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Immobilization of an azobenzene-bithiophene compound on a

gold surface leads to self-assembled monolayers with photo-

switchable electrical properties.

Surface-immobilization of light-stimulable p-conjugated
molecules as self-assembled monolayers (SAMs) is the focus

of high current interest.1 Azobenzene is known to reversibly

switch between an extended trans to a shorter cis configuration

upon irradiation at ca. 360 nm and 480 nm, respectively.

Azobenzene derivatives have been grafted on surfaces in view

of various applications in molecular electronics,2 molecular

machines,3 photoswitchable wettability,4 photoinduced

magnetization5 and modulation of interactions of surfaces

with biomolecules6 or metal cations.7

Azobenzene-based molecular or nano-junctions that exhibit

conductance switching with trans/cis photoisomerization have

been recently reported.2a,c,d,3,8 In this context, the develop-

ment of molecular architectures that could lead to high on/off

current ratio between the two configurational states appears as

a valuable goal.

Efficient reversible trans/cis isomerization of immobilized

azobenzene derivatives requires a decoupling of the azobenzene

unit from the surface in order to prevent or limit the quenching

of the photo-excited state by the metal substrate.8 To this end,

azobenzene units have been covalently fixed on metal surfaces

through different spacers such as alkane chains,2a,5,6b,9 aryl

units,2d,2f,10 or interfacial platforms.4a,11

In this work part of the long electrically insulating alkyl

spacers generally used to improve the formation of SAM from

thiol-terminated molecular systems has been replaced by an

electron-rich bithienyl p-conjugated system. Besides possible

p–p intermolecular interactions in the SAM, the incorporation

of a conjugated segment redox active at moderately positive

potentials will allow for preliminary characterization of the

immobilization process by means of simple electrochemical

experiments.12

In the continuation of our work on photo-stimulable

p-conjugated systems,13 we present here the synthesis and

characterization of the electronic properties of thioester 1,

the preparation of electroactive monolayers of 1-SH on a gold

surface and preliminary results on their photoswitchable

electrical properties.

The synthesis of compound 1 is described in Scheme 1.

Compound 2 was prepared from 2,20-bithiophene by a double

lithiation followed by successive additions of elemental sulfur

and 3-bromopropionitrile according to known procedures.14

Reaction of 2 with one equivalent of caesium hydroxide led to

the selective deprotection of one thiolate group which was

reacted with a slight excess of bromomethyl azobenzene 3 to

give compound 4 in 60–67% yields. Compound 3 was prepared

in 62% yield from 4,40-dimethylazobenzene (p-diMeAB) by

reaction with 2 equiv. of NBS in the presence of a catalytic

amount of ZrCl4 as Lewis acid (see SIw).
Treatment of compound 4 with one equiv. of caesium

hydroxide and subsequent addition of a slight excess of thiol

ester 515 gave the target compound 1 in 74–78% yield.

Scheme 1 Synthetic route to 1 and 1-SH.
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Saponification of 1 by caesium hydroxide followed by addition

of HCl gave monothiol 1-SH in 80% yield.

The UV-vis absorption spectrum of bithiophene 2 shows a

p–p* absorption band at 339 nm whereas that of p-diMeAB

exhibits two absorption bands characteristic of the azobenzene

unit, an intense band (lmax = 336 nm) corresponding to the

p–p* transition and a broad weak band (lmax = 440 nm)

related to the n–p* transition. As expected, the spectrum of 1,

1-SH and 4 shows an intense band at 339–342 nm and a weak

band at 435–440 nm. The band around 340 nm corresponds to

the convolution of the p–p* transitions of the 5,50-disulfanyl-

2,20-bithiophene segment and the azobenzene moiety, in

agreement with the higher molar extinction coefficients of 1,

1-SH and 4 relative to those of 2 and p-diMeAB (Table S1w).
As shown in Fig. 1, irradiation of a solution of compound 1

at 360 nm produces a progressive decrease of the intensity and

a slight broadening of the 342 nm band with an increase of the

absorbance of the n–p* transition in the 400–450 nm region.

The presence of two isosbestic points at 297 nm and 380 nm

indicates the coexistence of two chemical species in equilibrium.

These results are in full agreement with the trans/cis isomeri-

zation of the azobenzene moiety of 1. Irradiation with 480 nm

monochromatic light induces the reverse cis/trans isomeriza-

tion although a photostationary state is reached before

complete return to the initial conditions (Fig. S2w).
The cyclic voltammogram (CV) of compounds 1, 2 and 4

exhibits two reversible one-electron oxidation waves corres-

ponding to the successive formation of the radical cation and

dication of the dialkylsulfanyl-bithiophene system at anodic

peak potentials of Epa
1 = 1.00–1.16 V and Epa

2 = 1.17–1.29 V

respectively (Fig. S3w). The stability of the oxidized states can

be explained by the strong +M electron-donating effect of the

two sulfide groups.16 In the case of 1-SH, the first oxidation

wave associated with the formation of the radical cation

was slightly broadened due to the concomitant irreversible

oxidation of the thiol group into disulfide (Fig. S3w).
Monolayers of 1-SH have been prepared by immersion of

gold electrodes in CH2Cl2 solutions of freshly generated 1-SH

in the absence of light. Fig. 2 shows the typical CV trace of a

monolayer of 1-SH. The CV exhibits a reversible one-electron

oxidation wave at Epa
1 = 0.98 V associated with a cathodic

peak at 0.95 V. The analysis of the CV response of

the monolayer at different scan rates ranging from 50 to

8000 mV s�1 reveals a linear variation of the peak current

vs. scan rate with an invariance of Epa
1 (Fig. 2, insert). These

results are consistent with a fast redox reaction of a surface-

immobilized species. The determination of the surface

coverage by integration of the CV wave gave (after correction

for double-layer charge) a value of 4 � 10�10 mol cm�2

consistent with a densely close-packed monolayer.

Photo-switching of the SAM was tested by focusing mono-

chromatic light through an optical fiber. Preliminary results

show that the water contact angle reversibly switches from

93 � 21 after irradiation at 360 nm (cis isomer) to 98 � 21 after

irradiation at 480 nm (trans isomer). In parallel, the thickness

of the SAM measured by ellipsometry switches from 25 � 1 Å

(cis isomer) to 30 � 1 Å (trans isomer). These results are in full

agreement with the trans/cis photo-isomerization of the

immobilized 1-SH molecules.

The photoinduced changes of the electrical properties of the

SAMs were analyzed by recording current vs. voltage (I/V)

curves of the junction formed between the gold substrate and

the metallic tip of a conducting-AFM. Fig. 3 shows the typical

I–V curves for a pristine SAM, after 90 min exposure to

480 nm light (trans isomer), and after 90 min irradiation at

360 nm (cis isomer). From these two latter curves, where the

higher conductance state is associated with the cis isomer,

a typical on/off ratio is determined with a maximum of

3–4 � 103 at �1.6 V, irrespective of the sign of the applied

bias. Mayor and coworkers2d have recently reported an on/off

ratio of about 25–30 for SAMs based on a biphenyl-based

azobenzene derivative and attributed the observed changes in

conductance to the variation of the layer thickness. However,

the much larger on/off ratio observed here suggests that in

addition to purely geometrical effects, photo-induced changes

in the electronic structure of the junction can also play a role.

In fact, a detailed analysis of the I–V curves of the trans and

the cis isomers shows that the difference between the electrode

Fermi energy and the LUMO energy is lowered by ca. 0.4 eV

Fig. 1 Changes in the UV-vis spectrum of 1 in CH2Cl2 (4 � 10�6 M)

at 20 1C after photoirradiation at 360 nm for 0, 20, 45, 105, 165, 225,

285 and 345 min.

Fig. 2 CV of a monolayer of 1-SH on gold immersed in 0.1 M

n-Bu4NPF6/CH3CN–CH2Cl2 1 : 1, scan rate 1000 mV s�1. Insert:

variation of the intensity of the oxidation peak vs. scan rate.
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for the cis-isomer, in good agreement with first principles DFT

calculations (0.53 eV).17

In summary, compound 1 has been readily synthesized by

connecting an azobenzene and a 2,20-bithiophene unit thanks

to thiolate chemistry. The corresponding thiol compound

forms stable electroactive monolayers on a gold surface with

fast surface-confined electrochemical response. Preliminary

results show that after surface immobilization, the molecules

undergo reversible trans/cis photoisomerization with a

concomitant conductance switch with very high on/off current

ratio. The relationships between the molecular structure, the

properties of the molecular junction and the photo-induced

changes in electrical properties are now subject to detailed

experimental and theoretical investigations and will be

reported in a forthcoming publication.17
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(OPTOSAM project ANR-06-NANO-016). We thank
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Fig. 3 Current vs. voltage (I–V) curves measured by C-AFM
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360 nm for 90 min (cis isomer) and after irradiation at 480 nm for

90 min (trans isomer).

This journal is �c The Royal Society of Chemistry 2010 Chem. Commun., 2010, 46, 3657–3659 | 3659

Pu
bl

is
he

d 
on

 2
3 

M
ar

ch
 2

01
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

29
/1

0/
20

14
 1

8:
16

:1
1.

 
View Article Online

http://dx.doi.org/10.1039/c002072a



