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Abstract—An efficient synthesis of cross-conjugated enediynes has been developed utilizing the palladium catalyzed cross-coupling
reactions of 1,1-dibromo-1-alkenes with potassium alkynyltrifluoroborates under mild conditions.

© 2004 Elsevier Ltd. All rights reserved.

Cross-conjugated enediynes have recently received con-
siderable attention due to their extensive applications
in non-linear optics (NLO),! macrocyclic ligands,? opti-
cal switches,® and the synthesis of polycyclic aromatic
hydrocarbons (PAHs).* Preparative methods for enedi-
ynes are limited. The Sonogashira reaction can be uti-
lized® as well as the palladium catalyzed coupling reac-
tion of ketene butyltelluroacetals with alkynes.® The
Sonogashira reaction normally produces a mixture of
bromoenyne, enediyne, and recovered starting di-
bromoalkene.’>’ In some cases the yields are low.>d
The butyltelluroacetal method involves the use of vinylic
telluride compounds that are toxic and often difficult to
prepare. Thus, the development of a simple and efficient
approach to cross-conjugated enediynes is of great
interest.

During the past 20 years, Suzuki-Miyaura cross-cou-
pling reactions have provided preparative methods for
effectively creating carbon—carbon bonds. The coupling
reactions of aryl-, alkyl-, and alkenylboron compounds
(including boronate esters, boranes, and boronic acids)
have been investigated extensively.® However, the cou-
pling of alkynylboron compounds has been limited to
B-alkynyl-9-BBN borate complexes,” alkynyltrialkoxy-
borate complexes,!® and lithium 1-alkynyl(triisoprop-
oxy)borates.!! Because alkynylboronic esters are
stronger Lewis acids than aryl- and alkenylboronate
esters and are easily hydrolyzed,!? their use in organic
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reactions can be problematic. Recently the use of potas-
sium alkynyltrifluoroborates in carbon—carbon bond
forming reactions has attracted significant attention
due to their stability and accessibility.'® In connection
with our ongoing studies of cross-coupling reactions
using potassium organotrifluoroborates,'* we developed
an efficient synthesis of cross-conjugated mono-enedi-
ynes using the cross-coupling of potassium alkynyltrifluo-
roborates with 1,1-dibromo-1-alkenes. Herein, we wish
to disclose the results of this study.

Various palladium catalysts, solvents, and reaction con-
ditions were examined using (2,2-dibromovinyl)-benz-
ene, 1, and potassium (p-tolylethynyl)trifluoroborate,
2, as model substrates (Table 1). 1 (1 equiv) was treated
with 2 (2equiv) in the presence of 5Smol% of
Pd(dppf)Cl,/Cs,CO3 (3 equiv) at 50 °C in methanol (Ta-
ble 1, entry 1). Under these conditions, the reaction was
sluggish. Fifty-two percent of the starting material, 1,
was recovered after 12 h. The corresponding enediyne
3 was obtained in 10% yield, and 1,3-diyne 4 was
isolated as the major product in 36% yield. The homo-
coupling product of 1,1-dibromo-1-alkene and mono-
substituted bromoenyne were not detected although
they are commonly reported as byproducts in Sonogash-
ira reactions.>® Using DMF and toluene as solvents, the
isolated yields of enediyne 3 were 21% and 18%, respec-
tively (Table 1, entries 2 and 3). When THF was used as
solvent, the yield of 3 increased to 43% and only 26% of
starting material 1 was recovered (Table 2, entry 4). The
addition of a small amount of water increased the yield
of 3 to 52% as well as decreased the reaction time to 4 h
(Table 1, entry 5).!1> As the reaction proceeds, the mix-
ture becomes black. Gas chromatographic analysis of
the black reaction mixture (presumably due to metallic
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Table 1. Optimization of reaction conditions using reaction of 1 with 2%

_ Br FZ
©/_<Br+ — >—: BF3K—> _\\ +.——.— = = O
2

1 2 3 4
Entry Conditions® Yield %°
3 4 1 (recovered)

1 Pd(dppf)Cl,, MeOH, 12 h 10 36 52
2 Pd(dppf)Cl,, DMF, 16 h 21 20 56
3 Pd(dppf)Cl,, Toluene, 12 h 18 12 64
4 Pd(dppf)Cl,, THF, 6 h 43 19 26
5 Pd(dppf)Cl,, THF/H,O (20:1), 4 h 52 16 14
6 Pd(dppf)Cl, 10 mol %, THF/H,O (20:1), 2 h 76 8 0
7 Pd(OAc), 10 mol %, THF/H,O (20:1), 16 h 23 26 45
8 Pd(PPh;), 10 mol %, THF/H,O (20:1), 12 h 21 22 54
9d Pd(dppf)Cl,, THF/H,O (20:1), 16 h 30 18 50

#The ratio of 1 to 2 was 1:2.

® Reaction carried out at 50 °C in the presence of 5 mol % of catalyst and 3 equiv of Cs,COs.

“Isolated yield.
a3 equiv of (i-Pr),NEt were used in place of Cs,COs.

Table 2. Cross-coupling of 1,1-dibromo-1-alkenes with potassium alkynyltrifluoroborates®

Pd(dppf)Cly - CH,Cly, 10 mol% P R
Br L Cs,C03, 3 equiv Z
R g R BEK THE/H,0 (20:1) R N\
50°C, 2h "
Entry R R’ Yield (%)°
1 Phenyl n-Butyl 85
2 Phenyl 3-Chloropropyl 82
3 Phenyl Isopropenyl 74
4 Phenyl Phenyl 73
5 Phenyl p-Tolyl 76
6 p-Chlorophenyl Phenyl 81
7 p-Chlorophenyl 3-Chloropropyl 73
8 p-Tolyl 3-Chloropropyl 76
9 o-Tolyl 3-Chloropropyl 66
10 1-Naphthyl 3-Chloropropyl 82
11 p-Nitrophenyl 3-Chloropropyl 64
12 Octyl Phenyl 75

#Reactions carried out using 10 mol % of Pd(dppf)Cl, with 3 equiv of Cs,CO;5 in THF/H,O (20:1) at 50 °C for 2 h.

°Isolated yield.

palladium) indicated formation of the desired product.
Increasing the amount of catalyst to 10 mol % generated
3 in 76% yield (Table 1, entry 6). Other palladium cata-
lysts, such as Pd(OAc), and Pd(PPhj;),, were less effec-
tive (Table 1, entries 7 and 8). Cs,CO; gave higher
yields of enediyne than diisopropylethylamine (Table
1, entry 9). Optimum conditions for the reaction were
found to be 10 mol % of Pd(dppf)Cl, and 3 equiv of
Cs,CO5 in THF/H,0 (20:1) at 50 °C for 2 h.

To enhance the utility of the reaction, we prepared a
variety of potassium alkynyltrifluoroborates via depro-

tonation of l-alkynes, followed sequentially by trans-
metallation with boronic esters and treatment in situ
with KHF,. 1,1-Dibromo-1-alkenes were prepared by
literature methods.'® Under the optimized conditions,
reactions of various potassium alkynyltrifluoroborates
with different 1,1-dibromo-1-alkenes were evaluated!’
and the results are summarized in Table 2. The reaction
resulted in good isolated yields. No significant differ-
ences in reactivity with respect to the electronic and
steric effects of the substituents were observed. 1-(2,2-
Dibromovinyl)-4-nitrobenzene also gave a good yield,
54%.
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In summary, we have developed a convenient method
for preparing cross-conjugated geminal enediynes from
readily accessible 1,1-dibromo-1-alkenes and stable
potassium alkynyltrifluoroborates. The reaction condi-
tions are very straightforward and enediynes are ob-
tained in high yield.
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