This article was downloaded by: [Portland State University] On: 29 November 2014, At: 20:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lsyc20</u>

SYNTHESIS OF 2-SUBSTITUTED-4H-PYRIDO[2,3h]BENZOXAZIN-4-ONES AND 2-SUBSTITUTED PYRIDO[2,3-h]-QUINAZOLIN-4(3H)ONES

T. Aruna Kumari ^a & P. Jayaprasad Rao ^b

^a Department of Chemistry, Osmania University, Hyderabad, A.P., 500007, India ^b Department of Chemistry, Osmania University, Hyderabad, A.P., 500007, India Published online: 16 Aug 2006.

To cite this article: T. Aruna Kumari & P. Jayaprasad Rao (2002) SYNTHESIS OF 2-SUBSTITUTED-4H-PYRIDO[2,3-h]BENZOXAZIN-4-ONES AND 2-SUBSTITUTED PYRIDO[2,3-h]-QUINAZOLIN-4(3H)ONES, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 32:15, 2261-2267, DOI: <u>10.1081/</u><u>SCC-120005995</u>

To link to this article: http://dx.doi.org/10.1081/SCC-120005995

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS Vol. 32, No. 15, pp. 2261–2267, 2002

SYNTHESIS OF 2-SUBSTITUTED-4H-PYRIDO[2,3-h]BENZOXAZIN-4-ONES AND 2-SUBSTITUTED PYRIDO[2,3-h]-QUINAZOLIN-4(3H)ONES

T. Aruna Kumari and P. Jayaprasad Rao*

Department of Chemistry, Osmania University, Hyderabad-500007, A.P. India

ABSTRACT

The reaction of 2-substituted-4H-pyrido[2,3-h]benzoxazin-4ones (1) with hydrazine hydrate resulted in 2-substituted-3aminopyrido[2,3-h]quinazolin-4(3H)ones (2) and not in the corresponding 3. The Schiff bases (4) of 2 on pyrolysis led to 2-substituted pyrido[2,3-h]quinazolin-4(3H)ones (5).

The potentiality of 5-aminoquinoline-6-carboxylic acid^[1] has not been explored fully. It has been used by us earlier in the synthesis of 2,3-disubstituted pyrido[2,3-h]benzoxazin-4-ones.^[2] The results of 2-substituted-4H-benzoxazin-4-one and hydrazine hydrate^[3-7] have been debated earlier. This prompted us to take up the investigation of 2-substituted-4Hpyrido[2,3-h]benzoxazin-4-one and hydrazine hydrate reaction and the results with spectral, analytical and chemical evidence are presented hereunder (Tables 1 and 2).

2261

DOI: 10.1081/SCC-120005995 Copyright © 2002 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Corresponding author.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2262

ARUNA KUMARI AND JAYAPRASAD RAO

Compound	Ar	Ar ¹	M.P. (°C)	Yield (%)
2a	C_6H_5	_	252-253	52
2b	$4-CH_3-C_6H_4$	_	258	61
2c	4-OCH ₃ -C ₆ H ₄	_	248-250	57
2d	$4-Cl-C_6H_4$	_	276-278	58
2e	C_2H_5	_	206	60
2f	CH ₃	_	242	63
4a	C_6H_5	C_6H_5	242	62
4b	C_6H_5	$4-CH_3-C_6H_4$	216-219	61
4c	C_6H_5	4-OCH ₃ -C ₆ H ₄	214	55
4d	$4-CH_3-C_6H_4$	C_6H_5	252	52
4e	$4-CH_3-C_6H_4$	$4-CH_3-C_6H_4$	228	56
4f	$4-CH_3-C_6H_4$	4-OCH ₃ -C ₆ H ₄	254	59
4g	4-OCH ₃ -C ₆ H ₄	C_6H_5	244	64
4h	4-OCH ₃ -C ₆ H ₄	$4-CH_3-C_6H_4$	226-227	62
4i	4-OCH ₃ -C ₆ H ₄	4-OCH ₃ -C ₆ H ₄	236	59
4j	$4-Cl-C_6H_4$	C_6H_5	262	61
4k	$4-Cl-C_6H_4$	$4-CH_3-C_6H_4$	228-230	62
41	$4-Cl-C_6H_4$	$4-OCH_3-C_6H_4$	254	56
4m	C_2H_5	C_6H_5	196	64
4n	C_2H_5	$4-CH_3-C_6H_4$	184-185	61
40	C_2H_5	4-OCH ₃ -C ₆ H ₄	210	66
4p	CH ₃	C_6H_5	207	60
4q	CH ₃	$4-CH_3-C_6H_4$	205	59
4r	CH ₃	$4-OCH_3-C_6H_4$	248-251	65
5a	C_6H_5	_	> 300	61
5b	$4-CH_3-C_6H_4$	_	> 300	63
5c	$4-OCH_3-C_6H_4$	_	> 300	58
5d	$4-Cl-C_6H_4$	_	> 300	55
5e	C_2H_5	_	268	65
5f	CH ₃	_	> 300	66

Table 1. Characterisation Data of 2, 4, and 5

The reaction of 2-*p*-tolyl-4H-pyrido[2,3-h]benzoxazin-4-one (1, Ar = 4-CH₃-C₆H₄) with an excess of hydrazine hydrate under refluxing condition for 2 h gave a crystalline compound with m.p. 258°C. The mass spectrum of the compound revealed the molecular ion at m/z 302. The ¹H-NMR spectrum (DMSO-d₆) exhibited signals at δ 2.4 (s, 3H, CH₃), 5.9 (s, 2H, NH₂, D₂O exchangeable), 7.3 (d, 2H, Ar–H, H⁷, H⁸), 7.7 (m, 1H, Ar–H, H⁴), 7.9 (m, 3H, Ar–H, H², H⁶, H⁹), 8.1 (d, 1H, Ar–H, H⁵), 9.1 (d, 1H, Ar–H, H¹), 9.3 (d, 1H, Ar–H, H³). Based on the elemental analysis and spectral data the

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2-SUBSTITUTED-4H-PYRIDO[2,3-h]BENZOXAZIN-4-ONES

2263

			Found % (Calc.)			
Comp.	Mol. Formula	С	Н	Ν		
2a	$C_{17}H_{12}N_4O$	70.84 (70.83)	4.16 (4.17)	19.42 (19.44)		
2b	$C_{18}H_{14}N_4O$	71.50 (71.52)	4.61 (4.64)	18.57 (18.54)		
2c	$C_{18}H_{14}N_4O_2$	67.91 (67.92)	4.42 (4.40)	17.60 (17.61)		
2d	C ₁₇ H ₁₁ N ₄ ClO	63.23 (63.26)	3.39 (3.41)	17.33 (17.36)		
2e	$C_{13}H_{12}N_4O$	65.02 (65.00)	4.99 (5.00)	23.34 (23.30)		
2f	$C_{12}H_{10}N_4O$	63.68 (63.72)	4.44 (4.42)	24.75 (24.78)		
4a	$C_{24}H_{16}N_4O$	76.62 (76.60)	4.25 (4.26)	14.90 (14.89)		
4b	C ₂₅ H ₁₈ N ₄ O	76.93 (76.92)	4.60 (4.62)	14.35 (14.36)		
4c	$C_{25}H_{18}N_4O_2$	73.85 (73.89)	4.41 (4.43)	13.81 (13.79)		
4d	$C_{25}H_{18}N_4O$	76.91 (76.92)	4.61 (4.62)	14.35 (14.36)		
4e	$C_{26}H_{20}N_4O$	77.20 (77.22)	4.94 (4.95)	13.87 (13.86)		
4f	$C_{26}H_{20}N_4O_2$	74.27 (74.29)	4.75 (4.76)	13.33 (13.33)		
4g	$C_{25}H_{18}N_4O_2$	73.88 (73.89)	4.40 (4.43)	13.80 (13.79)		
4h	$C_{26}H_{20}N_4O_2$	74.30 (74.29)	4.72 (4.76)	13.32 (13.33)		
4i	$C_{26}H_{20}N_4O_3$	71.54 (71.56)	4.58 (4.59)	12.85 (12.84)		
4j	C24H15N4ClO	70.19 (70.16)	3.66 (3.65)	13.61 (13.64)		
4k	C25H17N4ClO	70.65 (70.67)	4.01 (4.00)	13.20 (13.19)		
41	C25H17N4ClO2	68.11 (68.10)	3.85 (3.86)	12.73 (12.71)		
4m	$C_{20}H_{16}N_4O$	73.20 (73.17)	4.89 (4.88)	17.08 (17.07)		
4n	$C_{21}H_{18}N_4O$	73.65 (73.68)	5.24 (5.26)	16.38 (16.37)		
40	$C_{21}H_{18}N_4O_2$	70.36 (70.39)	5.01 (5.03)	15.65 (15.64)		
4p	$C_{19}H_{14}N_4O$	72.62 (72.61)	4.41 (4.46)	17.84 (17.83)		
4q	$C_{20}H_{16}N_4O$	73.18 (73.17)	4.85 (4.88)	17.08 (17.07)		
4r	$C_{20}H_{16}N_4O_2$	69.76 (69.77)	4.63 (4.65)	16.26 (16.28)		
5a	C ₁₇ H ₁₁ N ₃ O	74.71 (74.73)	4.01 (4.03)	15.35 (15.38)		
5b	C ₁₈ H ₁₃ N ₃ O	75.27 (75.26)	4.52 (4.53)	14.61 (14.63)		
5c	$C_{18}H_{13}N_3O_2$	71.30 (71.29)	4.26 (4.29)	13.88 (13.86)		
5d	C17H10N3ClO	66.32 (66.34)	3.23 (3.25)	13.65 (13.66)		
5e	$C_{13}H_{11}N_{3}O$	69.32 (69.33)	4.85 (4.89)	18.61 (18.67)		
5f	$C_{12}H_9N_3O$	68.27 (68.25)	4.22 (4.27)	19.88 (19.91)		

Table 2. Analytical Data of 2, 4, and 5

compound was assigned the structure 2-*p*-tolyl-3-aminopyrido[2,3-h]quinazolin-4(3H)one (2b). An alternate pyridobenzotriazepin-5-one structure (3, Ar = 4-CH₃-C₆H₄) for this compound is ruled out based on the presence of a doublet around 3250 cm⁻¹ corresponding to NH₂ in its IR spectrum (KBr) and also a two proton D₂O exchangeable singlet at δ 5.9 in its ¹H-NMR spectrum.

The reaction has been extended to other 2-aryl-4H-pyrido[2,3-h]benzoxazin-4-ones (1) and in each case the product was identified as the

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2264

ARUNA KUMARI AND JAYAPRASAD RAO

Scheme 1.

corresponding 2-aryl-3-aminopyrido[2,3-h]quinazolin-4(3H)-one (2) based on spectral and analytical data (Scheme 1).

The formation of 2 from 1 probably involves nucleophilic attack by hydrazino nitrogen on carbonyl carbon of the latter, resulting in an open chain intermediate.^[6,8] Subsequent loss of elements of water from the tautomeric form of the intermediate involving NH and not NH₂ yields compound 2. Compounds 2 were also obtained from 1 and hydrazine hydrate under variety of conditions like hot acetic acid, refluxing methanol, xylene and pyridine.

Further proof for the structure assigned to compound 2 came from the fact that it formed a Schiff base (4) with aromatic aldehyde. Compound 4 was characterised by the presence of an azomethine signal in its ¹H-NMR spectrum (DMSO–d₆, Table 3) and characteristic (M^+ –H) peak in its mass spectrum. To ascertain the generality, all the 2 were treated independently with benzaldehyde, 4-methylbenzaldehyde and 4-methoxybenzaldehyde. In each case the corresponding 4 were characterised by spectral and analytical data.

The *N*–*N* bond is considered to be labile and susceptible to cleavage. To verify this, 2-*p*-tolyl-3-benzylidene aminopyrido[2,3-h]quinazolin-4(3H)-one (4d) was subjected to neat pyrolysis above its melting point. The reaction mixture on processing afforded the benzonitrile and a compound with molecular ion at m/z 287. The IR spectrum (KBr) showed the presence of NH (broad at 3200 cm⁻¹), amide C=O (at 1658 cm⁻¹) and C=N

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2-SUBSTITUTED-4H-PYRIDO[2,3-h]BENZOXAZIN-4-ONES

2265

Compound	Data (δ)	
2a	5.7 (s, 2H, NH ₂ , D ₂ O exchangeable), 7.3–7.5 (m, 5H, c-phenyl), 7.7 (m, 1H, Ar–H, H ⁴), 7.9 (m, 2H, Ar–H, H ² , H ⁵), 9.1 (d, 1H,	
2c	Ar–H, H ¹), 9.4 (d, 1H, Ar–H, H ³). 3.7 (s, 3H, OCH ₃), 5.9 (s, 2H, NH ₂ , D ₂ O exchangeable), 7.2 (d, 2H, Ar–H, H ⁷ , H ⁸), 7.7 (m, 1H, Ar–H, H ⁴), 7.9 (m, 3H, Ar–H, H ² , H ⁶ , H ⁹), 8.0 (d, 1H, Ar–H, H ⁵), 9.2 (d, 1H, Ar–H, H ¹), 9.3 (d, 1H, Ar–H, H ³), 9.2 (d, 1H, Ar–H, H ³), 9.3	
2e	 Ar–H, H³). 1.1 (t, 3H, CH₃ of ethyl), 1.3 (q, 2H, CH₂ of ethyl), 5.8 (s, 2H, NH₂, D₂O exchangeable), 7.3 (d, 2H, Ar–H, H⁷, H⁸), 7.7 (m, 1H, 	
41-	Ar-H, H ⁴), 7.9 (m, 3H, Ar-H, H ² , H ⁶ , H ⁹), 8.1 (d, 1H, Ar-H, H ⁵), 9.1 (d, 1H, Ar-H, H ¹), 9.3 (d, 1H, Ar-H, H ³). 2.4 (a, 2H, CH), 7.7 (m, 1H, Ar, H, H ⁴), 7.2 7 (cm, 0H, Ar, H, H ⁴),	
40	2.4 (s, 5H, CH ₃), /./ (m, 1H, Ar–H, H ⁻), /.2–/.6 (m, 9H, Ar–H, phenyl & <i>p</i> -tolyl), 8.1 (d, 1H, Ar–H, H ²), 8.4 (d, 1H, Ar–H, H ⁵), 9.1 (s, 2H, Ar–H, H ¹ and azomethine), 9.3 (d, 1H, Ar–H, H ³).	
4c	3.9 (s, 3H, OCH ₃), 7.8 (m, 1H, Ar–H, H ⁴) 7.2–7.5 (m, 9H, Ar–H, phenyl & anisyl), 8.2 (d, 1H, Ar–H, H ²) 8.4 (d, 1H, Ar–H, H ⁵), 9.2 (s, 2H, Ar–H, H ¹ and azomethine) 9.3 (d, 1H, Ar–H, H ³)	
4n	1.1 (t, 3H, CH ₃ of ethyl), 1.3 (q, 2H, CH ₂ of ethyl), 2.5 (s, 3H, CH ₃), 7.8 (m, 1H, Ar–H, H ⁴), 7.4 (m, 4H, Ar–H, <i>p</i> -tolyl), 8.1 (d, 1H, Ar–H, H ²), 8.4 (d, 1H, Ar–H, H ⁵), 9.1 (s, 2H, Ar–H, H ¹ and azomethine) 9.2 (d, 1H, Ar–H, H ³)	
5a	 7.3 (s, 1H, NH₂, D₂O exchangeable), 7.5 (m, Ar–H of phenyl), 8.2 (m, 1H, Ar–H, H²), 8.4 (d, 1H, Ar–H, H⁴), 8.7 (d, 1H, Ar–H, H⁵), 9.3 (m, 2H, Ar–H, H¹, H³) 	
5c	3.8 (s, 3H, OCH ₃), 7.1 (s, 1H, NH, D ₂ O exchangeable), 7.2 (d, 2H, Ar–H, H ⁷ , H ⁸), 7.7 (m, 1H, Ar–H, H ⁴), 7.8 (m, 3H, Ar–H, H ² , H ⁶ , H ⁹), 8.2 (d, 1H, Ar–H, H ⁵), 9.1 (d, 1H, Ar–H, H ¹), 9.3 (d, 1H, Ar–H, H ³).	

(at 1599 cm⁻¹). The ¹H-NMR spectrum (DMSO–d₆) exhibited signals at δ 2.4 (s, 3H, CH₃), 7.2 (s, 1H, NH, D₂O exchangeable), 7.5 (d, 2H, Ar–H, H⁷, H⁸), 8.2 (m, 3H, Ar–H, H², H⁶, H⁹), 8.4 (d, 1H, Ar–H, H⁴), 8.7 (d, 1H, Ar–H, H⁵) and 9.4 (m, 2H, Ar–H, H¹, H³). Based on the spectral and analytical data the compound has been characterised as 2-*p*-tolyl-pyrido[2,3-h]quinazolin-4(3H)-one (5b). Similarly all the 4 on pyrolysis afforded the corresponding arylnitrile and 5.

Formation of 5 and arylnitrile from 4 probably involves a sixmembered cyclic transition state involving H-transfer and the N-N bond cleavage. Compounds 5 were also obtained from 2 in the presence of MA.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2266

ARUNA KUMARI AND JAYAPRASAD RAO

KMnO₄ and dry acetone under refluxing conditions. In this reaction, the compound 2 undergoes oxidative coupling to give dipyridoquinazolinyl hydrazine^[9] followed by the loss of nitrogen through a six-membered cyclic transition state to yield 5. Reaction of 1 with an excess of ammonia under refluxing conditions also afforded 5.

EXPERIMENTAL SECTION

2-Substituted-3-aminopyrido[**2,3-h**]**quinazolin-4(3H)ones (2):** A mixture of 2-substituted-4H-pyrido[2,3-h]benzoxazin-4-one (1, 10 mmol) and hydrazine hydrate (99%, 5 mL) was heated under reflux for 2 h, cooled and diluted with water. The compound (2) that separated was filtered, washed with a few drops of alcohol and dried.

2-Substituted-3-arylidene aminopyrido[2,3-h]quinazolin-4(3H)-ones (4):

A mixture of 2 (1 mmol) and aromatic aldehyde (1 mmol) in ethanol (5 mL) was warmed on steam bath for 15 min and cooled to give crystalline 4.

2-Substituted pyrido[2,3-h]quinazolin-4(3H)-ones (5): 1 mmol of 4 was heated 20°C above its melting point for 1 h. Later it was dissolved in chloroform and subjected to chromatography. Elution with benzene–ethylacetate (1:1) mixture yielded pure 5.

Oxidation of 2-substituted-3-aminopyrido[2,3-h]quinazolin-4(3H)ones (2) to give 5.

Compounds 2 were oxidised by KMnO₄ following a similar oxidation reaction reported in literature.^[9]

ACKNOWLEDGMENTS

One of the authors (TAK) is thankful to UGC (New Delhi) for the award of a Senior Research Fellowship.

REFERENCES

- 1. Bogert, M.T.; Fisher, H.L. J. Am. Chem. Soc. 1912, 34, 1570.
- Aruna Kumari, T.; Satyanarayana Reddy, M.; Jayaprasad Rao, P. Synth. Commun., in press, 2001.
- 3. Reddy, C.K.; Reddy, P.S.N.; Ratnam, C.V. Ind. J. Chem. 1985, 24, 902.
- 4. Peet, N.P. Synthesis 1984, 1065.
- 5. Reddy, C.K.; Reddy, P.S.N.; Ratnam, C.V. Synthesis 1983, 10, 842.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2-SUBSTITUTED-4H-PYRIDO[2,3-h]BENZOXAZIN-4-ONES 2267

- 6. Scheiner, P.; Frank, L.; Giusti, I.; Arwin, S. J. Heterocycl. Chem. **1984**, *21*, 1817.
- 7. Leiby, R.W. J. Heterocycl. Chem. 1984, 21, 1825.
- 8. Mahesh Reddy, G.; Reddy, P.S.N. Ind. J. Chem. 1997, 36, 166.
- 9. Radha, K.V.; Venkateswara Rao, B.; Kaushik, B.; Singh, S.P. Ind. J. Chem. 1987, 26, 376.

Received in the UK June 8, 2001

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.