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Abstract—An efficient synthesis of cross-conjugated enediynes has been developed utilizing the palladium catalyzed cross-coupling
reactions of 1,1-dibromo-1-alkenes with potassium alkynyltrifluoroborates under mild conditions.
� 2004 Elsevier Ltd. All rights reserved.
Cross-conjugated enediynes have recently received con-
siderable attention due to their extensive applications
in non-linear optics (NLO),1 macrocyclic ligands,2 opti-
cal switches,3 and the synthesis of polycyclic aromatic
hydrocarbons (PAHs).4 Preparative methods for enedi-
ynes are limited. The Sonogashira reaction can be uti-
lized5 as well as the palladium catalyzed coupling reac-
tion of ketene butyltelluroacetals with alkynes.6 The
Sonogashira reaction normally produces a mixture of
bromoenyne, enediyne, and recovered starting di-
bromoalkene.5e,7 In some cases the yields are low.5c,d

The butyltelluroacetal method involves the use of vinylic
telluride compounds that are toxic and often difficult to
prepare. Thus, the development of a simple and efficient
approach to cross-conjugated enediynes is of great
interest.

During the past 20 years, Suzuki-Miyaura cross-cou-
pling reactions have provided preparative methods for
effectively creating carbon–carbon bonds. The coupling
reactions of aryl-, alkyl-, and alkenylboron compounds
(including boronate esters, boranes, and boronic acids)
have been investigated extensively.8 However, the cou-
pling of alkynylboron compounds has been limited to
B-alkynyl-9-BBN borate complexes,9 alkynyltrialkoxy-
borate complexes,10 and lithium 1-alkynyl(triisoprop-
oxy)borates.11 Because alkynylboronic esters are
stronger Lewis acids than aryl- and alkenylboronate
esters and are easily hydrolyzed,12 their use in organic
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reactions can be problematic. Recently the use of potas-
sium alkynyltrifluoroborates in carbon–carbon bond
forming reactions has attracted significant attention
due to their stability and accessibility.13 In connection
with our ongoing studies of cross-coupling reactions
using potassium organotrifluoroborates,14 we developed
an efficient synthesis of cross-conjugated mono-enedi-
ynes using the cross-coupling of potassium alkynyltrifluo-
roborates with 1,1-dibromo-1-alkenes. Herein, we wish
to disclose the results of this study.

Various palladium catalysts, solvents, and reaction con-
ditions were examined using (2,2-dibromovinyl)-benz-
ene, 1, and potassium (p-tolylethynyl)trifluoroborate,
2, as model substrates (Table 1). 1 (1 equiv) was treated
with 2 (2 equiv) in the presence of 5 mol % of
Pd(dppf)Cl2/Cs2CO3 (3 equiv) at 50 �C in methanol (Ta-
ble 1, entry 1). Under these conditions, the reaction was
sluggish. Fifty-two percent of the starting material, 1,
was recovered after 12 h. The corresponding enediyne
3 was obtained in 10% yield, and 1,3-diyne 4 was
isolated as the major product in 36% yield. The homo-
coupling product of 1,1-dibromo-1-alkene and mono-
substituted bromoenyne were not detected although
they are commonly reported as byproducts in Sonogash-
ira reactions.5,6 Using DMF and toluene as solvents, the
isolated yields of enediyne 3 were 21% and 18%, respec-
tively (Table 1, entries 2 and 3). When THF was used as
solvent, the yield of 3 increased to 43% and only 26% of
starting material 1 was recovered (Table 2, entry 4). The
addition of a small amount of water increased the yield
of 3 to 52% as well as decreased the reaction time to 4 h
(Table 1, entry 5).15 As the reaction proceeds, the mix-
ture becomes black. Gas chromatographic analysis of
the black reaction mixture (presumably due to metallic
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Table 2. Cross-coupling of 1,1-dibromo-1-alkenes with potassium alkynyltrifluoroboratesa

Entry R R0 Yield (%)b

1 Phenyl n-Butyl 85

2 Phenyl 3-Chloropropyl 82

3 Phenyl Isopropenyl 74

4 Phenyl Phenyl 73

5 Phenyl p-Tolyl 76

6 p-Chlorophenyl Phenyl 81

7 p-Chlorophenyl 3-Chloropropyl 73

8 p-Tolyl 3-Chloropropyl 76

9 o-Tolyl 3-Chloropropyl 66

10 1-Naphthyl 3-Chloropropyl 82

11 p-Nitrophenyl 3-Chloropropyl 64

12 Octyl Phenyl 75

a Reactions carried out using 10 mol % of Pd(dppf)Cl2 with 3 equiv of Cs2CO3 in THF/H2O (20:1) at 50 �C for 2 h.
b Isolated yield.

Table 1. Optimization of reaction conditions using reaction of 1 with 2a

Entry Conditionsb Yield %c

3 4 1 (recovered)

1 Pd(dppf)Cl2, MeOH, 12 h 10 36 52

2 Pd(dppf)Cl2, DMF, 16 h 21 20 56

3 Pd(dppf)Cl2, Toluene, 12 h 18 12 64

4 Pd(dppf)Cl2, THF, 6 h 43 19 26

5 Pd(dppf)Cl2, THF/H2O (20:1), 4 h 52 16 14

6 Pd(dppf)Cl2 10 mol %, THF/H2O (20:1), 2 h 76 8 0

7 Pd(OAc)2 10 mol %, THF/H2O (20:1), 16 h 23 26 45

8 Pd(PPh3)4 10 mol %, THF/H2O (20:1), 12 h 21 22 54

9d Pd(dppf)Cl2, THF/H2O (20:1), 16 h 30 18 50

a The ratio of 1 to 2 was 1:2.
b Reaction carried out at 50 �C in the presence of 5 mol % of catalyst and 3 equiv of Cs2CO3.
c Isolated yield.
d 3 equiv of (i-Pr)2NEt were used in place of Cs2CO3.
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palladium) indicated formation of the desired product.
Increasing the amount of catalyst to 10 mol % generated
3 in 76% yield (Table 1, entry 6). Other palladium cata-
lysts, such as Pd(OAc)2 and Pd(PPh3)4, were less effec-
tive (Table 1, entries 7 and 8). Cs2CO3 gave higher
yields of enediyne than diisopropylethylamine (Table
1, entry 9). Optimum conditions for the reaction were
found to be 10 mol % of Pd(dppf)Cl2 and 3 equiv of
Cs2CO3 in THF/H2O (20:1) at 50 �C for 2 h.

To enhance the utility of the reaction, we prepared a
variety of potassium alkynyltrifluoroborates via depro-
tonation of 1-alkynes, followed sequentially by trans-
metallation with boronic esters and treatment in situ
with KHF2. 1,1-Dibromo-1-alkenes were prepared by
literature methods.16 Under the optimized conditions,
reactions of various potassium alkynyltrifluoroborates
with different 1,1-dibromo-1-alkenes were evaluated17

and the results are summarized in Table 2. The reaction
resulted in good isolated yields. No significant differ-
ences in reactivity with respect to the electronic and
steric effects of the substituents were observed. 1-(2,2-
Dibromovinyl)-4-nitrobenzene also gave a good yield,
54%.
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In summary, we have developed a convenient method
for preparing cross-conjugated geminal enediynes from
readily accessible 1,1-dibromo-1-alkenes and stable
potassium alkynyltrifluoroborates. The reaction condi-
tions are very straightforward and enediynes are ob-
tained in high yield.
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