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Abstract: A palladium-catalyzed sequence consisting of an N-aryl-
ation and an intramolecular hydroamination sets the stage for a
modular synthesis of indoles bearing sterically hindered N-substit-
uents.
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Due to their remarkable range of biological activities, in-
doles are among the most abundant heterocyclic substruc-
tures in drug discovery. As a consequence, a continuing
demand exists for generally applicable syntheses of this
heteroarene.1–5 Recently, significant progress has been ac-
complished, in particular, through the application of tran-
sition-metal catalysis.6–13 Although these efforts greatly
expanded the generality of catalytic indole syntheses, the
preparation of derivatives bearing sterically demanding
N-substituents continues to represent a significant chal-
lenge. For example, functionalizations of free (NH) in-
doles via substitution reactions at nitrogen are hampered
by their relatively low nucleophilicities. However, a ma-
jor advance was recently achieved by Willis and cowork-
ers with an application of their elegant palladium-
catalyzed N-annulation14 to the preparation of indoles
with sterically demanding N-substituents.15 Furthermore,
Schirok reported on the microwave-assisted preparation
of N-tert-alkylated indoles through the conversion of
ortho-(haloaryl)oxiranes with primary amines at
240 °C.16

Previously, we reported on palladium-17,18 and copper-
catalyzed17 syntheses of diversely substituted indoles19

employing ortho-dihaloarenes or ortho-alkynylhalo-
arenes, such as chlorides 1 (Scheme 1). This reaction se-
quence consisting of an intermolecular N-arylation and an
intramolecular hydroamination laid the foundation for a
modular access to N-substituted indoles. Considering the
valuable biological activities20 of indoles with sterically
hindered N-substituents as well as the limitations associ-
ate with their syntheses,14,16 we became interested in ex-
ploring the use of our protocol in this challenging task, the
results of which we wish to report herein.
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Scheme 1 Palladium-catalyzed synthesis of indoles 3

At the outset of our studies, we explored palladium com-
plexes derived from various phosphine or N-heterocyclic
carbene21–23 ligands in the conversion of sterically hin-
dered 1-AdNH2 (2a, Table 1). Unfortunately, diphos-
phines 4 and 5 gave only rise to unsatisfactory results
(entries 2 and 3). On the contrary, electron-rich mono-
phosphines 6 and 7a–d24 (entries 4–8) provided improved
isolated yields of desired indole 3a. Interestingly, most ef-
ficient catalysis was achieved with N-heterocyclic car-
bene precursors (entries 9–11), with sterically demanding
imidazolium salt 10 leading to optimal results (entry 11).

With a highly active catalytic system in hand, we probed
its scope in the synthesis of indoles bearing sterically
demanding N-substituents (Table 2).25,26 ortho-Alkynyl-
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chloroarenes 1 with both alkyl (Table 1, entry 11, and
Table 2, entry 6) or aryl substituents (Table 2, entries 1–5,
7, and 8) at the alkyne were converted regioselectively
with bulky (1-Ad)NH2 (2a). Importantly, a comparable
efficacy was observed with sterically demanding amine
t-BuNH2 (2b, entry 9). Furthermore, the protocol was not
restricted to the use of more nucleophilic alkyl-substituted
amines, but enabled also the high-yielding synthesis of in-
dole 3k displaying a sterically encumbered N-aryl substit-
uent (entry 10).

A variety of naturally occurring indole derivatives feature
reverse prenyl substituents. For example, fungal natural
products asterriquinones20 exhibit valuable biological –
including antitumor – activities, and are decorated with an

N-reverse prenyl group. Therefore, we explored the use of
amine 2d under the optimized reaction conditions for the
synthesis of this structural motif, and were pleased to ob-
serve the regioselective formation of indole 3l
(Scheme 2).

Table 1 Evaluation of (Pre)Ligands in the Synthesis of Indole 3aa

Entry (Pre)Ligand Yield (%)

1 – – –

2 dppf 4 –

3 BINAP 5 (5)b

4 PCy3 6 38

5
6
7
8

R1 = t-Bu, R2 = R3 = R4 = H
R1 = Cy, R2 = NMe2, R

3 = R4 = H
R1 = Cy, R2 = R3 = OMe, R4 = H
R1 = Cy, R2 = R3 = R4 = i-Pr

7a
7b
7c
7d

30
51
59
45

9 8 (9)b

10 9 39

11 10 62

a Reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), Pd(OAc)2 (5.0 mol%), (pre)ligand (5.0 mol%), KOt-Bu (1.5 mmol), PhMe (1.5 mL), 105
12 h; yields of isolated products.
b GC conversion.
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Scheme 2 Synthesis of indole 3l bearing an N-reverse prenyl group
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In summary, we have reported on a modular synthesis of
indoles bearing sterically hindered N-substituents. Thus, a
palladium-catalyzed sequence consisting of an intermo-
lecular N-arylation and an intramolecular hydroamination
enabled a regioselective N-annulation, which was found
to be applicable to the preparation of an N-reverse prenyl-
substituted indole as well.
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Table 2 Scope of Palladium-Catalyzed Synthesis of Indoles with Sterically Hindered N-Substituentsa

Entry R3 Temp (°C) Product Yield (%)

1
1-Ad
2a 120 3b 83

2
1-Ad
2a 120 3c 88

3
1-Ad
2a 120 3d 79

4
1-Ad
2a 120 3e 94

5
1-Ad
2a 120 3f 83

6
1-Ad
2a

105 3g 80

7
1-Ad
2a

120 3h 94

8
1-Ad
2a

120 3i 55

9
t-Bu
2b

120 3j 90

10 2,6-(i-Pr)2C6H3 2c 105 3k 94

a Reaction conditions: 1 (0.5 mmol), 2 (0.6 mmol), Pd(OAc)2 (5.0 mol%), 10 (5.0 mol%), KOt-Bu (1.5 mmol), PhMe (1.5 mL), 14 h; yields of 
isolated products.
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