky thatPLNH and, hence,

its coordination ability is higher to shift the equilibrium

(11) (a) Stork, G.; Hudrlik, P. FJ. Am. Chem. Sod.968 90, 4462
4464. (b) Stork, G.; Hudrlik, P. RJ. Am. Chem. Sod 968 90, 4464
4465.

(12) NMR study of a titanium ate enol&feshowed that the ketone was
formed in the generation of the titanium ate enolate (although this is only

mentioned in the foot note of Figure 2). This fact also supports the proposed

mechanism.
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2037-2066. (c) Corey, E. J.; Guzman-Perez, Angew. Chem., Int. Ed.
1998 37, 388-401. (d) Denissova, |.; Barriault, [T.etrahedror2003 59,
10105-10146.

(14) Kimura, M.; Yamazaki, T.; Kitazume, T.; Kubota, Drg. Lett.
2004 6, 4651-4654.
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