Six- and eight-coordinate thio- and seleno-ether complexes of NbF5 and some comparisons with NbCl5 and NbBr5 adducts \dagger

Marek Jura,^a William Levason,^{*a} Raju Ratnani,^{‡b} Gillian Reid^a and Michael Webster^a

Received 10th August 2009, Accepted 7th October 2009 First published as an Advance Article on the web 16th November 2009 DOI: 10.1039/b916336k

The reaction of RS(CH₂)₂SR (R = Me, Et or ⁱPr) with NbF₅ produces [NbF₄{RS(CH₂)₂SR}₂][NbF₆] which contain distorted eight-coordinate (dodecahedral) cations and octahedral anions, whereas RSe(CH₂)₂SeR (R = Me or Buⁿ) form six-coordinate [(NbF₅)₂(μ -RSe(CH₂)₂SeR)]. Et₂S and Me₂Se (L) also form six-coordinate [NbF₅(L)], but Me₂S forms both [NbF₅(Me₂S)] and an eight-coordinate cation in [NbF₄(Me₂S)₄][NbF₆]. MeS(CH₂)₂SMe forms eight-coordinate cations in [NbX₄{MeS(CH₂)₂SMe}₂]-[NbX₆] (X = Cl or Br), but other complexes of the heavier halides including [NbX₅(L)] and [(NbX₅)₂(μ -L-L)] (L-L = RSe(CH₂)₂SeR; *o*-C₆H₄(CH₂SMe)₂ and *o*-C₆H₄(CH₂SeMe)₂) contain six-coordinate niobium. The very unstable [NbCl₅(Me₂Te)] was characterised spectroscopically, but all other attempts to form telluroether complexes resulted in decomposition, and NbI₅ was reduced even by thioethers. The complexes have been characterised by multinuclear NMR (¹H, ¹⁹F, ⁹³Nb, ⁷⁷Se or ¹²⁵Te), IR and UV/visible spectroscopy, and X-ray crystal structures are reported for [NbF₄{RS(CH₂)₂SR}₂][NbF₆] (R = Me, ⁱPr), [NbF₄(Me₂S)₄][NbF₆], [NbCl₅(Me₂Se)], [NbBr₅(Me₂S)], [(NbCl₅)₂{*o*-C₆H₄(CH₂SMe)₂] and [(NbCl₅)₂{MeSe(CH₂)₂SeMe}]. All the complexes are very moisture sensitive and the fluoride complexes decompose slowly with fluorination of the neutral ligand.

Introduction

Complexes of soft neutral thioether or selenoether ligands with hard oxophilic early transition metals in their highest oxidation states are relatively uncommon, and metal fluoride complexes are very rare.^{1,2} We have reported dithioether and diselenoether adducts of MoO_2X_2 (X = Cl or Br),³ WO₂X₂,⁴ MCl₄ (M = Ti, Zr or Hf),^{5,6} VOX₃ (X = F or Cl (thioethers only)),⁷ and VCl₄,^{7,8} all of which are extremely readily hydrolysed. Some of these complexes are single-source CVD precursors for metal dichalcogenide films.^{6,8} In the case of niobium(v), the simplest six-coordinate adducts $[NbX_5(R_2S)]$ (X = F, Cl or Br; R = Me or Et) were prepared by Fairbrother and co-workers by direct reaction of NbX₅ with R₂S in the absence of a solvent and identified using a combination of vapour pressure measurements and microanalysis.9,10 These, and the Me₂Se analogues, were also examined by Merbach and coworkers, and solution UV-visible and ¹H NMR spectra reported, although in many cases these were from complexes generated in situ.¹¹⁻¹³ Subsequently, detailed ¹H NMR studies revealed that ligand exchange proceeds by an associative mechanism, in contrast to ether analogues, which react by a dissociative mechanism.14 There is very little information on dithioether complexes,15 although a small number of thiacrown complexes $[(\text{thiacrown})(\text{NbCl}_5)_x]$

have been described.¹⁶ With the exception of $[(NbCl_5)_2([14]aneS_4)]$ ([14]aneS₄ = 1,4,8,11-tetrathiacyclotetradecane), none of these have been structurally characterised. Here we describe systematic studies of the reactions of NbF₅ with a range of chalcogenoether ligands and selected comparator data on NbCl₅ and NbBr₅ adducts, focusing particularly on structural and multinuclear NMR results. In a communication¹⁷ we have described the structural characterisation of two sulfonium salts obtained as byproducts from the reactions of NbF₅ with *o*-C₆H₄(CH₂SMe)₂ and [9]aneS₃ (1,4,7-trithiacyclononane).

Experimental

Infrared spectra were recorded as Nujol mulls between CsI plates using a Perkin-Elmer 983G or Spectrum 100 spectrometers over the range 4000–200 cm⁻¹. ¹H NMR spectra were recorded from CDCl₃ solutions using a Bruker AV300 spectrometer. ¹⁹F{¹H}, ⁷⁷Se{¹H}, ¹²⁵Te{¹H} and ⁹³Nb NMR spectra were recorded using a Bruker DPX400 spectrometer and are referenced to external CFCl₃, neat Me₂Se, neat Me₂Te and [Et₄N][NbCl₆] in MeCN respectively. UV/visible spectra were recorded from solid samples diluted with BaSO₄ using the diffuse reflectance attachment of a Perkin-Elmer Lambda 19 spectrometer. Microanalyses on new complexes were undertaken by Medac Ltd, except for some of the fluoride complexes which decomposed at room temperature in a few hours (see Discussion section), which precluded obtaining microanalytical data. Preparations were undertaken using standard Schlenk and glove-box techniques under a N₂ atmosphere. Solvents were dried by distillation from CaH₂ (CH₂Cl₂) or Na/benzophenone ketyl (hexane and diethyl ether). Anhydrous NbX₅ (X = F, Cl, Br or I) were obtained from Aldrich, Apollo or Strem and used as received. The ligands R_2S (R = Me or

^aSchool of Chemistry, University of Southampton, Southampton, UK SO17 1BJ

^bDepartment of Pure and Applied Chemistry, M. D. S. University, Ajmer, 305009, India

[†] Electronic supplementary information (ESI) available: Additional experimental and spectroscopic data for $[NbX_5L]$ complexes, and crystallographic data and ORTEPs for $[NbBr_5(Me_2S)]$ and $[NbCl_5(Me_2Se)]$. CCDC reference numbers 723266–723272. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b916336k [‡] Deceased 5th June 2009.

Et) and Me₂Se were obtained from Aldrich or Strem and stored over molecular sieves. Me₂Te, RS(CH₂)₂SR (R = Me, Et or ⁱPr), RSe(CH₂)₂SeR (R = Me or ⁿBu), *o*-C₆H₄(CH₂EMe)₂ (E = S or Se) and MeTe(CH₂)₃TeMe were made by literature methods,¹⁸⁻²¹ and stored over molecular sieves.

$[NbF_5(Me_2S)]$

Powdered NbF₅ (0.38 g, 2.0 mmol) was added to neat Me₂S (10 mL) with stirring, when the solid initially dissolved to give a yellow solution, and then over a period of *ca*. 30 min precipitated as a white powder. This was filtered off and dried *in vacuo*. Yield: 0.40 g, 80%. Required for C₂H₆F₅NbS (250.0): C, 9.6; H, 2.4. Found: C, 9.3; H, 3.0%. ¹H NMR (CDCl₃, 295 K): δ 2.36 (s). UV/vis (d.r.)/cm⁻¹: 27800, 38000.

$[NbF_5(Et_2S)]$

Colourless oil made as described.⁹ ¹H NMR (CDCl₃, 295 K): δ 1.40 (t) [3H], 2.95 (q) [2H]. UV/vis (d.r.)/cm⁻¹: 26000, 38400.

$[NbF_4(Me_2S)_4][NbF_6]$

NbF₅ (0.38 g, 2.0 mmol) was suspended in CH₂Cl₂ (10 mL) and Me₂S (0.36 g, 6.0 mmol) syringed in with stirring to give a colourless solution. This was refrigerated for 5 days (-18 °C), when colourless crystals separated. These were filtered off from the cold solution and dried in a stream of nitrogen. Yield: 0.35 g, 56%. The crystals lose Me₂S and crumble a little above room temperature or *in vacuo*, which prevented reproducible microanalyses being obtained. ¹H NMR (CDCl₃, 295 K): δ 2.28 (s); (220 K) δ 2.40. UV/vis (d.r.)/cm⁻¹: 27500.

[NbF₅(Me₂Se)]

NbF₅ (0.19 g, 1.0 mmol) was suspended in CH₂Cl₂ (10 mL) and Me₂Se (0.11 g, 1.0 mmol) syringed in with stirring to give a colourless solution. After 10 min the solvent was removed *in vacuo* to give a fawn solid, which was washed with hexane, filtered off and dried. Yield: 0.27 g, 90%. The solid darkens slowly in the dry-box, and solutions decompose in several hours, turning first brown and then green–black. Decomposition is slower in a freezer. ¹H NMR (CDCl₃, 295 K): δ 2.76 (s). UV/vis (d.r.)/cm⁻¹: 23000, 33800.

$[NbF_{4}{MeS(CH_{2})_{2}SMe}_{2}][NbF_{6}]$

NbF₅ (0.37 g, 2.0 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) and a solution of MeS(CH₂)₂SMe (0.245 g, 2.0 mmol) in CH₂Cl₂ (4 mL) added with stirring. A clear colourless solution formed rapidly, which was stirred for 30 min and then concentrated *in vacuo* to ~10 mL. Refrigeration for one week produced colourless crystals, which were filtered off and dried *in vacuo*. Yield: 0.45 g, 73%. Required for C₈H₂₀F₁₀Nb₂S₄ (620.3): C, 15.5; H, 3.3. Found: C, 15.0; H, 3.1%. ¹H NMR (CDCl₃, 295 K): δ 2.25 (s) [6H] Me, 3.03 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 27700.

$[NbF_4{EtS(CH_2)_2SEt}_2][NbF_6]$

This was made similarly to $[NbF_4{MeS(CH_2)_2SMe}_2][NbF_6]$, as a white powder. Yield: 65%. Required for $C_{12}H_{28}F_{10}Nb_2S_4$ (676.4): C, 21.3; H, 4.2. Found: C, 21.2; H, 3.6%. ¹H NMR (CDCl₃, 295 K):

 δ 1.39 (br) [6H] Me, 2.91 (br) [4H] CH₂, 3.33 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 27750.

$[NbF_4 \{ {}^iPrS(CH_2)_2S^iPr \}_2][NbF_6]$

NbF₅ (0.37 g, 2.0 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) and a solution of ⁱPrS(CH₂)₂SⁱPr (0.36 g, 2.0 mmol) in CH₂Cl₂ (4 mL) added with stirring. A clear colourless solution formed rapidly, which was stirred for 30 min and then concentrated *in vacuo* to ~5 mL. Refrigeration for 1 week produced large, clear crystals, which were filtered off and dried *in vacuo*. Yield: 0.45 g, 63%. Required for C₁₆H₃₆F₁₀Nb₂S₄·CH₂Cl₂ (817.4): C, 25.0; H, 4.9% ¹H NMR (CDCl₃, 295 K): δ 1.31 (d) J = 6 Hz, [12H] Me, 3.05 (s) [4H] CH₂, 3.52 (m) [2H] CH. UV/vis (d.r.)/cm⁻¹: 27700.

$[(NbF_5)_2{MeSe(CH_2)_2SeMe}]$

NbF₅ (0.37 g, 2.0 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) at 273 K, and a solution of MeSe(CH₂)₂SeMe (0.22 g, 1.0 mmol) in CH₂Cl₂ (4 mL) added with stirring. After 5 min the colourless solution was concentrated *in vacuo* to *ca*. 5 mL, and the white solid produced filtered off and dried *in vacuo*. The solid slowly turns brown at ambient temperatures. ¹H NMR (CD₂Cl₂, 295 K): δ 2.54 (s) [6H] Me, 3.5 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 28500, 33800.

$[(NbF_5)_2\{^nBuSe(CH_2)_2Se^nBu\}]$

NbF₅ (0.37 g, 2.0 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) at 273 K, and a solution of "BuSe(CH₂)₂SeⁿBu (0.46 g, 1.0 mmol) in CH₂Cl₂ (4 mL) added with stirring. After 5 min the pale yellow solution was concentrated *in vacuo* to leave a clear yellow oil, which was washed with hexane (5 mL), the hexane removed by cannula, and the oil dried *in vacuo*. The oil turns dark in a few hours at room temperature. The solution stability is poor, solutions becoming red in about 30 min at room temperature although reaction is much slower at 243 K. ¹H NMR (CD₂Cl₂, 295 K): δ 1.0 (t) [6H] Me, 1.45 (m) [4H] CH₂, 1.9 (m) [4H] CH₂, 3.40 (m) [4H] CH₂, 3.50 (s) [4H] CH₂.

$[NbCl_{4}{MeS(CH_{2})_{2}SMe}_{2}][NbCl_{6}]$

NbCl₅ (0.39 g, 1.5 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) and a solution of MeS(CH₂)₂SMe (0.24 g, 2.0 mmol) in CH₂Cl₂ (8 mL) added with stirring. The NbCl₅ dissolved to give a deep yellow solution which rapidly precipitated a deep yellow powder. The mixture was stirred for 3 h, then concentrated *in vacuo* to ~10 mL, and the deep yellow powder filtered off and dried *in vacuo*. Yield: 0.52 g, 88%. Required for C₈H₂₀Cl₁₀Nb₂S₄ (784.8): C, 12.3; H, 2.6. Found: C, 12.6; H, 2.8%. ¹H NMR (CD₂Cl₂, 295 K): δ 2.46 (s) [6H] Me, 3.13 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 21200 (sh), 25600, 34800.

[NbBr₄{MeS(CH₂)₂SMe}₂][NbBr₆]

This was made similarly to the chloride analogue above as a redbrown solid. Yield: 73%. Required for $C_8H_{20}Br_{10}Nb_2S_4$ (1229.4): C, 7.8; H, 1.6. Found: C, 7.7; H, 1.7%. ¹H NMR (CD₂Cl₂, 295 K): δ 2.34 (s) [6H] Me, 3.13 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 19600 (sh), 23800, 26600, 34500.

$[(NbCl_5)_2 \{o-C_6H_4(CH_2SMe)_2\}]$

NbCl₅ (0.49 g, 2.0 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) and a solution of o-C₆H₄(CH₂SMe)₂ (0.18 g, 1.0 mmol) in CH₂Cl₂ (8 mL) added with stirring. The NbCl₅ dissolved to give a deep orange–yellow solution which was stirred for 3 h, then concentrated *in vacuo* to ~ 10 mL, and the orange–yellow powder filtered off and dried *in vacuo*. Yield: 0.52 g, 70%. Required for C₁₀H₁₄Cl₁₀Nb₂S₂ (738.7): C, 16.3; H, 1.9. Found: C, 16.0; H, 2.3%. ¹H NMR (CDCl₃, 295 K): 2.46 (s) [6H] Me, 4.34 (s) [4H] CH₂, 7.34–7.43 (m) [4H] C₆H₄. UV/vis (d.r.)/cm⁻¹: 25600, 34100.

$[(NbBr_5)_2 \{o-C_6H_4(CH_2SMe)_2\}]$

This was made similarly to the chloride analogue above using NbBr₅. Orange–red powder. Yield: 40%. Required for $C_{10}H_{14}Br_{10}Nb_2S_2$ (1183.2): C, 10.1; H, 1.1. Found: C, 9.4; H, 0.9%. ¹H NMR (CDCl₃, 295 K): δ 2.48 (s) [6H] Me, 4.36 (s) [4H] CH₂, 7.38–7.43 (m) [4H] C₆H₄. UV/vis (d.r.)/cm⁻¹: 22700 (sh), 25000, 32800.

$[(NbCl_5)_2 \{o-C_6H_4(CH_2SeMe)_2\}]$

NbCl₅ (0.39 g, 1.5 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) and a solution of o-C₆H₄(CH₂SeMe)₂ (0.21 g, 0.72 mmol) in CH₂Cl₂ (8 mL) added with stirring. The NbCl₅ dissolved to give a deep orange solution which was stirred for 3 h, then concentrated *in vacuo* to ~10 mL, and the orange powder filtered off and dried *in vacuo*. Yield: 0.47 g, 78%. Required for C₁₀H₁₄Cl₁₀Nb₂Se₂ (832.5): C, 14.4; H, 1.7. Found: C, 13.7; H, 1.6%. ¹H NMR (CDCl₃, 295 K): δ 2.38 (s) [6H] Me, 4.36 (s) [4H] CH₂, 7.25–7.39 (m) [4H] C₆H₄. UV/vis (d.r.)/cm⁻¹: 24400, 32800.

$[(NbBr_5)_2 \{o-C_6H_4(CH_2SeMe)_2\}]$

This was made similarly to the chloride analogue above using NbBr₅. Orange-red powder. Yield: 72%. Required for $C_{10}H_{14}Br_{10}Nb_2Se_2$ (1277.0): C, 9.4; H, 1.1. Found: C, 9.4; H, 1.0%. ¹H NMR (CDCl₃, 295 K): δ 2.43 (br, s) [6H] Me, 4.26 (br, s) [4H] CH₂, 7.28–7.42 (m) [4H] C₆H₄. UV/vis (d.r.)/cm⁻¹: 21750 (sh), 24800, 30030.

$[(NbCl_5)_2 \{MeSe(CH_2)_2SeMe\}]$

NbCl₅ (0.39 g, 1.5 mmol) was suspended in anhydrous CH₂Cl₂ (20 mL) and a solution of MeSe(CH₂)₂SeMe (0.16 g, 0.74 mmol) in CH₂Cl₂ (8 mL) added with stirring. The NbCl₅ dissolved to give a deep-orange solution which was stirred for 3 h, then concentrated *in vacuo* to ~10 mL, and the deep orange powder filtered off and dried *in vacuo*. Yield: 0.43 g, 76%. Required for C₄H₁₀Cl₁₀Nb₂Se₂ (756.4): C, 6.3; H, 1.3. Found: C, 6.1; H, 1.3%. ¹H NMR (CDCl₃, 295 K): δ 2.46 (s) [6H] Me, 3.3 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 23500, 27700 (sh), 32800.

$[(NbBr_5)_2 \{MeSe(CH_2)_2SeMe\}]$

This was made similarly to the chloride analogue above. Deep red–brown powder. Yield: 70%. Required for $C_4H_{10}Br_{10}Nb_2Se_2$ (1200.9): C, 4.0; H, 0.8. Found: C, 3.8; H, 0.9%. ¹H NMR (CD₂Cl₂, 223 K): δ 2.2 (s) [6H] Me, 3.3 (s) [4H] CH₂. UV/vis (d.r.)/cm⁻¹: 21750 (sh), 25250, 31250.

$[(NbCl_5)_2 \{ {}^nBuSe(CH_2)_2Se^nBu \}]$

This was made similarly to the diselenahexane complex as a red wax. Yield: 80%. ¹H NMR (CDCl₃, 295 K): δ 1.0 (t) [3H] Me, 1.45 (m) [2H] CH₂, 1.9 (m) [2H] CH₂, 3.2–3.5 (br) [4H] CH₂. UV/Vis (d.r.)/cm⁻¹: 23500, 28700 (sh), 33000.

X-Ray crystallography

A summary of details of the crystallographic data collection and refinement are given in Table 1. Crystals of the fluoride complexes were obtained by refrigerating the synthesis solutions (see above), other crystals were grown by refrigerating the filtrates from the syntheses for several days at -18 °C. Data collection used a Nonius Kappa CCD diffractometer fitted with monochromated Mo-K α X-radiation ($\lambda = 0.71073$ Å) and with the crystals held at 120 K in a nitrogen gas stream. Structure solution and refinement were straightforward,²²⁻²⁴ with H atoms being placed in calculated positions using the default C–H distance. For [(NbCl₅)₂{o-C₆H₄(CH₂SMe)₂}] the crystals examined were twins, but for the data reported the diffractometer software enabled satisfactory indexing of the major component.

Results and discussion

$$\label{eq:stars} \begin{split} &[NbF_5(R_2E)]~(R_2E=Me_2S,Et_2S,Me_2Se) \text{ and} \\ &[NbF_4(Me_2S)_4][NbF_6] \end{split}$$

Reactions are shown in Scheme 1.

Scheme 1 Reactions of NbF₅ with thio- and seleno-ethers.

The fluoride systems are extremely sensitive to moisture, and syntheses and measurements must be conducted under rigorously anhydrous conditions. Some of the complexes decompose in a few days even in sealed tubes in a freezer, turning green or brown as discussed below, and hence all measurements were made on freshly prepared complexes. The reaction of Et₂S with NbF₅ either in CH₂Cl₂ solution, or using neat Et₂S as solvent, followed by removal of volatiles in vacuo, left [NbF₅(Et₂S)]⁹ as a colourless oil which solidified on cooling in an ice-bath. The IR spectrum (Table 2) shows three v(NbF) modes as expected for a C_{4v} geometry. The solid-state UV/visible spectrum shows the transitions $\pi(R_2S) \rightarrow Nb$ at 26000 and 38400 cm⁻¹, which disagrees with the reported solution spectrum which quoted only a 38000 cm⁻¹ band.¹³ The $\pi(R_2S) \rightarrow Nb$ transitions are similar in energy to those in complexes of the heavier halides, whilst the $\pi(F) \rightarrow Nb \ CT$ bands which are expected in the far-UV region were not observed. In CH₂Cl₂ solution at 295 K, the ¹⁹F NMR spectrum is a broad singlet (Table 2), indicating a dynamic system, probably reversible thioether ligand dissociation. On cooling the

Compound	$[NbF_4(Me_2S)_4][NbF_6]$	$\label{eq:stars} \begin{split} & [NbF_4 \{MeS(CH_2)_2SMe\}_2]\text{-} \\ & [NbF_6] \end{split}$	$[NbF_{4}\{^{i}PrS(CH_{2})_{2}S^{i}Pr\}_{2}]\text{-}\\[NbF_{6}]$	$[(NbCl_{5})_{2}\{o-C_{6}H_{4}(CH_{2}SMe)_{2}\}]$	$[(NbCl_5)_2 \{MeSe-(CH_2)_2SeMe\}]$
Formula	$C_8H_{24}F_{10}Nb_2S_4$	$C_8H_{20}F_{10}Nb_2S_4$	$C_{16}H_{36}F_{10}Nb_2S_4$	$C_{10}H_{14}Cl_{10}Nb_2S_2$	$C_4H_{10}Cl_{10}Nb_2Se_2$
М	624.33	620.30	732.51	738.65	756.36
Crystal system	Tetragonal	Monoclinic	Triclinic	Orthorhombic	Monoclinic
Space group (no.)	P4/ncc (130)	<i>Cc</i> (9)	$P\overline{1}(2)$	Pnc2 (30)	$P2_1/n$ (14)
a/Å	12.283(5)	14.0661(10)	10.2850(10)	10.3087(5)	6.9033(15)
b/Å	12.283(5)	26.321(2)	11.6895(15)	22.4368(15)	13.020(4)
c/Å	13.860(4)	10.7327(10)	13.5404(15)	10.3102(5)	11.111(3)
$\alpha /^{\circ}$	90	90	115.206(7)	90	90
$\beta/^{\circ}$	90	101.252(5)	90.596(10)	90	98.812(15)
$\gamma/^{\circ}$	90	90	110.136(10)	90	90
$U/Å^3$	2091.0(12)	3897.3(5)	1359.1(3)	2384.7(2)	986.9(5)
Ζ	4	8	2	4	2
μ (Mo-K α)/mm ⁻¹	1.571	1.685	1.223	2.252	6.184
F(000)	1232	2432	736	1432	708
Total number reflections	14628	23913	27957	15435	17501
$R_{ m int}$	0.150	0.037	0.058	0.060	0.103
Unique reflections	1196	8152	6180	4956	2267
No. of parameters, restraints	58,0	442, 2	300, 0	218, 4	83,0
$R_1, \mathrm{w}R_2 \left[I > 2\sigma(I)\right]^b$	0.069, 0.124	0.035, 0.081	0.047, 0.102	0.052, 0.113	0.060, 0.096
R_1 , w R_2 (all data)	0.103, 0.135	0.039, 0.084	0.066, 0.113	0.058, 0.116	0.105, 0.112
^{<i>a</i>} Common items: $T = 120$ K;	λ (Mo-K α) = 0.71073 Å	; $\theta(\max) = 27.5^{\circ}$. ^b $R_1 = \sum \ R_1 \ $	$ F_{o} - F_{c} / \sum F_{o} ; wR_{2} = [$	$\sum w(F_o^2 - F_c^2)^2 / \sum w F_c^2 w F_c^2 = \frac{1}{2} \sqrt{1 - \frac{1}{2}} \sqrt{1 - \frac{1}{2}} w F_c^2 + \frac{1}{2} \sqrt{1 - \frac{1}{2}} \sqrt{1 - \frac{1}$	$[F_{o}^{4}]^{1/2}$.

 Table 1
 Crystal data and structure refinement details^a

Table 2	Selected spectroscop	bic data for	$[NbF_5(R_2E)],$	$[NbF_4(Me_2S)_4][NbF_6]$	and [NbF4{	$R_2E(CH_2)_2ER_2_2$	[NbF ₆]
---------	----------------------	--------------	------------------	---------------------------	------------	----------------------	---------------------

Compound	IR v(Nb-F)/cm ⁻¹ (Nujol)	$\delta({}^{93}\mathrm{Nb})^{a,b}$	$\delta({}^{19}\mathrm{F}\{{}^{1}\mathrm{H}\})^{a,c}$
$[NbF_{5}(Et_{2}S)]$	662s, 641m, 600s	-1476 (7000) (295 K)	150.5 (br) (295 K)
$[NbF_5(Me_2Se)]^d$	662s, 641m, 600s	-1509 (7000) (295 K)	146.0 [F], 134.4 [4F] (253 K) 143.2 (295 K) 144.2 (200 K)
$[NbF_5(Me_2S)]$	640sh, 614vs (br), 594s	-1440 (6000) (295 K)	144.2 (200 K) 141.6 (br) (295 K) 144.4 [E] 119.4 [4E] (253 K)
$[NbF_4(Me_2S)_4][NbF_6]$	678sh, 610s, 552m	–1460, –1553 (295 K) –1555 (7 lines, <i>J</i> = 335 Hz) (220 K)	136.3 (br) (295 K) 119.5 (s) [4F], 102.5 (s) [6F] 223 K; 119.5 (s) [4F] 102.5
$[NbF_4\{^iPrS(CH_2)_2S^iPr\}_2][NbF_6]$	655sh, 615s (br), 599s, 565sh	–1540 (295 K) –1551 (7 lines, <i>J</i> = 335 Hz) (220 K)	(10 lines) [6F] (200 K) 135.8, 105.2 (295 K) 132.8 (s) [4F], 103.8 (10 lines) [6F] (230 K)
$[NbF_4\{MeS(CH_2)_2SMe\}_2][NbF_6]$	640sh, 610vs, 599s, 570s	–1543 (295 K) –1552 (7 lines, <i>J</i> = 335 Hz) (243 K)	[07] (250 K) 117.9 (sh), 111.5 (295 K) 114.6 (s) [4F], 104.5 (10 lines) [6F] (243 K)
$[NbF_4 \{ EtS(CH_2)_2 SEt \}_2] [NbF_6]$	645sh, 615s (br), 598s, 570sh	–1550 (295 K) –1554 (7 lines, <i>J</i> = 335 Hz) (243 K)	[07] (243 K) 115.0, 104.0 (295 K) 112.5 (s) [4F], 103.8 (10 lines)
$[(NbF_5)_2\{MeSe(CH_2)_2SeMe\}]^f$	650sh, 620vbr, s	n.o. <i>"</i>	[6F] (243 K) 145.0 (br) (295 K)
$[(NbF_{5})_{2}\{^{n}BuSe(CH_{2})_{2}Se^{n}Bu\}]^{g}$	650sh, 610s (vbr)	n.o.	144.0 (220 K) 146.5 (br) (295 K) 144.0 137.0 (sh) (200 K)

^{*a*} In anhydrous CH₂Cl₂. ^{*b*} Relative to [NbCl₆]⁻ in MeCN δ 0, W_{\downarrow} in Hz in parenthesis. ^{*c*} Relative to CFCl₃. ^{*d*} δ (⁷⁷Se) = +247.2 (relative to neat external Me₂Se). ^{*e*} n.o = Not observed. ^{*f*} δ (⁷⁷Se) = +265 at 295 K, (MeSe(CH₂)₂SeMe exhibits δ (⁷⁷Se) = 121). ^{*g*} δ (⁷⁷Se) = +330 at 243 K, (^{*a*}BuSe(CH₂)₂Se^{*a*}Bu exhibits δ (⁷⁷Se) = 212).

solution the resonance splits, and at low temperatures the spectrum contains a broad resonance at δ 146.0 [F] and a sharper feature at δ 134.4 [4F], consistent with the C_{4v} geometry expected; the behaviour is reversible with temperature. The ⁹³Nb spectrum§ is a broad feature at δ –1476, although neither Nb–F nor

F–F couplings were resolved. The NbF₅/Me₂S system is more complicated. When excess Me₂S is distilled onto powdered NbF₅ at 77 K, and the mixture allowed to warm slowly, reaction occurs on melting to give a clear solution, which on further stirring deposits the white solid, [NbF₅(Me₂S)]. Mixing the reagents at ambient temperature results in a vigorous reaction, but gives the same product. The solid state spectroscopic properties are similar to the Et₂S analogue (Table 2). However, when NbF₅ reacts with excess Me₂S in rigorously anhydrous CH₂Cl₂ solution,

 $[\]S^{93}$ Nb, 100% abundance, I = 9/2, $\Xi = 24.44$ MHz, $Q = -0.2 \times 10^{-28}$ m², $D_c = 2740$ is one of the more sensitive nuclei and, despite the medium size quadrupole moment, is readily observed in many systems.²⁵

1101-11	1.899(4)	Nb1–S1	2.724(2)
S1-C1	1.801(8)	S1-C2	1.800(7)
Nb2–F2	1.869(9)	Nb2–F4	1.901(8)
Nb2–F3	1.873(5)		
F1–Nb1–F1b	145.1(2)	S1–Nb1–S1b	67.67(8)
F1–Nb1–F1a	89.8(2)	S1–Nb1–S1a	143.48(8)
F1-Nb1-F1c	100.6(2)	S1-Nb1-S1c	125.19(8)
F1-Nb1-S1	71.27(13)	F1a–Nb1–S1	139.91(13)
F1-Nb1-S1c	74.51(12)	F1b-Nb1-S1	79.81(13)
C1-S1-C2	101.5(4)	Nb1-S1-C	103.6(3), 105.5(3)
F2-Nb2-F3	91.14(16)	F3–Nb2–F3d	89.977(7)
F3–Nb2–F4	88.86(16)		

a colourless solution forms, which on refrigeration for a few days, deposited colourless crystals. The crystals crumble and lose Me₂S on drying in vacuo, but although they are extremely moisture sensitive and difficult to handle, a satisfactory X-ray data set was collected that identified the compound as [NbF₄(Me₂S)₄][NbF₆]. The structure (Fig. 1, Table 3) reveals an octahedral anion and a dodecahedral cation. The dodecahedral (bisdisphenoid) cation shows interpenetrating flattened NbF4 and elongated NbS4 tetrahedra, the crystallographic symmetry requiring only one Nb-F (1.899(4) Å) and one Nb-S (2.724(2) Å) distance in the cation. The former is only slightly longer than the average Nb-F distance in the associated $[NbF_6]^-$ anion (1.869(9)–1.901(8) Å). Eight-coordination is well known in niobium(v) chemistry,²⁶ examples with sulfur-donor ligands including a range of dithiocarbamates, $[Nb(S_2CNR_2)_4]^+$ the disulfides $[NbCl_4(RSSR)_2]^+$, and there are Nb(IV) complexes, [NbCl₄(dithioether)₂], although the present complexes are the first Nb(v) examples with dithioether or diselenoethers. In anhydrous CD₂Cl₂ solution at 295 K, the ¹H NMR spectrum shows a sharp singlet at δ 2.28 which remains sharp down to 190 K although the chemical shift drifts to higher frequency on cooling the solution, reaching δ 2.40 at 200 K. The

Fig. 1 Structure of the cation in $[NbF_4(Me_2S)_4][NbF_6]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. The Nb1 is positioned on a 4a site of symmetry 222 (D_2). Symmetry operations: a = 1/2 - x, 3/2 - y, z; b = y - 1/2, 1/2 + x, 1/2 - z; c = 1 - y, 1 - x, 1/2 - z.

¹⁹F{¹H} NMR spectrum at 295 K is a broad singlet at δ 136.3, but on cooling this splits and by 240 K resolves into a relatively sharp singlet at δ 119.5 and a broad feature at δ 102.5, the latter developing the characteristic ten-line pattern of [NbF₆]⁻, with ${}^{1}J_{\text{NbF}} = 335$ Hz, on further cooling.²⁷ The behaviour is reversible with temperature and clearly indicates a rapidly exchanging system at ambient temperatures. The 93 Nb NMR spectrum at 295 K shows a broad feature at δ –1460 ($W_{1/2}$ = 5000 Hz) and a sharper feature at δ –1556 ($W_{1/2}$ = 2500 Hz), which are assigned to the cation and anion respectively. On cooling, the higher frequency resonance broadens and disappears below ~240 K, but the anion resonance remains and the expected septet coupling to ¹⁹F is resolved. Studies²⁸ of NbF₅ solutions in donor solvents including dmso, dmf and pyridine (L) showed the characteristic resonance of $[NbF_6]^-$, tentatively attributed to the formation of $[NbF_4L_4][NbF_6]$, but no resonances for the cations were observed, explained as due to fast relaxation (due to the lower symmetry) or exchange. Addition of a small excess of Me_2S to a solution of $[NbF_4(Me_2S)_4][NbF_6]$ in CH₂Cl₂ sharpens the cation resonance in the ⁹³Nb spectrum, but causes no change in the chemical shift, and the behaviour on cooling is essentially unchanged. On storing in sealed tubes $(-18 \,^{\circ}\text{C})$ over several months the solid slowly becomes green, and ¹⁹F and ¹H show new resonances, including ones assignable to $MeSCH_2F_2^{29} F^-$ (and $[SiF_5]^-$ from attack on the glass) consistent with fluorination of the thioether and reduction of the niobium. Similar decomposition occurs in a few days in CH₂Cl₂ solution at room temperature.

Colourless $[NbF_{5}(Me_{2}Se)]$ is formed from NbF_{5} and $Me_{2}Se$ in CH2Cl2 solution, and appears to be the only product even with excess selenoether. In contrast to the dialkyl sulfide complexes which can be stored in a glove-box for many weeks, the $[NbF_5(Me_2Se)]$ begins to darken within a few hours at room temperature, and more slowly in a freezer, turning brown and then green, indicative of a redox reaction. Examination of decomposed samples by ⁷⁷Se and ¹⁹F NMR spectroscopy showed a number of new resonances (some unassigned), including ones attributable to [NbF₆]⁻ and $Me_2SeF_2 [\delta(Se) = 789 \text{ (t) } {}^1J_{SeF} = 645 \text{ Hz}; \ \delta(F) = -69]^{29,30} \text{ again}$ consistent with fluorination of the chalcogenoether. Spectroscopic data on the freshly prepared material (Table 2) are mostly similar to those of the dialkyl sulfide adducts, but although the broad singlet ¹⁹F NMR resonance observed at room temperature sharpens on cooling the solution, even at 200 K only a singlet is observed, suggesting exchange processes remain significant, and indicating weaker binding of the Me₂Se compared to R₂S.

$[NbF_4 {RS(CH_2)_2 SR}_2][NbF_6] (R = Me, Et or ^iPr)$

In rigorously anhydrous CH_2Cl_2 solution, NbF_5 and the three 1,2-dithioethanes produce colourless solutions, which deposit colourless (R = Me or Et) or slightly yellow (R = ⁱPr) crystals on refrigeration. The crystals are extremely moisture sensitive and decompose instantly in air, and also deteriorate slowly in the glove-box, although they are more stable in a freezer. X-Ray crystal structures of two examples were obtained and both reveal distorted dodecahedral cations and octahedral anions. The [NbF₄{MeS(CH₂)₂SMe}₂][NbF₆] (Table 4, Fig. 2) contains two chelating dithioethers in the DL configuration with chelate angles \angle S-Nb-S of 74.2 to 75.2° and Nb-S distances 2.697(2)–2.725(2) Å, similar to the Me₂S complex above. The NbF₄ unit

Table 4 Selected bond lengths (Å) and angles (°) for $[NbF_4 \{MeS(CH_2)_2-SMe\}_2][NbF_6]$

1.912(3) 1.893(3) 2.7176(13) 2.7105(14) 1.916(3)	Nb1–F3 Nb1–F4 Nb1–S3 Nb1–S4	1.911(3) 1.889(3) 2.7205(14)
1.893(3) 2.7176(13) 2.7105(14) 1.916(3)	Nb1–F4 Nb1–S3 Nb1–S4	1.889(3) 2.7205(14)
2.7176(13) 2.7105(14) 1.916(3)	Nb1–S3 Nb1–S4	2.7205(14)
2.7105(14)	Nb1-S4	
1.916(3)		2.7039(14)
1.910(2)	Nb2–F7	1.901(3)
1.897(4)	Nb2–F8	1.875(4)
2.7138(15)	Nb2–S7	2.6970(15)
2.7252(16)	Nb2–S8	2.7212(14)
1.843(5)-1.887(4)	Nb4–F	1.875(4)-1.893(4)
144.63(13)	F5–Nb2–F7	145.08(13)
144.54(13)	F6–Nb2–F8	144.54(17)
74.74(4)	S5-Nb2-S6	75.21(5)
75.07(4)	S7–Nb2–S8	74.21(4)
C2	(b) _{C14}	C15
s1	© 57 C13	C16
D F4	F5	Nb2 F7
53 F1	F6 ())	C12 C9 C7
	2.7138(15) 2.7252(16) 1.843(5)–1.887(4) 144.63(13) 144.54(13) 74.74(4) 75.07(4)	2.7138(15) Nb2–S7 2.7252(16) Nb2–S8 1.843(5)–1.887(4) Nb4–F 144.63(13) F5–Nb2–F7 144.54(13) F6–Nb2–F8 74.74(4) S5–Nb2–S6 75.07(4) S7–Nb2–S8 f_{1} f_{2} f_{2} f_{3} f_{3} f_{4} f_{5} f

is a flattened tetrahedron with Nb–F 1.875(4)–1.916(3) Å. The two cations in the asymmetric unit are not the same as can be seen in Fig. 2(a) and 2(b). In Fig. 2(a) with the Nb1 centred cation the stereochemistry at S1–S4 is SSSS, whereas in Fig. 2(b) for the Nb2 cation the stereochemistry at S5–S8 is SSRR. In $[NbF_4{^iPrS(CH_2)_2S^iPr}_2][NbF_6]$ (Table 5, Fig. 3) the chelating dithioethers are both in the *meso* form, but the dimensions are otherwise very similar. In solution at 295 K the ¹⁹F NMR spectra show two broad features (Table 2) which, on cooling the solutions, become a sharper singlet at higher frequency, and at lower frequency the characteristic ten-line pattern of $[NbF_6]^-$. In contrast to the spectrum of $[NbF_4(Me_2S)_4][NbF_6]$ discussed above, the ⁹³Nb spectra of the dithioether complexes show only the $[NbF_6]^-$

 $\label{eq:constraint} \begin{array}{l} \mbox{Table 5} & \mbox{Selected bond lengths (Å) and angles (°) for $[NbF_4{^iPrS(CH_2)_2-S^iPr}_2][NbF_6]$ \\ \end{array}$

Nb1–F1	1.904(2)	Nb1–F3	1.897(2)
Nb1–F2	1.905(2)	Nb1–F4	1.913(2)
Nb1–S1	2.7424(11)	Nb1–S3	2.7030(11)
Nb1–S2	2.7357(12)	Nb1–S4	2.7336(12)
Nb2–F	1.877(4)–1.888(3)	Nb3–F	1.881(3)–1.885(3)
F1-Nb1-F2	143 70(10)	\$1-Nb1-\$2	74 14(3)
F3–Nb1–F4	144.48(10)	S3–Nb1–S4	75.07(4)

Fig. 3 Structure of the cation in $[NbF_4{^iPrS(CH_2)_2S^iPr}_2][NbF_6]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

the chelating ligands generate a substantial electric field gradient which promotes fast quadrupolar relaxation of the niobium, and the resulting line-broadening accounts for the absence of the cation resonance. The NMR spectra of all the fluoride complexes suggest that exchange processes are occurring at ambient temperatures, but these slow on cooling. We have briefly described elsewhere¹⁷ the synthesis and structure of [{NbF₄(o-C₆H₄(CH₂SMe)₂)}_n][Nb₂F₁₁]_n which also contains an eight-coordinate Nb(v) cation but the dithioethers are bridging to form a polymeric chain.

$[(NbF_5)_2 \{RSe(CH_2)_2SeR\}]$ (R = Me or "Bu)

The reaction of NbF5 with diselenoethers including $RSe(CH_2)_2SeR$ (R = Me or ⁿBu) in a 2:1 molar ratio in anhydrous CH2Cl2 solution at 295 K initially gives clear pale-yellow solutions, but these slowly darken. The reactions, conducted at 273 K, followed by rapid removal of the solvent, gave a yellow viscous oil for "BuSe(CH₂)₂Se"Bu and a fawn powder for MeSe(CH₂)₂SeMe both of which darken slowly at ambient temperatures due to decomposition. They are formulated as $[(NbF_5)_2 \{\mu$ -RSe(CH₂)₂SeR $\}]$ on the basis of the spectroscopic data (their instability precludes accurate microanalytical measurements). Excess diselencether (e.g. reaction in a 1:1 molar ratio) causes rapid reduction of the niobium with the formation of dark-red solutions. The low-temperature ¹H and ⁷⁷Se NMR spectra, which exhibit singlet δ (Me) and δ (Se) resonances, are consistent with the formulation of $[NbF_5]$ $MeSe(CH_2)_2SeMeNbF_5$ for the former complex (analogous to the structurally characterised chloride complex reported below). The ${}^{19}F{}^{1}H{}$ spectrum at room temperature is a broad singlet which sharpens on cooling, but even at 200 K does not show clear splitting expected for the square pyramidal pentafluoride unit, suggesting exchange processes are still present. Notably no ⁹³Nb resonance was observed even at low temperatures (fast relaxation), although in the decomposed (red-brown) samples $[NbF_6]^-$ is clearly present. The reaction of NbF₅ with Me₂Te or MeTe(CH₂)₃TeMe in anhydrous CH₂Cl₂, instantly gave insoluble brown-black tarry materials which were not pursued. Selenoethers and especially telluroethers are softer ligands than thioethers,² and the inability of telluroethers to form stable complexes with a very hard Lewis acid like NbF₅ is therefore not unexpected. They are also much stronger reducing agents, and the dark coloured materials produced are no doubt the result of reduction of the niobium, accompanying oxidative fluorination of the ligands.

$[NbX_5(R_2E)] (X = Cl \text{ or } Br, R_2E = Me_2S, Et_2S, Me_2Se; X = Cl, R_2E = Me_2Te)$

Reactions are shown in Scheme 2.

Scheme 2 Reactions of NbX_5 (X = Cl or Br) with thio- and seleno-ethers.

These complexes were made to provide comparative NMR and X-ray data by direct combination of the constituents in anhydrous CH_2Cl_2 (see ESI†). All are very moisture-sensitive solids, ranging in colour from yellow $[NbCl_5(Me_2S)]$ through dark red $[NbBr_5(Me_2Se)]$, to purple $[NbCl_5(Me_2Te)]$, and are easily soluble in anhydrous CH_2Cl_2 .¹⁰⁻¹⁴ The purple $[NbCl_5(Me_2Te)]$ decomposes rapidly in solution and the solid becomes sticky in a few hours, turning dark green, clearly due to reduction of the niobium. All spectroscopic measurements were made on freshly prepared samples. Attempts to isolate $[NbBr_5(Me_2Te)]$ were unsuccessful, and reaction of NbI_5 with Me_2S gave a green–black paramagnetic product which was not studied further. Spectroscopic data and the crystal structures of $[NbBr_5(Me_2S)]$ and $[NbCl_5(Me_2Se)]$ are described in the ESI.†

$[(NbX_5)_2(L-L)]$ and $[NbX_4{MeS(CH_2)_2SMe}_2][NbX_6] (X = Cl or Br, L-L = RSe(CH_2)_2SeR or <math>o$ -C₆H₄(CH₂EMe)₂ (E = S or Se))

The reactions of NbX₅ (X = Cl or Br) with the dithioand diselencethers, $RSe(CH_2)_2SeR$ (R = Me or ⁿBu), or $o-C_6H_4(CH_2EMe)_2$ (E = S or Se) gave complexes of composition $[(NbX_5)_2(L-L)]$, irrespective of the NbX₅: L-L ratio used. Uniquely within this series, MeS(CH₂)₂SMe gave complexes with a 1:1 stoichiometry (see below). The reaction of NbCl₅ with the ditelluroether MeTe(CH₂)₃TeMe in CH₂Cl₂ solution at 0 $^{\circ}$ C, initially gave a very dark solution, but this paled to dull khaki in less than one min, and deposited a khaki powder. The UV/visible spectrum of the latter has the lowest charge transfer band at ~27000 cm⁻¹, clearly indicating a lower niobium oxidation state. The $[(NbX_5)_2(L-L)]$ are ligand-bridged dimers, demonstrated by the structures of $[(NbCl_5)_2 \{o-C_6H_4(CH_2SMe)_2\}]$ and $[(NbCl_5)_2 \{MeSe(CH_2)_2SeMe\}]$ (Tables 6 and 7, Fig. 4 and 5). The selenium compound is centrosymmetric and the sulfur compound has a two-fold rotation axis which bisects the ligand backbone. The patterns of bond lengths and angles largely replicate those

Table 6 Selected bond lengths (Å) and angles (°) for $[(NbCl_5)_2\{o-C_6H_4(CH_2SMe)_2\}]$

Nb1–Cl1	2.275(2)	Nb1-Cl2	2.320(2)
Nb1–Cl3	2.323(2)	Nb1–Cl4	2.3067(15)
Nb1-Cl5	2.303(2)	Nb1–S1	2.7043(19)
Cl1-Nb1-Cl2	98.11(9)	Cl2-Nb1-Cl3	89.16(9)
Cl1-Nb1-Cl3	96.97(8)	Cl2-Nb1-Cl5	89.55(10)
Cl1-Nb1-Cl4	96.76(8)	Cl4-Nb1-Cl3	88.68(7)
Cl1-Nb1-Cl5	97.77(8)	Cl4-Nb1-Cl5	88.80(7)
Cl2-Nb1-S1	79.18(7)	Cl4-Nb1-S1	85.98(6)
Cl3-Nb1-S1	78.06(7)	C15-Nb1-S1	87.25(7)

Table 7	Selected	bond	lengths	(Å)	and	angles	(°)	for
[(NbCl ₅)	2{MeSe(CH	$I_2)_2$ SeM	e}]			-		

Nb1–Cl1	2.280(2)	Nb1–Cl2	2.318(2)
Nb1-Cl3	2.319(2)	Nb1–Cl4	2.330(2)
Nb1-C15	2.334(2)	Nb1-Se1	2.8155(12)
Cl1-Nb1-Cl2	96.54(9)	Cl2-Nb1-Cl3	89.05(9)
Cl1-Nb1-Cl3	98.54(9)	Cl2-Nb1-Cl5	89.76(9)
Cl1-Nb1-Cl4	98.18(9)	Cl3-Nb1-Cl4	88.53(9)
Cl1-Nb1-Cl5	96.76(9)	Cl4-Nb1-Cl5	88.76(9)
Cl2-Nb1-Se1	80.76(7)	Cl4-Nb1-Se1	84.58(6)
Cl3-Nb1-Se1	85.42(6)	Cl5-Nb1-Se1	79.32(6)

Fig. 4 Structure of $[(NbCl_5)_2\{o-C_6H_4(CH_2SMe)_2\}]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. The molecule has two-fold symmetry. Symmetry operation: a = 2 - x, -y, z.

found in [NbX₅(R₂E)], but the crystal structures serve to identify the molecular unit present. The complexes with alkane-backbones are very poorly soluble in chlorocarbon solvents which hindered solution measurements, but the xylyl-backboned ligands have better solubility and solution NMR data are given in Table 8. The chloro-complexes show broad ⁹³Nb NMR resonances at ambient temperatures, but for [(NbBr₅)₂{o-C₆H₄(CH₂EMe)₂}] it was necessary to cool the solutions to ~273 K to observe the ⁹³Nb resonance, indicative of dissociation/exchange in solution at ambient temperatures. The ⁷⁷Se{¹H} NMR spectra of [(NbX₅)₂{o-C₆H₄(CH₂SeMe)₂}] show large, high frequency shifts from the "free" ligand values (Table 8). ⁹³Nb NMR resonances were obtained for the poorly soluble [(NbX₅)₂{MeSe(CH₂)₂SeMe}],

Table 8	Selected spectroscopic data for	bidentate ligand complexes of	$f NbX_5 (X = Cl \text{ or } Br) \text{ at } 2$	95 K unless otherwise stated
---------	---------------------------------	-------------------------------	---	------------------------------

Compound	$\delta^{(^{93} ext{Nb})^{a,b}}$	$\delta(^{77}\mathrm{Se})^d$	v(Nb-X)/cm ⁻¹ (Nujol)
$[(NbCl_{s})_{2}\{o-C_{s}H_{4}(CH_{2}SMe)_{2}\}]$	+80.5 (6000)		380sh, 365br, 346sh
$[(NbBr_5)_2 \{o - C_6 H_4 (CH_2 SMe)_2\}]$	+746 (12000) (273 K) ^h		281s, 254s
$[(NbCl_{s})_{2} \{ o - C_{6}H_{4}(CH_{2}SeMe)_{2} \}]$	+96 (4000)	+247	361br, 346s
$[(NbBr_5)_2 \{ o - C_6 H_4 (CH_2 SeMe)_2 \}]$	+775 (5000) (243 K) ^h	+228	280s, 250s
$[NbCl_4 {MeS(CH_2)_2 SMe}_2][NbCl_6]$	+3 (vs), $+150$ (vbr)		333vs, 310sh, 280sh ⁱ
$[NbBr_4 \{MeS(CH_2), SMe\}_2][NbBr_6]$	+722		257m, 248sh, 232vs ⁱ
$[(NbCl_5)_2 \{MeSe(CH_2)_2SeMe\}]$	+97 (poorly soluble)	n.o.	359br, 334s
$[(NbBr_5)_2 \{MeSe(CH_2)_2SeMe\}]$	+750 (poorly soluble)	n.o.	294m, 233s
$[(NbCl_5)_2\{^nBuSe(CH_2)_2Se^nBu\}]$	+95 (5000)	+284	367s, 335s

Footnotes as in Table 2. ^h No resonance at 295 K. ⁱ Raman: 360vs, 312vs cm⁻¹. ^j Raman: 250m (sh), 214vs cm⁻¹.

Fig. 5 Structure of the centrosymmetric $[(NbCl_5)_2\{MeSe(CH_2)_2SeMe\}]$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. Symmetry operation: a = 1 - x, 1 - y, 1 - z.

but the solubility was too poor to observe ⁷⁷Se resonances. Solutions exposed briefly to air develop the ⁹³Nb NMR resonances of the corresponding $[NbX_6]^-$ anions,²⁵ consistent with ready hydrolysis.

In contrast, MeS(CH₂)₂SMe gave 1:1 complexes with NbX₅ (irrespective of the ratio of reactants used) which are insoluble in chlorocarbons. The IR spectrum of the NbCl₅ adduct shows a very strong band at 333 cm⁻¹ and the Raman spectrum has an intense band at 360 cm⁻¹, which correspond respectively to the t_{1u} and a_{1g} vibrations of [NbCl₆], and there are corresponding vibrations in the bromide at 232 and 214 cm^{-1} due to [NbBr₆]⁻.³¹ This leads to the formulation $[NbX_4{MeS(CH_2)_2SMe}_2][NbX_6]$, analogous to the fluoride complexes (above), with other Nb-X vibrations (Table 8) being due to the (assumed) dodecahedral cation. The complexes are insoluble in CH₂Cl₂, but dissolve in a mixture of CH₂Cl₂-10% MeCN, from which solutions ⁹³Nb NMR spectra identify the $[NbX_6]^-$ anions (Table 8). The chloride-complex also exhibits a very broad resonance at δ +150 which is tentatively ascribed to the dodecahedral cation, but no corresponding resonance was found in the bromide complex, possibly due to greater dissociation, although line broadening by the quadrupolar nucleus in a more asymmetric field gradient is also likely. Attempts to obtain crystals of [NbX₄{MeS(CH₂)₂SMe}₂][NbX₆] failed due to very poor solubility, but the constitution is not in doubt from the vibrational spectra and by analogy with the fluoride analogues. The failure of the other dithio- and diseleno-ethers to form compounds of this type may be due to slightly weaker donor power and increasing steric bulk, disfavouring the eight-coordinate cations.

Conclusions

This study has shown that the soft σ -donor thioether ligands readily form complexes with the hard Lewis acid NbF₅, and that the ligand steric demands influence significantly the coordination numbers obtained. Thus, eight-coordination is achieved by ligands with small steric demands, whereas bulkier thioethers form only six-coordinate complexes. Eight-coordination is also found with NbX₅ (X = Cl or Br) and MeS(CH₂)₂SMe, but other thioethers form only six-coordinate $[NbX_5(L)]$ or $[(NbX_5)_2(\mu-L-L)]$, and selenoether adducts with all three halides are six-coordinate. The complexes of NbX₅ (X = Cl or Br) appear stable indefinitely if protected from moisture, but the fluorides decompose readily even in the solid state via fluorination of the neutral ligand. The solution spectroscopic data suggest that the heavier halides form more stable complexes with thio- and especially seleno-ether ligands, but the isolation of the eight-coordinate fluoride complexes is remarkable, given the modest donor power of neutral soft sulfur ligands.

Acknowledgements

We thank EPSRC for support and the Royal Society of Chemistry for a Journals Grant (R. R.).

References

- W. Levason and G. Reid, J. Chem. Res., 2002, 467; W. Levason, and G. Reid, in *Handbook of Chalcogen Chemistry* ed. F. Devillanova, Royal Society of Chemistry, 2006, p. 81.
- 2 W. Levason, S. D. Orchard and G. Reid, *Coord. Chem. Rev.*, 2002, **225**, 159.
- 3 M. D. Brown, M. B. Hursthouse, W. Levason, R. Ratnani and G. Reid, Dalton Trans., 2004, 2487.
- 4 M. F. Davis, W. Levason, M. E. Light, R. Ratnani, G. Reid, K. Saraswat and M. Webster, *Eur. J. Inorg. Chem.*, 2007, 1903.
- 5 (a) R. Hart, W. Levason, B. Patel and G. Reid, J. Chem. Soc., Dalton Trans., 2002, 3153; (b) W. Levason, B. Patel, G. Reid, V.-A. Tolhurst and M. Webster, J. Chem. Soc., Dalton Trans., 2000, 3001.
- 6 S. D. Reid, A. L. Hector, W. Levason, G. Reid, B. J. Waller and M. Webster, *Dalton Trans.*, 2007, 4769.
- 7 (a) A. L. Hector, W. Levason, A. J. Middleton, G. Reid and M. Webster, *Eur. J. Inorg. Chem.*, 2007, 3655; (b) M. F. Davis, W. Levason, J. Paterson, G. Reid and M. Webster, *Eur. J. Inorg. Chem.*, 2008, 802.
- 8 A. L. Hector, M. Jura, W. Levason, S. D. Reid and G. Reid, *New J. Chem.*, 2009, 33, 641.
- 9 F. Fairbrother, K. H. Grundy and A. Thompson, J. Chem. Soc., 1965, 765.
- 10 F. Fairbrother and J. F. Nixon, J. Chem. Soc., 1962, 150.
- 11 A. Merbach and J. C. Bunzli, Helv. Chim. Acta, 1972, 55, 580.

- 12 R. Good and A. E. Merbach, Helv. Chim. Acta, 1974, 57, 1192.
- 13 M. Valloton and A. E. Merbach, Helv. Chim. Acta, 1975, 58, 2272.
- 14 (a) R. Good and A. E. Merbach, *Inorg. Chem.*, 1975, 14, 1030; (b) H. Vanni and A. E. Merbach, *Inorg. Chem.*, 1979, 18, 2758.
- 15 J. D. Wilkins, J. Inorg. Nucl. Chem., 1975, 37, 2095.
- 16 (a) R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1975, 97, 942;
 (b) R. E. DeSimone and T. M. Tighe, J. Inorg. Nucl. Chem., 1976, 38, 1623.
- 17 M. Jura, W. Levason, G. Reid and M. Webster, *Dalton Trans.*, 2009, 7610.
- 18 F. R. Hartley, S. G. Murray, W. Levason, H. E. Soutter and C. A. McAuliffe, *Inorg. Chim. Acta*, 1979, 35, 265.
- 19 D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter and G. L. Marshall, J. Chem. Soc., Perkin Trans. 2, 1984, 429.
- 20 (a) T. Kemmitt, E. G. Hope and W. Levason, *Organometallics*, 1988, 7, 78; (b) N. Kuhn, P. Faupel and E. Zauder, *J. Organomet. Chem.*, 1986, **302**, C4.
- 21 W. Levason, M. Nirwan, R. Ratnani, G. Reid, N. Tsoureas and M. Webster, *Dalton Trans.*, 2007, 439.

- 22 G. M. Sheldrick, SHELXS-97, Program for crystal structure solution, University of Göttingen, Germany, 1997.
- 23 G. M. Sheldrick, SHELXS-97, Program for crystal structure refinement, University of Göttingen, Germany, 1997.
- 24 H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr., 1983, 39, 876.
- 25 D. Rehder, in *Transition Metal NMR*, ed. P. S. Pregosin, Elsevier, NY, 1991.
- 26 T. Waters, A. G. Wedd, M. Ziolek and I. Nowak, in *Comprehensive Coordination Chemistry II*, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, vol. 4, p. 241; J. B. Hamilton and R. E. McCarley, *Inorg. Chem.*, 1970, 9, 1339; P. J. McKarns, M. J. Heeg and C. H. Winter, *Inorg. Chem.*, 1998, 37, 4743.
- 27 K. J. Packer and E. L. Muetterties, J. Am. Chem. Soc., 1963, 85, 3035.
- 28 K. C. Moss, J. Chem. Soc. A, 1970, 1224.
- 29 A. M. Forster and A. J. Downs, Polyhedron, 1985, 4, 1625.
- 30 T. M. Klapötke, B. Krumm and M. Scherr, *Inorg. Chem.*, 2008, 47, 4712.
- 31 I. R. Beattie, T. R. Gilson and G. A. Ozin, J. Chem. Soc. A, 1968, 2765.