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Abstract: The first organocatalytic approach towards substituted
coumarins is reported. Catalytic amounts of in situ generated N-
heterocyclic carbenes (NHC) catalyze a one-pot redox esterification
of a,b-unsaturated aldehydes with simultaneous aldol condensation.
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The application of N-heterocyclic carbenes (NHC) as cat-
alysts and promoters in organic synthesis enables various
highly valuable synthetic transformations.1 Of particular
interest is the inversion of classical reactivity (Umpol-
ung),2 which include benzoin3 and Stetter reactions.4

More recent examples are synthesis of g-butyrolactones,5

b-lactones5a and other esters,5b and g-lactams.6

The use of NHC for synthesis of coumarins C was de-
scribed by our group in 2007 (Scheme 1).7a It should be
noted that depending on the reaction parameters, a,b-
unsaturated carbonyl compounds and salicylaldehydes
give different reaction products like A or B.7b,c

Scheme 1 Reaction of salicylaldehydes with a,b-unsaturated alde-
hydes

Earlier we reported the synthesis of benzyl-substituted
coumarins 4 (R2 = Ar) in a one-pot reaction, albeit with
stoichiometric amounts of NHC precursors 3 (Scheme 2),

large excess of a,b-unsaturated aldehydes 2 and in only
moderate yields.7

Herein we report our systematic development of an orga-
nocatalytic methodology for the synthesis of several cou-
marins 4 (Scheme 2).

Scheme 2 One-pot synthesis of substituted coumarins 47

Coumarins are naturally occurring benzopyran deriva-
tives with interesting pharmacological properties.8 One
example is their potential to bind to and activate canna-
binoid receptors.9 Recently, we described the synthesis
and biological evaluation of several coumarin derivatives,
employing our previously reported NHC-promoted meth-
odology.10 This way, novel lead structures with high bind-
ing activity were identified, showing selectivity towards
the cannabinoid receptors CB1 and CB2. In a typical pro-
cedure salicylaldehyde (1a) and 2.5 equivalents of ac-
rolein (2a, R2 = H) were treated with 1.0 equivalent of
NHC precursor 3a [R3 = Me, X = (MeO)2PO2] to furnish
26% yield of coumarin 4aa (R1, R2 = H).7 Similar reaction
conditions with cinnamaldehyde (2b, R2 = Ph) furnished
only 18% of the product 4ab (R1 = H, R2 = Ph).7 The use
of other a,b-unsaturated aldehydes 2 with R2 representing
an alkyl group had yet been unsuccessful.

Due to these shortcomings, we decided to further investi-
gate the reaction, to render it more applicable for further
synthesis of pharmacological interesting coumarins. Our
aim was to lower the loading of NHC precursor 3 to cata-
lytic amounts, to widen the scope of substrates to b-alkyl
a,b-unsaturated aldehydes like crotonaldehyde (2c,
R2 = Me) and to optimize yields.

We started our screening with salicylaldehyde (1a,
R1 = H) and slight excess (1.5 equiv) of crotonaldehyde
(2c, R2 = Me) under the previously described conditions
(K2CO3, toluene, reflux) with different imidazolium and
imidazolidinium salts. The best results were obtained with
bis(2,6-diisopropylphenyl)imidazolium chloride (3b,
R3 = 2,6-diisopropylphenyl, X = Cl), significantly superi-
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or to the previously used 1,3-dimethyl imidazolium spe-
cies 3a. These findings are in compliance with results
reported for similar reactions: large substituents at the
NHC shield reaction intermediates, thus avoiding undes-
ired side reactions.5 The commercially available, inexpen-
sive imidazolium salt 3b was used for further
optimization. With 1.0 equivalent of 3b, coumarin 4ac
was obtained in 74% yield (Table 1, entry 1). Lowering
the loading of catalyst precursor 3b diminished the yield
to 58% (entry 2). This could be slightly improved by slow
addition of crotonaldehyde over six hours (entry 3). Next,
different solvents (entries 4 and 5) and bases (entries 6–8)
were screened. The application of Cs2CO3 proved to be
superior to the previously employed K2CO3. Further sol-
vent screening, employing Cs2CO3 as base, revealed o-xy-
lene at 120 °C to be the solvent of choice, furnishing 81%
yield (entry 12). Lowering the amount of base to 0.2
equivalents had detrimental effect, diminishing the yield
to 56% (entry 13).

After the optimization of the reaction conditions,11 we in-
vestigated the scope of the reaction, employing substitut-
ed salicylaldehydes 1a–j (Table 2). Methoxy groups on
the salicylaldehyde core are tolerated, although their posi-

tion had some influence on the yield (entries 2 and 3).
Bromine and iodine substituents could be introduced in
good yields (entries 4–6), enabling further elaboration of
the coumarins, for example, by cross-coupling, which is
important for further pharmacological evaluation. Naph-
thyl derivative 4gc and biphenyl derivative 4hc were
formed only in moderate yields (entries 7 and 8). In case
of 4hc this could be explained by steric hindrance of the
phenol group due to the adjacent phenyl substituent. Us-
ing 4-diethylaminosalicylaldehyde 1c, only starting mate-
rial was recovered (entry 9). The electron-deficient 5-
nitrosalicylaldehyde 1j led to decomposition (entry 10).
This is either due to the decreased nucleophilicity of the
intermediate phenolate or due to a higher reactivity of the
aldehyde function towards side reactions.

Finally we tested the applicability of the optimized cata-
lytic methodology to different a,b-unsaturated aldehydes
(Table 3). With acrolein (2a, R1, R2 = H) under our opti-
mized reaction conditions, but lower temperature (60 °C,
due to the higher volatility of acrolein), only 27% of the
coumarin 4aa were obtained (entry 1).

Using 3.0 equivalents of acrolein, which were added sub-
sequently in three portions over six hours, the yield could
be increased to 40% (entry 2). The reaction proceeds also
with cinnamaldehydes 2c,d, albeit in only moderate yield
(entries 3 and 4). With prenal (2e, R1, R2 = Me) and citral
(2f, R1 = C6H11, R2 = Me) no conversion was observed
(entry 5, 6), indicating that b,b-disubstituted aldehydes
are no suitable substrates in this reaction.

Table 1 Optimization of the Catalytic One-Pot Synthesis of Cou-
marin 4ac

Entry 3b 
(equiv)

Base (equiv) Solvent Temp Yield 
(%)

1 1.0 K2CO3 (1.0) toluene reflux 74

2 0.2 K2CO3 (1.0) toluene reflux 58

3 0.2 K2CO3 (1.0) toluene reflux 63a

4 0.2 K2CO3 (1.0) THF reflux 67

5 0.2 K2CO3 (1.0) THF–toluene (1:1) reflux 50

6 0.2 Na2CO3 (1.0) toluene reflux 65

7 0.2 KOt-Bu (1.0) toluene reflux 25

8 0.2 Cs2CO3 (1.0) toluene reflux 68

9 0.2 Cs2CO3 (1.0) THF reflux 29

10 0.2 Cs2CO3 (1.0) THF–toluene (1:1) reflux 57

11 0.2 Cs2CO3 (1.0) benzene reflux 34

12 0.2 Cs2CO3 (1.0) o-xylene 120 °C 81

13 0.2 Cs2CO3 (0.2) o-xylene 120 °C 56

a Slow addition of crotonaldehyde over 6 h.
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Table 2 Reaction of Different Substituted Salicylaldehydes 1a–j 
with Crotonaldehyde 2c

Entry R1 R2 R3 R4 Product Yield (%)

1 H H H H 4ac 81

2 OMe H H H 4bc 74

3 H H H OMe 4cc 37

4 OMe H Br H 4dc 42

5 H H Br H 4ec 79

6 H H I H 4fc 67

7 H (–HC=CH–)2 H 4gc 36

8 Ph H H H 4hc 33

9 H NEt2 H H 4ic 0

10 H H NO2 H 4jc 0
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The proposed catalytic cycle for the coumarin formation
is outlined in Scheme 3. Deprotonation of imidazolium
ion 3b generates the catalytically active NHC species 7
[R = 2,6-diisopropylphenyl (IPr)], which then adds to cro-
tonaldehyde (2c). Tautomerization of the generated zwit-
terion 5 gives rise to an intermediate, which can be drawn
as dienamine 6a or as its mesomeric homoenolate 6b.
Tautomerization forms the enol 8, which subsequently un-
dergoes a 1,2-addition to salicylaldehyde (1a). The addi-
tion product 9 represents an activated carbonyl group,
which is prone to intramolecular lactonization. In this
step, the catalytically active NHC 7 is regenerated. Cy-

clization of the alkoxy group of 9 onto the activated car-
bonyl group would lead to a b-lactone, as observed by
Glorius et al. for related structures.5 In our case, another
reaction pathway is possible due to the presence of the
phenol group in the substrate: tautomerization of 9 to a
phenolate enables lactonization to the d-lactone 10. We
observed only the formation of the latter, the six-mem-
bered-ring lactone and were not able to isolate any b-lac-
tone. Finally, elimination of water under the basic reaction
conditions, furnishes coumarin 4b.

Altogether, the reaction represents a redox esterification
of a,b-unsaturated aldehydes with simultaneous aldol
condensation. The bond-formation steps are quite unique
for NHC-catalyzed reactions, which usually proceed via
an a1-d1 or a3-d3 Umpolung.

In summary, we have developed an organocatalytic meth-
odology for the synthesis of several coumarins. Employ-
ing 20 mol% of an inexpensive NHC precursor, the
reaction of crotonaldehyde, cinnamaldehydes and ac-
rolein with differently substituted salicylaldehydes pro-
ceed in moderate to good yields. This methodology thus
allows the readily construction of a variety of coumarins,
a family of high interest for pharmacological studies.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett. It contains
all experimental procedures, including those for the preparation of
starting materials, characterization of all compounds and 1H NMR
and 13C NMR spectra.
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Table 3 Reaction of Salicylaldehyde 1a with Different a,b-Unsat-
urated Aldehydes 2a–f

Entry R1 R2 Product Yield (%)

1 H H 4aa 27a

2 H H 4aa 40b

3 Ph H 4ab 32

4 2-MeOC6H4 H 4ad 47

5 Me Me 4ae 0

6 C6H11 Me 4af 0

a 60 °C.
b Addition of acrolein (3.0 equiv) over 6 h, 60 °C.
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Scheme 3 Proposed catalytic cycle for the reaction of a,b-unsaturated aldehydes with salicylaldehydes to coumarins
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