New Annulation Techniques; Condensations of Phosphonium Ylides and Substituted 2*H*-Pyran-5-carboxylates; Preparation of Cyclohexenonedicarboxylates and Cyclohexadienedicarboxylates

Cornelis M. Moorhoff

Department of Chemistry, University of Tasmania, GPO Box 252-75C, HOBART, Tasmania 7001, Australia

Substituted alkyl 2*H*-pyran-5-carboxylates condensed with alkyl 3-oxo-4-(triphenylphosphoranylidene)butanoate and alkyl 4-(triphenylphosphoranylidene)-2-butenoate to form substituted 2-vinyl-6-oxo-4cyclohexene-1,3-dicarboxylates, some of which showed ecto-parasiticidal activity in pets and cattle, and substituted 2-vinyl-3,5-cyclohexadiene-1,3-dicarboxylates, respectively. The last mentioned product is in marked contrast to the product obtained using the corresponding arsonium analogue.

Keywords: Alkyl 2*H*-pyran-5-carboxylates; Methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate; Methyl 4-(triphenylphosphoranylidene)-2-butenoate; 2-Vinyl-6-oxo-4-cyclohexene-1,3-dicarboxylate; 2-Vinyl-3,5-cyclohexadiene-1,3-dicarboxylate.

INTRODUCTION

New annulation techniques for the construction of substituted cyclohexenones¹ and substituted cyclohexadienes² are important in organic synthesis. Recently, we described the condensations of arsonium ylides and 2H-pyran-5-carboxylates 1.^{3,4,5,6} 2*H*-pyran-5-carboxylates 1^7 have the unique ability to undergo reversible electrocyclic ring opening to the ketodiene 2^8 making these compounds available for Michael attack. For example, methyl 3-oxo-4-(triphenylarsoranylidene)butanoate 3 reacted with 2H-pyran-5-carboxylates 1 and gave mainly cyclohexenonedicarboxylates 4 and tetrahydrobenzofurandicarboxylates 5 ($R^2 = H$) as a minor byproduct⁴ (Scheme I). On the other hand, methyl 4-(triphenylarsoranylidene)but-2-enoate 6 reacted with 2H-pyran-5-carboxylates 1 and gave mainly divinylcyclopropanecarboxylates 7.⁵ Tetrahydrobenzofurandicarboxylates 8 ($R^2 = H$) were in some cases also formed as a byproduct. (Scheme I).

In this paper we report on the Michael-Wittig condensations of the phosphonium ylides namely, methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9a-9c and ethyl 4-(triphenylphosphoranylidene)but-2-enoate 10 with substituted 2*H*-pyran-5-carboxylates 1.

RESULTS AND DISCUSSION

Although the arsonium ylide 3 reacted with 2H-pyran-

5-carboxylates **1** at room temperature,⁴ alkyl 3-oxo-4-(triphenylphosphoranylidene)butanoates **9a**, **9b** and **9c**⁹ reacted with 2*H*-pyran-5-carboxylates **1a-1f** in benzene only above 60 °C to form substituted dialkyl 2-vinyl-6-oxo-4-cyclohexene-1,3-dicarboxylates **4a-4f** in a mixture of three keto diastereomers and one or two enol diastereomers (Scheme II).⁴ Some retro-aldol took place with conjugated 2*H*-pyran-5-carboxylates **1a-1c**. No tetrahydrobenzofurans **5**⁴ were isolated. The mechanism of this reaction can be formulated as being the result of an initial Michael attack of the γ -ylide form of **9a** (**9b** and **9c**) on the ketoester **2**. This is followed by an intramolecular Wittig condensation and expulsion of Ph₃P=O to give **4a**,¹⁰ **4b**, **4c**,¹¹ **4d**,⁴ **4e**⁴ and **4f** (Table 1). Apart from the esters of the phosphonium ylide **9a-9c**,⁹ few other

Present address: Boron Molecular Pty. Ltd., P.O. Box 756, Noble Park, VIC 3174, Australia

Scheme II Condensation of phosphonium ylide 9a-9c with 2*H*-pyran-5-carboxylates 1

phosphonium ylides are known that have been used for Michael-Wittig condensations for the production of cyclohexenone derivatives.¹² No further condensation products were identified.¹³ Biological screening tests revealed that cyclohexenonedicarboxylates **4d** and **4e** showed some activity against ectoparasites in pets and cattle.

The Michael-Wittig condensation is now a well-established useful synthetic reaction for the construction of 1,3cyclohexadienes.¹⁴ In this study we have found that alkyl 4-(triphenylphosphoranylidene)-2-butenoate 10 reacted with 2H-pyran-5-carboxylates 1 in benzene at 60 °C to form substituted cyclohexa-3,5-diene-1,3-dicarboxylates 11 (Scheme III). This is in sharp contrast to the condensation of the corresponding arsonium ylide 6 which gave 2,3-divinylcyclopropane-1-carboxylates 7.⁵ A solution of ethyl 2,2,6-trimethyl-2H-pyran-5-carboxylate 1g was added to the phosphonium ylide 10 in benzene and refluxed for 3 hours to give the substituted 3,5-cyclohexadiene-1,3-dicarboxylate 11g in a modest yield of 41% (Table 2). A $C\gamma$ - C_3 -Michael-attack of the γ -ylide of **10** on the ketodiene valence-tautomer of **1g** followed by an intramolecular Wittig condensation and elimination of triphenylphosphine oxide furnished the 3,5-cyclohexadiene-1,3-dicarboxylate 11g. The small coupling constant

Scheme III Condensation of phosphonium ylide 10 with 2*H*-pyran-5-carboxylates 1

Table 2. Condensation Products Obtained from the Condensation of Phosphonium Ylide **10** with 2*H*-pyran-5-carboxylates **1**

	-		
No	\mathbb{R}^1	\mathbf{R}^2	Yield (%)
11a	OEt	Me ₂ C=CHCH=CH	27
11g	OEt	Me	41
11h	OPr ⁱ	Me ₂ C=CHCH=CH	25
11i	OBu^t	Me	49

of e.g. 11g (J = 1.2 Hz) of the two aliphatic protons in the ring is consistent with the proposed stereochemistry of 11.¹⁵

EXPERIMENTAL SECTION

All reactions were carried out in a nitrogen atmosphere. ¹H NMR and ¹³C NMR were recorded on a Varian FT-80 at 80 and 20 MHz, respectively, or on a Varian Gemini 200 spectrometer at 200 MHz and 50.3 MHz, respectively, in CDCl₃ with TMS as an internal standard for ¹H NMR. High resolution electron ionization (EI) mass spectra were obtained from a Varian MAT 311 A instrument and high resolution chemical ionization spectra (CI) using ammonia, were obtained from a

Table 1.	Condensation Products	Obtained from the	Condensation of	Phosphonium	Ylids 9a–9c	with 2H-pyran-5	 -carboxylates 1
				1		1.2	2

No	\mathbf{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	Reaction conditions	Yield (%)	Ratio
$4a^{10}$	OEt	Me	Me ₂ C=CHCH=CH	OEt	3 h, 130 °C, neat	31 ^a	9:22 ^d
4b	OMe	Me	Me ₂ C=CHCH=CH	OMe	7 h, 75 °C, C ₆ H ₆	35 ^b	12:23 ^d
4c ¹¹	OMe	Н	MeCH=CHCH=CH	OMe	7 h, 70 °C, C ₆ H ₆	23 ^c	7:16 ^d
$4d^4$	OMe	Me	Me	OMe	5 h, 75 °C, C ₆ H ₆	24	16:5:4 ^e
$4e^4$	OMe	Н	Me	OMe	4 h, 75 °C, C ₆ H ₆	33	8:3:1:1 ^e
4f	OEt	Η	Me	SEt	5 h, 70 °C, C ₆ H ₆	3	(-)

^{a,b,c} 4%, 16% and 35% yield of retro-aldol products namely ethyl-, methyl 7-methyl-3-oxo-4,6-octadienoate¹¹ and methyl 3-oxo-4,6-octadienoate¹¹ of respectively 2*H*-pyrans **4a**, **4b** and **4c**. ^d Ratio enol:keto of **4a**, **4b** and **4c**. ^e Ratio ketodiesters of **4d** and **4e**.

0 17 C	7 = 8 15 15 15 18 S $20 = 22$ 15 17 18 S $20 = 22$	0	17 0 19 2 3 7 19 5 4 0 0 0	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 20 \\ 20 \\ 22 \\ 22 \\ 22 $	$\begin{array}{c} 0 & 17 & 0 & \frac{1}{19} & 21 \\ 11 & 2 & 3 & 8 & 9 \\ 1 & 4 & 7 & 10 & 9 \\ 6 & 5 & 0 & 20 & 22 \end{array}$			
	4f	11 a,	11h	11	11g, 11i			
No	4f ^b	11a ^c 11g ^c		11h ^b	11i ^b			
1	146.37	138.73	138.24	138.81	138.77			
2	51.49	46.23	51.06	46.40	51.72			
3	38.67	34.99	34.44	34.92	34.17			
4	64.95	129.35	128.40	131.81	127.85			
5	195.45	131.00	131.54	130.95	131.55			
6	126.67	125.96	121.14	125.91	120.56			
7	132.54	123.21* ^d	123.59	123.30* ^d	123.33			
8	121.54	133.87	133.57	133.84	133.31			
9, 15	18.23	25.87,	25.84	25.95,	25.71			
		26.30		26.41				
10, 16		18.30,	18.18	18.31,	17.97			
		18.72		18.76				
11	23.23	128.27	23.86	128.29	23.74			
12		132.07		132.15				
13		123.84*		123.86*				
14		137.69		137.81				
17	164.55	171.46	171.19	171.07	170.55			
18	191.81	166.41	166.40	166.52	166.53			
19, 20	61.62	60.28,	60.08,	68.19,	80.75			
	24.59	60.82	60.70	60.32	59.99			
21, 22	14.67,	14.12,	14.15,	21.69	27.77			
	14.50	14.28	14.31	14.32	14.11			

Table 3. ¹³C Chemical Shifts of Compounds **4f**, **11a**, **11b**, **11c** and **11d**^{a.e}

^a See Schemes II and III for compound numbers. At room temperature in CDCl₃ (δ in ppm). ^b at 50 MHz. ^c at 20 MHz. ^d Signals *can be interchanged. ^e NMR data of compounds **4d** and **4e** are reported in the experimental and gave the same chemical shifts as reported previously.⁴

Kratos Concept ISQ instrument. Ultraviolet absorbance was measured as solutions in 96% EtOH on a Varian SuperScan 3 spectrophotometer or on a Shimadzu UV-150 spectrophotometer. Infrared spectra were obtained on a Hitachi 270-30 FTIR spectrophotometer (film, NaCl plates). Microanalyses were performed by Microanalytisches Labor Pascher (Bonn, Germany) or using a Carlo Erba, CHNS-O EA 1108 Elemental Analyser. Column chromatography was performed using Merck Si-60 (40-63 mm) silica gel. Bulb-to-bulb distillations (bp) were carried out on a Buchi GKR-51 apparatus. Diethyl ether (ether) and tetrahydrofuran (THF) were dried and distilled from LiAlH₄. Light petroleum is the fraction between 40-60 °C. 2*H*-Pyran-5-carboxylates **1** were synthesised from β-ketoesters and α,β-unsaturated aldehydes.⁷

Condensation of methyl 2,2-dimethyl-6-(4-methylpenta-1,3-dienyl)-2*H*-pyran-5-carboxylate 1b and methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9b¹¹

A mixture of methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9b (4.40 g, 10.6 mmol) and methyl 2,2-dimethyl-6-(4-methylpenta-1,3-dienyl)-2H-pyran-5-carboxylate 1b (2.36 g, 9.50 mol) in benzene (5 mL) was refluxed for 7 hours in the presence of magnesium sulfate (4.00 g, 33.0 mmol) and hydroquinone (0.11 g, 1.0 mmol). The reaction mixture was diluted with benzene:diethyl ether (2:3) (50 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether:light petroleum (1:24), (2:23) and (3:22) to (1:4) to give respectively the recovered 2*H*-pyran-5-carboxylate 1b (0.23 g, 9.8%); methyl 7-methyl-3-oxoocta-4,6-dienoate (0.28 g, 16.2 %) and (1E) dimethyl 6-(4methylpenta-1,3-dienyl)-2-(2-methylprop-1-enyl)-4oxocyclohex-5-ene-1,3-dicarboxylate 4b (0.53 g, 35.2%) in equilibrium with (1E) dimethyl 4-hydroxy-6-(4-methylpenta-1,3-dienyl)-2-(2-methylprop-1-enyl)cyclohexa-3,5diene-1,3-dicarboxylate tautomer. Compound 4b had identical spectroscopic measurements with 4b isolated from the condensation of 3-methyl-2-butenal and phosphonium ylide **9b**.¹¹

Condensation of methyl 2-methyl-6-(penta-1,3-dienyl)-2*H*-pyran-5-carboxylate 1c and methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9b

A mixture of methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9b (13.9 g, 31.3 mmol) and methyl 2-methyl-6-(penta-1,3-dienyl)-2H-pyran-5-carboxylate 1c (3.45 g, 15.7 mol) in benzene (20 mL) was refluxed for 4 hours in the presence of sodium hydride (5 mg) and hydroquinone (1.70 g, 15.4 mmol). The reaction mixture was diluted with benzene (40 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether:light petroleum (40-60 °C) (1:24), (2:23) and (3:22) to (1:4) to give respectively the recovered 2*H*-pyran-5-carboxylate 1c (0.03 g, 0.9%); methyl 3-oxoocta-4,6-dienoate (0.93 g, 35.1 %) and (1E) dimethyl 6-(penta-1,3-dienyl)-2-(prop-1-enyl)-4-oxocyclohex-5-ene-1,3-dicarboxylate 4c (1.13 g, 22.6%) in equilibrium with (1E) dimethyl 4-hydroxy-6-(penta-1,3-dienyl)-2-(prop-1enyl)cyclohexa-3,5-diene-1,3-dicarboxylate tautomer. Compound 4c had identical spectroscopic measurements with 4c isolated from the condensation of crotonaldehyde and phosphonium ylide **9b**.¹¹

No	$4f^{b}$	J	11a ^c	J	11g ^c	J	11h ^b	J	11i ^b	J
2	2.97	m	3.34	d, 1.2	2.84	d, 1.2	3.35	d, 1.2	2.77	s
3	2.2-2.4	m	3.9-4.4	m	3.9-4.3	m	4.06	d, 11.0	4.01	d, 10.3
4	3.82	d, 6.9								
5			6.99	d, 5.8	6.90	dd, 5.8, 0.5	7.05	d, 6.1	6.89	d, 5.7
6	5.92	S	6.09	d, 5.8	5.95	dq, 5.8, 1.3	6.15	d, 6.1	5.93	dd, 5.7, 1.4
7	5.38	ddm, 15.0, 6.4	4.98	dm, 9.5	5.06	dm, 10.2	5.00	dm, 9.9	5.00	dm, 10.3
8	5.59	dq, 15.0, 6.7								
9	1.66	d, 6.4	1.62	2x s	1.64	d, 1.3	1.64	d, 1.3	1.61	8
15			1.85				1.91	S		
10			1.85	2x s	1.81	d, 1.4	1.82	2x s	1.76	8
16							1.83			
11	2.03	S	6.18	d, 15.0	1.94	d, 1.3	6.25	d, 15.3	1.90	S
12			6.57	dd, 15.0, 10.2			6.60	dd, 15.3, 10.7		
13			5.87	dm, 10.2			5.93	dm, 10.7		
19	4.16	q, 7.1	4.06	2x q, 7.0	4.09	2x q, 7.1	4.96	h, 6.2	-	-
20	2.94	q, 7.4	4.15		4.15		4.17	q, 7.2	4.13	q, 7.2
21	1.24	t, 7.1	1.17	2x t, 7.0	1.20	2x t, 7.1	1.18	d, 6.2	1.38	8
22	1.28	t, 7.4	1.26		1.24		1.26	t, 7.2	1.23	t, 7.2

Table 4. ¹H Chemical Shifts of Compounds (Structures Depicted with Table 3) 4f, 11a, 11g, 11h and 11i^{a.d}

^a At room temperature in CDCl₃ (δ in ppm). ^b at 200 MHz. ^c at 80 MHz. ^d NMR data of compounds **4d** and **4e** is reported in the experimental and gives the same chemical shifts as reported previously.⁴

Condensation of methyl 2,2,6-trimethyl-2*H*-pyran-5carboxylate 1d and methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9b

A mixture of methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9a (2.80 g, 6.74 mmol) and methyl 2,2,6trimethyl-2H-pyran-5-carboxylate 1d (1.15 g, 6.31 mol) in benzene (10 mL) was heated for 5 hours at 75 °C in the presence of hydroquinone (1.00 g, 9.08 mmol). The reaction mixture was diluted with light petroleum: diethyl ether (1:1) (50 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether: light petroleum (40-60 $^{\circ}$ C) (1:19), (1:9) and (1:3) to give recovered 2,6,6-trimethyl-2H-pyram-5-carboxylate 1d (80 mg, 7.0%), 3-(methoxycarbonyl)-6-methylhepta-3,5-diene (30 mg, 2.6%) and dimethyl 6-methyl-2-(2methylprop-1-enyl)-4-oxocyclohex-5-ene-1,3-dicarboxylate ⁴ **4d** (0.42 g, 23.8%). bp 125 °C (airbath) at 10⁻⁵ mm Hg. λ_{max} = 231, 316 (ε = 11270, 1660). ¹H NMR (major keto isomer, 64%): δ 1.64 (3H, d, J = 1.5 Hz), 1.68 (3H, d, J = 1.4 Hz), 1.96 (3H, d, J = 3.6 Hz), 3.17 (1H, dd, J = 12.5, 0.4 Hz), 3.53-3.85 (2H, m), 3.69 and 3.71 (6H, 2s), 4.95 (1H, dm, *J* = 9.7 Hz), 6.01 (1H, sm); ¹³C NMR: δ 17.85 (CH₃), 21.89 (CH₃), 25.78 (CH₃), 40.70 (CH), 51.78 and 52.03 (2x MeO), 53.11 (CH), 58.56 (CH), 122.50 (CH), 127.27 (CH), 137.31 (C) 157.09 (C), 169.45 (C=O), 171.53 (C=O), 192.28 (C=O); HRMS (EI) calcd. for C₁₅H₂₀O₅ *m/z* 280.1311, found 280.1309. Anal. Calcd. for C₁₅H₂₀O₅: C, 64.27; H, 7.19. Found: C, 64.09; H, 7.32. This compound **4d** was identical to **4d** obtained from the condensation of **1d** and the arsonium ylide $3.^4$

Condensation of methyl 2,6-dimethyl-2*H*-pyran-5carboxylate 1e and methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9a

A mixture of methyl 3-oxo-4-(triphenylphosphoranylidene)butanoate 9a (2.80 g, 6.74 mmol) and methyl 2,6-dimethyl-2H-pyran-5-carboxylate 1e (0.90 g, 5.35 mol) in benzene (6 mL) was heated for 4 hours at 75 °C in the presence of hydroquinone (0.90 g, 8.17 mmol). The reaction mixture was diluted with light petroleum:diethyl ether (1:1) (50 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether:light petroleum (1:3) to give dimethyl 6-methyl-2-(prop-1-enyl)-4-oxocyclohex-5-ene-1,3-dicarboxylate⁴ 4e (0.47 g, 33.0%). bp 115 °C (airbath) at 10^{-5} mm Hg. $\lambda_{max} =$ 229, 317 ($\epsilon = 11060$, 860). ¹H NMR (major keto isomer, 62%): δ 1.63 (3H, d, *J* = 5, 1.5 Hz), 1.92 (3H, s), 2.95-3.9 (3H, m), 3.71 and 3.68 (6H, 2s), 5.1-5.6 (2H, m), 5.93 (1H, sm). ¹³C NMR: δ 17.88 (CH₃), 22.08 (CH₃), 44.55 (CH), 52.04 and 52.16 (2x MeO), 52.99 (CH), 58.25 (CH), 127.37 (CH), 128.36 (CH), 130.25 (CH), 156.74 (C), 169.38 (C=O), 171.37 (C=O), 192.19 (C=O); HRMS (EI) calcd. for C₁₄H₁₈O₅ m/z 266.1154, found 266.1153. Anal. Calcd. for C14H18O5: C, 63.14; H, 6.81. Found: C, 62.78; H, 6.89. This compound 4e gave identical data to 4e obtained from the condensation of **1e** and the arsonium ylide **3**.⁴

Condensation of ethyl 2,6-trimethyl-2H-pyran-5carboxylate 1f and S-ethyl 3-oxo-4-(triphenylphosphoranylidene)butanoate $9c^9$

A mixture of crude S-Ethyl 3-oxo-4-(triphenylphosphoranylidene)butanoate $9c^9$ (15 g, 0.037 mol) and ethyl 2,6-trimethyl-2H-pyran-5-carboxylate 1f (1.1 g, mol) in benzene (150 mL) was heated for 6 hours at 75 °C in the presence of hydroquinone (0.90 g, 8.17 mmol). The mixture was diluted with light petroleum: diethyl ether (1:1) (50 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether:light petroleum (1:9) and (3:7) to give respectively uncharacterized sulphurous compounds including some unreacted 2H-pyran-5-carboxylate 1f and 1-ethyl,3-S-Ethyl 6-methyl-2-(prop-1-enyl)-4-oxocyclohex-5-ene-1,3-dicarboxylate **4f** (0.35 g, 3.1 %). bp 115 °C (airbath) at 10^{-2} mm Hg. $\lambda_{max} = 206$ (sh), 234, 344 ($\epsilon = 7300, 9900, 2700$). IR λ_{max} (film) = 2978 (m), 2933 (m), 1733 (s), 1666 (s), 1634 (m), 1582 (s), 1445 (m), 1378 (m), 1191 (s), 1158 (m), 1032 (m), 967 (m) cm⁻¹. HRMS (EI) calcd. for $C_{16}H_{22}O_4S m/z$ 310.1239, found 310.1243. MS: 310 (10), 282 (5), 249 (50), 221 (10), 175 (20), 95 (100). Anal. Calcd. for C₁₆H₂₂O₄S: C, 61.91; H, 7.14; S, 10.33. Found: C, 61.82; H, 7.41; S, 10.01.

Condensation of ethyl 2,2-dimethyl-6-(4-methylpenta-1,3dienyl)-2*H*-pyran-5-carboxylate 1a and ethyl 4-(triphenylphosphoranylidene)but-3-enoate 10

A mixture of ethyl 4-(triphenylphosphoranylidene)but-3-enoate **10** (5.0 g, 13.3 mmol) and ethyl 2,2-dimethyl-6-(4-methylpenta-1,3-dienyl)-2*H*-pyran-5-carboxylate **1a** (1.25 g, 6.37 mol) in benzene (10 mL) was heated for 15 hours at 75 °C in the presence of hydroquinone (0.11 g, 1.0 mmol). The reaction mixture was diluted with benzene: diethyl ether (1:1) (50 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether:light petroleum (40-60 °C) (1:19) to give (1*E*) diethyl 6-(4-methylpenta-1,3-dienyl)-2-(2-methylprop-1-enyl)-3,5-cyclohexadiene-1,3-dicarboxylate **11a** (0.18 g, 27.4%). bp 120 °C (airbath) at 0.04 mm Hg. $\lambda_{max} = 371$, 248 ($\varepsilon = 19750$, 10390). HRMS (EI) calcd. for C₂₂H₃₀O₄ *m/z* 358.2144, found 358.2167. Anal. Calcd. for C₂₂H₃₀O₄: C, 72.70; H, 7.93. Found: C, 72.59; H, 8.07.

Condensation of ethyl 2,2,6-trimethyl-2*H*-pyran-5carboxylate 1g and ethyl 4-(triphenylphosphoranylidene)but-3-enoate 10

A mixture of ethyl 4-(triphenylphosphoranylidene)-

but-3-enoate **10** (0.70 g, 1.87 mmol) and ethyl 2,2,6-trimethyl-2*H*-pyran-5-carboxylate **1g** (0.48 g, 1.83 mmol) in benzene (5 mL) was refluxed for 8 hours in the presence of hydroquinone (0.1 g, 0.91 mmol). The reaction mixture was diluted with light petroleum:diethyl ether (1:1) (100 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with diethyl ether:light petroleum (40-60 °C) (3:17), diethyl 6methyl-2-(2-methylprop-1-enyl)-3,5-cyclohexadiene-1,3dicarboxylate **11g** 0.76 g, 40.8%). bp 125 °C (airbath) at 0.04 mm Hg. $\lambda_{max} = 296$ ($\varepsilon = 7030$). HRMS (EI) calcd. for C₁₇H₂₄O₄ *m/z* 292.1674, found 292.1702. Anal. Calcd. for C₁₇H₂₄O₄: C, 69.84; H, 8.27. Found: C, 69.55; H, 8.22.

Condensation of 1-methylethyl 2,2-dimethyl-6-(4-methylpenta-1,3-dienyl)-2*H*-pyran-5-carboxylate 1h and ethyl 4-(triphenylphosphoranylidene)but-3-enoate 10

A mixture of ethyl 4-(triphenylphosphoranylidene)but-3-enoate **10** (0.55 g, 1.47 mmol) and 1-methylethyl 2,2-dimethyl-6-(4-methylpenta-1,3-dienyl)-2*H*-pyran-5-carboxyl ate **1h** (0.25 g, 0.905 mmol) in benzene (1 mL) was heated for 75 minutes at 75 °C in the presence of hydroquinone (0.11 g, 1.0 mmol). The reaction mixture was diluted with light petroleum:ethyl acetate (1:1) (50 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with ethyl acetate:light petroleum (40-60 °C) (1:9), (1*E*) 3-(1-methylethyl),1-ethyl 6-(4-methylpenta-1,3-dienyl)-2-(2-methylprop-1-enyl)-3,5-cyclohexadiene-1,3-dicarboxylate **11h** (0.085 g, 25.2%). IR (cm⁻¹): v_{max} 2983 (s); 2933 (s); 2875 (m); 1730 (s); 1710 (s); 1631 (m); 1448 (m); 1375 (m); 1259 (s); 1108 (s).

Condensation of 1,1-Dimethylethyl 2,2,6-trimethyl-2*H*pyran-5-carboxylate 1i and ethyl 4-(triphenylphosphoranylidene)but-3-enoate 10

A mixture of ethyl 4-(triphenylphosphoranylidene)but-3-enoate **10** (0.48 g, 1.28 mmol) and *t*-butyl 2,2,6-trimethyl-2*H*-pyran-5-carboxylate **1i** (0.17 g, 0.7578 mmol) in benzene (1 mL) was heated at 75 °C for 2 hours in the presence of hydroquinone (0.1 g, 0.91 mmol). The reaction mixture was diluted with light petroleum:ethyl acetate (1:1) (100 mL) and filtered over silica gel. The filtrate was evaporated and the residue chromatographed over silica gel and eluted with ethyl acetate:light petroleum (40-60 °C) (1:9) to give 3-(1,1-dimethylethyl)-1-ethyl 6-methyl-2-(2-methylprop-1enyl)-3,5-cyclohexadiene-1,3-dicarboxylate **11i** (0.12 g, 49.4%). bp 125 °C (airbath) at 0.04 mm Hg. $\lambda_{max} = 299.5$. IR (cm⁻¹): v_{max} 2984 (s), 2960 (s), 1710 (s), 1706 (s), 1615 (m), 1590 (m), 1445 (m), 1368 (m), 1263 (s), 1142 (s), 842 (m), 757 (m). Found: MH⁺ (LSIMS), 321.20596. $C_{19}H_{29}O_4$ requires M, 321.20659.

ACKNOWLEDGMENTS

The author thanks David Schneider (University of Stellenbosch) for helpful discussions during the developmental stages of this project; Dr. Graham Rowbottom (University of Tasmania) and Microanalitisches Labor Pascher for elemental analyses; Hendrik Spies (University of Stellenbosch) for NMR-analyses of compounds **4d**, **4e**, **11a** and **11g**; Verona Truter (University of Stellenbosch) and Dr. Noel Davies (University of Tasmania) for mass spectral analyses; Novartis Australasia for testing of compounds. Financial assistance from the Foundation for Research Development (South Africa) and Australian Research Council is gratefully acknowledged.

Received May 28, 2002.

REFERENCES

 (a) Jung, M. E. Tetrahedron 1976, 32, 3. (b) Hauser, F. M.; Pogany, S. A. Synthesis 1980, 814. (c) Geirsson, J. K. F.; Gudmundsdottir, K. Synthesis 1990, 993. (d) Semmelhack, M. F.; Harrison, J. J.; Thebtaranonth, Y. J. Org. Chem. 1979, 44, 3275. (e) Geirsson, J. K. F.; Johannesdottir, J. F. J. Org. Chem. 1996, 61, 7320. (f) Okano, T.; Satou, Y.; Tamura, M.; Kiji, J. Bull. Chem. Soc. Jpn. 1997, 70, 1879. (g) Kongkathip, B.; Kongkathip, N.; Janthorn, S.; Virarangsiyakorn, D. Chem. Lett. 1999, 51.

- (a) Pramod, K.; Ramanathan, H.; Rao, G. S. R. S. J. Chem. Soc. Perk. Trans. 1 1983, 7. (b) Buchi, G.; Wuest, H. Helv. Chim. Acta 1971, 54, 1767. (c) Nigmatov, A. G.; Kornilova,
- I. N.; Serebryakov, E. P. Russ. Chem. Bull. 1996, 45, 144.
- Moorhoff, C. M. *Tetrahedron Lett.* **1996**, *37*, 9349.
 Moorhoff, C. M. *Tetrahedron* **1997**, *53*, 2241.
- 5. Moorhoff, C. M. J. Chem. Res. (M) **1997**, 866. J. Chem. Res.
- (*S*) **1997**, 130.
- 6. Moorhoff, C. M.; Winkler, D. New J. Chem. 1998, 12, 1485.
- 7. Moorhoff, C. M. Synthesis 1997, 685.
- (a) Gosink, T. A. J. Org. Chem. 1974, 39, 1942. (b) Boehm,
 S.; Kuthan, J. Collect. Czech. Chem. Commun. 1983, 48, 1007 (Chem. Abstr. 1983, 99, 87336).
- 9. Moorhoff, C. M. J. Chem. Soc., Perk. Trans. 1 1997, 1987.
- 10. Moorhoff, C. M.; Schneider, D. F. *Tetrahedron Lett.* **1987**, 28, 4721.
- Moorhoff, C. M.; Schneider, D. F.; Winkler, D. J. Chem. Res. (M) 1998, 3461. J. Chem. Res. (S) 1998, 763.
- (a) Broquet, C. *Tetrahedron* **1975**, *31*, 1331. (b) Martin, S.
 F.; Desai, S. R. J. Org. Chem. **1977**, *42*, 1664. (c) Martin S.
 F.; Desai, S. R. J. Org. Chem. **1978**, *43*, 4673.
- Yang, J-D.; Kim, M-S.; Lee, M.; Baik W.; Koo, S. Synthesis 2000, 801.
- 14. (a) Bohlmann, F.; Zdero, C. Chem. Ber. 1973, 106, 3779. (b) Dauben, W. G.; Ipaktschi, J. J. Am. Chem. Soc. 1973, 95, 5088. (c) Dauben, W. G.; Hart, D. J.; Ipaktschi, J.; Kozikowski, A. P. Tetrahedron Lett. 1973, 4425. (d) Dauben, W. G.; Kozikowski, A. P. Tetrahedron Lett. 1973, 3711. (e) Padwa, A.; Brodsky, L. J. Org. Chem. 1974, 39, 1318. (f) Buchi, G.; Pawlak, M. J. Org. Chem. 1975, 40, 100. (g) Fuchs, P. L. Tetrahedron Lett. 1974, 4055.
- (a). Natale, N. R.; Hope, H. J. Heterocyclic Chem. 1986, 23, 711. (b) Muceniece, D.; Zandersons, A.; Lusis, V. Bull. Soc. Chim. Belg. 1997, 106, 467. (c) Burgart, Y. V.; Fokin, A. S.; Bazyl, I. T.; Saloutin, V. I. Russ. Chem. Bull. 1997, 46, 952.