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Universite Cadi Ayyad, Marrakech, Maroc

2Laboratoire de Chimie Organique Appliquée, Faculté des Sciences BenM’Sik,
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ABSTRACT

Potassium fluoride doped natural phosphate, inexpensive and environmentally
friendly catalyst, is shown to be an efficient basic catalyst for the N1=N9 alkyla-
tion of different nucleobases as synthons for PNAs.

In 1991, Nielson et al.[1] developed a new class of oligonucleotide analogues
known as Polyamide (or Peptide) Nucleic Acids (PNAs) in which the entire sugar
phosphate backbone has been replaced by a peptide-like backbone. These oligomers
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of nucleobase are derived from N-(2-aminoethyl) glycine which recognize and bind
strongly to specific DNA or RNA sequences.[2] These characteristics make them
potentially and extremely useful as an antisense or antigene drug.[3]

The application of inorganic solid acids as heterogeneous catalysts for organic
synthesis is an area of intense research. Silica gel, alumina, montmorillonite, zeolite
and natural phosphate have been shown to function as effective catalyst for liquid-
phase organic transformations.[4] The advantages of these heterogeneous catalysts
over the homogeneous systems include stability, ease handling, lack of corrosion
and other environmental hazards, and ease of recovery and regeneration.

We have shown recently that natural phosphate is a new Lewis acids catalysts
for 1,3-dipolar cycloaddition[5] and for acyclonucleoside synthesis.[6] In continuation
of our program on the use of natural phosphate as catalyst and in the search of
an alternative strategy which would open the way to a combination of PNA and
oligonucleotides synthesis, we have developed a new and easy synthesis of the PNA
precursor (ethyl acetate-nucleobase) using a cheap KF doped natural phosphate as a
basic catalyst (Sch. 1, 2, 3).

The use of potassium fluoride on alumina (KF=Al2O3) as a base for functiona-
lization of amide and N-alkylation, has been described in the literature.[7] In order to
assess influence of natural phosphate doped with KF as basic catalyst on the synth-
esis of ethyl acetate-nucleobase derivatives, a number of experiments were performed
to optimize reaction conditions. Results of these studies, are summarized in Table 1.

Both KF and NP=KF (175=25) had a weak catalytic activity (entries 1 and 2).
When the amount of NP=KF was increased (350=50),the reaction yield was tripled

Scheme 1.

Scheme 2.
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(entry 3). The reaction was monitored by thin layer chromatography, and it was
stopped when the N1,N3-bisalkylated product appeared. This procedure appears
to be regioselective and gives only the N1 isomer for uracil (Sch. 1).

To expand the scope and the synthetic utility of this reaction using NP=KF
(350=50), we next examined the N-alkylation of other nucleobases under similar
conditions (Sch. 2, 3 and Table 2).

The poor solubility of unprotected nucleobases (cytosine, adenine and guanine)
excluded their use in most reactions. Introduction of a protecting group was neces-
sary to increase the solubility of these bases.[8,9]

Scheme 3.

Table 1. Catalyst influence on the N-alkylation of uracil.

Entry Catalyst Weight ratio (mg=mg)a Time (h) Yield (%)b

1 KF 50 10 28
2 NP=KF 175=25 2 15
3 NP=KF 350=50 1.5 50

aThe amount of catalyst used in reactions with 100mg of uracil.
bPurification by silica gel chromatography.

Table 2. Alkylation of different heterocyclic bases.

Entry Heterocyclic base Time (h) Yield (%)a

1 Uracil 1a 1.5 50
2 Thymine 1b 2 55
3 4-N-Benzoylcytosine 1c 1 60
4 4-N-Benzoyladenine 1d 4 50
5 2-N-Acetylguanine 1e 4 43b

6 2-N-acetyl-6-O-(N,N-diphenylcarbamoyl)guanine 1f 3 70c

aPurification by silica gel chromatography.
bN9=N7: 60=40 yield ratio.
cN9=N7: 95=5 yield ratio.
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These protected nucleobases were alkylated to give the desired N1-alkylated
pyrimidines (entries 1–3) and N9-alkylated purines derivatives along or with other
regioisomers (entries 4–6). It was reported that 6-O-(N,N-diphenylcarbamoyl) pro-
tected guanine 1f has been reported to undergo alkylation with high regioselectivity
to give in some cases 99=1 ratio in favour of the N9 regioisomer.[9]

Interesting, we found that the 2-N-acetyl 6-O-(N,N-diphenylcarbamoyl)guanine
1f (Sch. 3) when reacted with ethyl bromoacetate in the presence of NP=KF afforded
a nearly 95=5 ratio of N9=N7 isomers in 70% yield (entry 6, Table 2).

All compounds were characterized fully by spectroscopic and elemental
analyses, which were found to be in accordance with the proposed structures.[8]

In conclusion, we showed that our method, in general, provides the desired ethyl
acetate-nucleobases in yields comparable to those reported in the literature using
basic conditions.

On the other hand the use of KF doped natural phosphate as basic catalyst
provides a significant new and effective method for the environmentally compatible
and practical synthesis of these derivatives.

EXPERIMENTAL

The 1H NMR spectra were recorded using a Brucker AC 250MHz spectrometer
DMSO-d6 was used as a solvent and internal reference. Mass spectra (MS) were
obtained with JEOL JMS DX 300 instrument using fast atomic bombardment
(FABþ). Thin layer chromatography was performed on plates of kieselgel 60 F254
(Merck) and short-wave ultraviolet light (254 nm) was used to detect the UV-absorb-
ing spots. Column chromatography separation was carried out on silica gel (0.063–
0.2mm Merck).

For the preparation of natural phosphate see Ref.[4c]

Preparation of Doped Natural Phosphate

350mg of natural phosphate and 50mg of KF were mixed in 10mL of water and
evaporated to dryness and dried for 6 h at 150�C. The obtained solid residue was
used as basic catalyst in alkylation reactions.

General Procedure

A typical experimental procedure is described for uracil. To a mixture of uracil
(100mg, 0.892mmol) and ethyl bromoacetate (2 eq) in dry acetonitrile (12mL) was
addedNP=KF (350mg=50mg). After stirring for 1.5 h at reflux, themixture was filtered
and the filtrate was concentrated in vaccuo. Purification of the residue by flash column
chromatography gave N-1 (ethyl acetate) uracil (80mg, 50%) as a white precipitate.

1-(Ethoxycarbonylmethyl)uracil 2a. Yield: 50%, Rf¼ 0.62 (CHC13=MeOH)
(90=10, v=v), 1H NMR d: 11.4 (s, 1H, NH-3); 7.65 (d, 1H, H-6, J¼ 7.8Hz); 5.65
(d, 1H, H-5, J¼ 7.8Hz); 4.55 (s, 2H, NCH2); 4.17 (q, 2H, COOCH2CH3); 1.23
(t, 3H, COOCH2CH3). MS (FABþ, GT) m=z 199 [MþH]þ.

112 Alahiane et al.
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1-(Ethoxycarbonylmethyl)thymine 2b. Yield: 55%, Rf¼ 0.70 (CHC13=MeOH)
(90=10, v=v), 1H NMR d: 7.21 (s, 1H, H-6); 4.40 (s, 2H, NCH2); 4.20 (q, 2H,
COOCH2CH3); 1.90 (s, 3H, CH3); 1.25 (t, 3H, COOCH2CH3), MS (FABþ, GT)
m=z 213 [MþH]þ.

4-N-benzoyl-1-(Ethoxycarbonylmethyl)cytosine 2c. Yield: 60%, Rf¼ 0.81
(CHC13=MeOH)(90=10, v=v), 1H NMR d: 11.25 (s, 1H, NHBz); 8.12 (d, 2H, o-H
benzoyl); 8.0–7.34 (m, 5H, H-5 and H-6; m,p-H Benzoyl); 4.64 (s, 2H, NCH2);
4.15 (q, 2H, COOCH2CH3); 1.20 (t, 3H, COOCH2CH3), MS (FABþ, GT) Mass
spectrum FABþ (GT) m=z 304 [MþH]þ.

6-N-(Benzoyl)-9-(Ethoxycarbonylmethyl)adenine 2d. Yield: 47%, Rf¼ 0.51
(CHC13=MeOH)(90=10, v=v), 1H NMR d: 11.24 (s; 1H, NHBz); 8.80 (s, 1H, H-2);
8.50 (s, 1H, H-8); 8.10 (d, 2H, o-H Benzoyl); 7.70–7.58 (m, 3H, m,p-H Benzoyl);
5.28 (s, 2H, NCH2); 4.24 (q, 2H, COOCH2CH3); 1.27 (t, 3H, COOCH2CH3); MS
(FABþ, GT) m=z 326 [MþH]þ.

2-N-(Acetyl)-9-(Ethoxycarbonylmethyl)guanine 2e. Yield: 25%, Rf¼ 0.34
(CHCl3=MeOH)(90=10, v=v), 1H NMR d: 12.12 (s, 1H, NHAc); 11.61 (s, 1H,
NH-3); 8.15 (s, 1H, H-8); 5.22 (s, 1H, NCH2); 4.18 (q, 2H, COOCH2CH3); 2.51
(s, 3H, CH3CO); 1.22 (t, 3H, COOCH2CH3); MS (FABþ, GT) m=z 280 [MþH]þ.

2-N-(Acetyl)-7-(Ethoxycarbonylmethyl)guanine 2e0. Yield: 18%, Rf¼ 0.52
(CHC13=MeOH)(90=10, v=v), 1H NMR d: 12.12 (s, 1H, NHAc); 11.62 (s, 1H,
NH-3); 8.15 (s, 1H, H-8); 5.21 (s, 1H, NCH2); 4.17 (q, 2H, COOCH2CH3); 2.20
(s, 3H, CH3CO); 22 (t, 3H, COOCH2CH3); MS (FABþ, GT) m=z 280 [MþH]þ.

2-N-(Acetyl)-9-(Ethoxycarbonylmethyl)guanine 2g. Yield: 67%, Rf¼ 0.80
(CHCl3=MeOH)(90=10, v=v),1H NMR d: 10.80 (s, 1H, NH-3); 8.70 (s, 1H, H-8);
7.35–760 (m, 10H, phenyl); 5.26 (s, 1H, NCH2); 4.20 (q, 2H, COOCH2CH3); 2.58
(s, 3H, CH3CO); 1.26 (t, 3H, COOCH2CH3); MS (FABþ, GT) m=z 555 [MþH]þ.
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