Synthesis of indole-containing analogs of (1*R*)-*cis*-chrysanthemic acid and *N*-substituted (1*R*)-*cis*-chrysanthemylamines

O. N. Burchak,^a A. M. Chibiryaev,^{b*} and A. V. Tkachev^b

 ^aN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences,
 9 prosp. Akad. Lavrent 'eva, 630090 Novosibirsk, Russian Federation. Fax: +7 (383 2) 34 4752.
 ^bDepartment of Natural Sciences, Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation. Fax: +7 (383 2) 34 4752. E-mail: chibirv@nioch.nsc.ru

The indolic analogs of (1R)-*cis*-chrysanthemic acid and *N*-substituted (1R)-*cis*-chrysanthemylamines were obtained by Fischer indole synthesis using the acetonylcyclopropanes derived from (+)-car-3-ene. The cyano- and *N*-cyanamido groups in the starting carbonyl compounds did not hinder indolization. The reduction of the nitrile group bound to the asymmetrical atom of the cyclopropane ring by LiAlH₄ in ether can be accompanied by epimerization.

Key words: (+)-car-3-ene, cyclopropane methyl ketones, Fischer indole synthesis, N-cyanamides, decyanation, nitriles, hydrolysis, reduction, amides, indolic analogs of chrysanthemylamine, epimerization, racemization.

Pyrethroid insecticides represent presently the most efficient chemical facility for combating harmful insects. The modern tendencies in synthesis of new pyrethroids are primarily related to design of acid components, which appears, in particular, as the development of pyrethroid molecules, whose acid components contain heterocyclic fragments. It follows from the review of licensed literature¹ that a set of the known synthetic pyrethroids, whose acid component includes the *N*-heterocyclic fragment, is very scarce²⁻¹² and mainly presented by compounds of the indole or isoindole series.^{3-5,12} However, even this group contains a few substances related to the most efficient pyrethroid insecticides, such as chrysanthemates,⁸⁻¹³ viz., derivatives of (1*R*)-chrysanthemic acid

(1, X = Y = Me; R = H) and its halogen-containing analogs (1, X,Y = Me, Cl, Br; R = H), as well as *N*-substituted (1*R*)-chrysanthemylamines 2.^{14,15} The purpose of this work is to synthesize indolic analogs of (1*R*)-*cis*-chrysanthemic acid and *N*-substituted (1*R*)-*cis*-chrysanthemylamines (compounds of type 3) in the enantiomerically pure form.

Results and Discussion

Ketone 4^{16} was used as the key initial compound in synthesis of the indicated indolic analogs (Scheme 1).

Scheme 1

Published in Russian in *Izvestiya Akademii Nauk. Seriya Khimicheskaya*, No. 7, pp. 1209–1218, July, 2002. 1066-5285/02/5107-1308 \$27.00 © 2002 Plenum Publishing Corporation

Reagents, conditions, and yields: *i*. 1) PhNHNH₂/MeOH, ~20 °C, 2 h; 2) PPE/CH₂Cl₂, ~20 °C, 20 h; 75% yield. *ii*. 1) PhNHNH₂/EtOH, ~20 °C, 2–4 h; 2) PPA, ~50 °C, 8 h; 37% yield, ratio $7: 8 \approx 2: 1$. *iii*. H₂O₂/NaOH/MeOH/H₂O, ~20 °C, 2 days; 45% yield. *iv*. KOH/BuⁱOH, Δ, 1 h; 83% yield. *v*. EtOH/H₂O/H₂SO₄, Δ, 2 h, 30% yield.

This compound can readily be prepared in high yield from enantiomerically pure natural (+)-car-3-ene, whose molecule already has the main structural unit of chrysanthemates, *viz.*, 2,2-dimethylcyclopropane fragment. The chemical properties of the CH₂CN group and the absolute configuration of molecule **4** make it possible to synthesize enantiomerically pure ketones **5**¹⁷ and **6**¹⁸ using the minimum number of steps.

Compounds 5 and 6 are the closest precursors of target products 3 because have the (R)-configuration of the C(1) atom and the 2-oxopropyl group in position C(3). The latter can be used for the formation of the indole cycle using Fischer method, as shown¹⁹ for ketone 4. Thus, the problem was a search for conditions under which ketones 5 and 6 would undergo Fischer indole synthesis and other structural fragments of the initial molecules would remain unchanged.

Ketone 5 reacted rapidly with phenylhydrazine in an ethanolic solution without heating to yield the corresponding hydrazone, which underwent Fischer indole synthesis in the presence of polyphosphoric acid (PPA) or its ethyl ester to form indole 7. However, in the presence of PPA, the yield of indole was only 37% (twofold lower than that in the case of PPE) and the target product was a mixture of *cis*- and *trans*-isomers 7 and 8 in a ratio of 2 : 1 (Scheme 2).* Isomerization $7 \longrightarrow 8$ should be considered as epimerization at one of two asymmetric C(1) or C(3) atoms of the cyclopropane ring. However, it remains yet unclear at which of the atoms it occurs.

Compound 7 is an indolic analog of nitrile of (1R)-cis-chrysanthemic acid, however, attempts of the

transformation of nitrile 7 into the corresponding acid failed. It turned out that the appearance of the 3-indolyl substituent at the C(3) atom of cyclopropane had a substantial effect on hydrolysis of the cyano group. It is known that optically active 2,2-dimethylcyclopropanecarbonitriles close in structure to compound 7, being heated in an aqueous ethanolic solution^{20,21} or in a solution of ethylene glycol²² and treated with KOH, are easily hydrolyzed to form the corresponding acids, although the inversion of the C(1) atom configuration (epimerization) occurs simultaneously with hydrolysis when ethylene glycol is used. However, hydrolysis of nitrile 7 under these conditions affords lactam 10 due to cyclopropane ring opening. Amide 9 prepared by hydrolysis of compound 7 using the Radziszewski method is more easily transformed into lactam 10. As shown by ¹H NMR spectroscopy, this process also occurs during prolonged storage without a solvent or when amide 9 is kept in CHCl₃ for several days at ~ 20 °C. Attempts to perform alcoholysis of the amide group in compound 7 to the ester group in an aqueous-ethanolic medium in the presence of H₂SO₄ were also unsuccessful (cf. Ref. 21), and lactam 10 was the main product (30% yield) among numerous reaction products. Thus, nitrile 7 and amide 9, viz., indolic analogs of the corresponding (1R)-cis-chrysanthemic acid derivatives, are more labile than their nonheterocyclic prototypes, which is also demonstrated in the reduction of the nitrile group by $LiAlH_4$ (Scheme 3).

The cyano group in compound 7 is easily reduced to the aminomethyl group by LiAlH_4 in Et_2O (5 h at 20 °C, ~97% yield of amine). However, according to the data of the ¹H NMR spectrum, the product obtained was a mixture of *cis*- and *trans*-isomers in a ratio of 1 : 2 (correspondingly, **11** and **13**). The replacement of diethyl ether by *tert*-butyl methyl ether increased the reaction dura-

^{*} Numeration of atoms in schemes does not correspond to the IUPAC nomenclature and serves only for interpretation of NMR spectra.

Reagents, conditions, and yields: *i*. LiAlH₄/ether, ~20 °C, 5 h, 97% yield, ratio **11** : **13** ~1 : 2; *ii*. LiAlH₄/Bu^tOMe, ~20 °C, 2 days, 63% yield; *iii*. AcCl/NEt₃/CH₂Cl₂, ~20 °C, 15 min, 45% yield; *iv*. 1) ArCHO/C₆H₆, Δ , 2 h; 2) NaBH₄/MeOH, Δ , 0.5 h, 73% yield (**15**-(±)), 64% yield (**16**-(±)).

tion, decreased the yield of amine, and increased the relative content of *trans*-isomer 13 among the reduction products: the maximum yield of the latter was 63% along with the absence of noticeable amounts of *cis*-amine **11**. As follows from the results of a series of experiments in *tert*-butyl methyl ether, the reduction of nitrile 7 is very sensitive to hydrogenation conditions and quality of the initial reactants, and the yields of amine 13 range within 40-63% (cf. Ref. 23). cis/trans-Isomerization and the complete racemization of the reduction product 13 are observed even at 20 °C. The predominant formation of trans-amine 13 in both diethyl and tert-butyl methyl ethers is explained by a higher thermodynamic stability of the trans-isomer. According to calculations by the molecular mechanics MM2 and quantum-chemical PM3 methods, the heat of formation of trans-amine 13 is lower than that of its *cis*-isomer 11 by \sim 3 kcal mol⁻¹.

The acetylation of amine 13 with acetyl chloride afforded the corresponding acetamide 14, whose signals in the ¹H and ¹³C NMR spectra were completely assigned. Taking into account these spectral data, we assigned the signals for *cis*-acetamide 12, which was obtained only in a mixture with *trans*-acetamide 14 by the acetylation of the product of reduction of nitrile 7 with LiAlH₄ in diethyl ether. The condensation of *trans*-amine 13 with *meta*-phenoxybenzaldehyde or benzaldehyde followed by the reduction of Schiff's bases with NaBH₄ easily affords the corresponding arylmethylamines 15 and 16 in high yields.

The absence of optical activity for both acetamide 14 and amines 15 and 16 indicates racemization at the stage

of reduction of nitrile 7 with LiAlH₄ in *tert*-butyl methyl ether. The racemization of optically active cyclopropane compounds by LiAlH₄ is a known process,²³ which occurs, however, only when the reaction center is directly bound to one of the atoms of the cyclopropane ring as, for example, in the initial nitrile 7. To verify this assumption, we reduced compound 17,¹⁹ which is a homolog of compound 7, under similar conditions (Scheme 4).

Reagents, conditions, and yields: *i*. LiAlH₄/ether, $\sim 20 \circ C$, 2 days, 70% yield (**18**). *ii*. AcCl/NEt₃/CH₂Cl₂, $\sim 20 \circ C$, 15 min, 86% yield (**19**).

Nitrile **17** is reduced in diethyl ether without epimerization much more slowly and in a lower yield (70%) than nitrile 7. This is indicated by the vicinal spin-spin coupling constant ${}^{3}J_{\rm H(4), H(6)} = 9.0$ Hz, which is characteristic of *cis*-1,2-disubstituted cyclopropanes. In addition, the product of reduction of **17** is not noticeably racemized during the reaction.

Since either a mixture of *cis*- (11) and *trans*-isomers (13), or racemic *trans*-amine 13 was obtained in the synthesis of the indolic analog of chrysanthemylamine, we applied another sequence of transformations to synthesize analogs of *N*-substituted (1*R*)-*cis*-chrysanthemylamines in the enantiomerically pure form. ω -Ketonitrile 4 has recently been shown²⁴ to be easily transformed into various *N*-substituted *N*-cyanamides **6a**-**d** containing the *meta*-phenoxybenzyl and polyfluorobenzyl substituents, which are the most promising from the viewpoint of the insecticidal activity of pyrethroids. Based on ω -keto-*N*-cyanamides **6a**-**d**, we synthesized a series of heterocyclic compounds **20a**-**d** and **21a**-**d** containing the indole fragment (Scheme 5).

Fischer indole synthesis as a method for heterocycle formation turned out to be appropriate for ketocyanamides and allowed the preparation of indole derivatives 20a-d in high yields (51-95%). In the case of 1-naphthylhydrazine and 8-quinolylhydrazine, the target products were obtained in moderate yields (except for 21a (69%)). All synthesized indolic analogs of chrysanthemylamines 20 and 21 possessed a considerable optical activity and has the cis-arrangement of substituents in the cyclopropane ring, *i.e.*, represented (1R)-cis-chrysanthemylamine derivatives. Moreover, compounds 20d and 21d are heterocyclic aza analogs of the known pyrethroid insecticide cyphenothrin (cf. Ref. 18). It is important that the N-cyanamide group is retained in the final products because, in particular, N-cyanamides exhibit different biological activities.^{25–28} In addition, many possibilities of the chemical transformation of the -N(CN)R group are known, $^{29-33}$ including those into other pharmacophoric groups.³⁴⁻³⁸ It also seems significant that cyanamides can be involved in heterocyclization to form oxazoles,³⁹ oxazines,⁴⁰ oxazolines,41,42 thiazoles,43 pyrrolidines,44 triazines,45 and pyrimidines.⁴⁶ Thus, N-cyanamides 20-21 can serve as intermediates in synthesis of other, practically significant compounds.

The *N*-cyano group, which is used as protective for amines, can easily be removed under the action of reducing agents or by hydrolysis.^{47–52} In fact, the reduction of *N*-cyanamide **20a** with LiAlH₄ in Bu^tOMe affords benzylamine **22**, *viz.*, *cis*-isomer of compound **16** (Scheme 5). A comparison of the chemical shifts of signals and the spin-spin coupling character in the ¹H and ¹³C NMR spectra of compounds **16** and **22** shows that

Scheme 5

X = N (21a,b,d), CH (21c)

Reagents, conditions, and yields: *i*. 1) ArNHNH₂/MeOH, ~20 °C, 2 h; 2) PPE/CH₂Cl₂, ~20 °C, 20 h; 95% (**20a**), 79% (**20b**), 51% (**20c**), 74% (**20d**); 69% (**21a**), 33% (**21b**), 30% (**21c**), 41% (**21d**) yields. *ii*. LiAlH₄/Bu^tOMe, ~20 °C, 2 h, 53% yield (**22**).

the NMR spectra of samples **16** and **22** differ significantly despite the structural similarity of these amines. Thus, the NMR spectra allow these compounds and their closest analogs and derivatives to be unambiguously distinguished.

Experimental

Thin layer chromatography was carried out on Silufol plates. To develop spots, plates were sprayed with ethanolic solutions of vanillin (1 g of vanillin + 10 mL of concentrated H_2SO_4 in 100 mL in 95% EtOH) or ninhydrin (0.25 g of ninhydrin and 25 mL of AcOH in 100 mL of 95% EtOH) and heated. Silica gel (KSK trade mark) with a pore size of 0.140–0.315 mm activated at 140 °C for 6–7 h was used for preparative column chromatography.

UV spectra were obtained on a Specord M-40 spectrophotometer in 95% EtOH ($c \ 1 \cdot 10^{-4} \ \text{mol } \text{L}^{-1}$). IR spectra were recorded on a Bruker Vector-22 instrument. Mass spectra were obtained on a Finnigan MAT 8200 spectrometer (50–100 °C, EI, 70 eV). ¹H and ¹³C NMR spectra were recorded on Bruker AC-200 (¹H, 200.13 MHz; ¹³C, 50.32 MHz), Bruker AM-400 (¹H, 400.13 MHz; ¹³C, 100.61 MHz), and Bruker DRX-500 (¹H, 500.13 MHz; ¹³C, 125.77 MHz) spectrometers for solutions with a concentration of 70–100 mg mL⁻¹ at 25–27 °C. The signal from the solvent was used as internal standard: chloroform-d ($\delta_{\rm C}$ 76.90 ppm, $\delta_{\rm H}$ 7.24), dimethylsulfoxide-d₆ ($\delta_{\rm F}$ 162.90), Angles of optical rotation were measured on a Polamat A polarimeter for solutions in CHCl₃. Melting points were determined on a Kofler stage.

(+)-(1R,3S)-2,2-Dimethyl-3-(2-methyl-1H-indol-3-yl)cyclopropanecarbonitrile (7). Phenylhydrazine (0.36 g, 3.3 mmol) was added to a solution of ketone 5¹⁷ (0.45 g, 3.0 mmol) in MeOH (10 mL), the mixture was stored for 2 h at ~20 °C, and the solvent was removed in vacuo. The residue (light yellow oil) was dissolved in 10 mL of anhydrous CH₂Cl₂, PPE (2.0 g) was added,⁵³ and the mixture was left for 12 h at ~20 °C. The solvent was removed in vacuo, and the dark brown oil that formed was mixed with 15 mL of an aqueous solution of Na₂CO₃ $(0.5 \text{ mol } \text{L}^{-1})$ and extracted with Bu^tOMe (3×10 mL). The ether extract was dried with anhydrous Na₂SO₄, and the solvent was removed in vacuo. The residue (0.80 g) was chromatographed on a column packed with SiO₂ (eluent AcOEt-petroleum ether, 1 : 4), and crystalline indole 7 was obtained (0.5 g, 75%) with m.p. 154-157 °C (from EtOAc-hexane). $[\alpha]_{578}^{30}$ +106 (*c* 2.44). UV (EtOH), λ_{max}/nm (ϵ): 224 (30500), 282 (6700), 290 (5600). IR (film), v/cm⁻¹: 3375 (NH_{indole}), 2240 (C=N), 1455 (C=C_{arom}), 1235, 735 (C-H_{arom}). ¹H NMR ((CD₃)₂CO: 1.22 (s, 3 H, H₃C(8)); 1.45 (s, 3 H, H₃C(9)); 1.97 (d, 1 H, H(6), J = 8.3 Hz); 2.28 (dq, 1 H, H(4), $J_1 = 8.3$ Hz, $J_2 = 1.2$ Hz); 2.50 (d, 3 H, H₃C(1), J = 1.2 Hz); 6.99 and 7.03 (both ddd, 1 H, H(3a), H(4a), $J_1 = J_2 = 7.1$ Hz, $J_3 = 1.3$ Hz); 7.28 (m, 1 H, H(2a)); 7.49 (m, 1 H, H(5a)); 9.98 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO), δ: 13.11 (q, C(1)); 16.21 (d, C(6)); 19.27 (q, C(8)); 24.02 (s, C(5)); 26.38 (q, C(9)); 27.87 (d, C(4)); 105.62 (s, C(3)); 111.20 (d, C(5a)); 119.43, 119.66 and 121.36 (all d, C(2a), C(3a), C(4a)); 120.26 (s, C(7)); 129.83 (s, C(1a)); 135.92 and 136.60 (both s, C(2), C(6a)). MS, m/z (I_{rel} (%)): 225 (13), 224 [M]⁺ (76), 210 (16), 209

(100), 193 (11), 184 (18), 182 (20), 181 (12), 168 (13), 167 (11), 144 (28), 143 (30), 131 (11). Found: m/z 224.1315 [M]⁺. C₁₅H₁₆N₂. Calculated: M = 224.1313.

Synthesis of indolonitriles 7 and 8 in PPA. Phenylhydrazine (0.48 g, 4.4 mmol) was added to a solution of ketone 5 (0.60 g, 1.00 g)4.0 mmol) in MeOH (10 mL). The mixture was stored for 2 h at ~20 °C, the solvent was removed in vacuo, and PPA⁵⁴ (10.0 g) was added to the residue (light yellow oil). The mixture was stirred to complete dissolution of the hydrazone, and the resulting solution was stored for 8 h at 50 °C. The mixture was diluted with water (30 mL), neutralized by a 25% aqueous solution of NH₃ to pH ~9, and extracted with Bu^tOMe $(3 \times 10 \text{ mL})$. The ether extract was dried with anhydrous Na₂SO₄, and the solvent was removed in vacuo. The residue (0.85 g) was chromatographed on a column packed with SiO₂ (eluent AcOEt—petroleum ether, 1:4), and a mixture (0.040 g) of *cis*and *trans*-cyclopropanecarbonitriles 7 and 8 was obtained in a ratio of 2:1 according to the ¹H NMR spectral data (overall yield 44%).

trans-2,2-Dimethyl-3-(2-methyl-1*H*-indol-3-yl)cyclopropanecarbonitrile (8). ¹H NMR ((CD₃)₂CO), δ : 0.98 (s, 3 H, H₃C(8)); 1.54 (s, 3 H, H₃C(9)); 1.78 (d, 1 H, H(6), J = 5.8 Hz); 2.30 (dq, 1 H, H(4), $J_1 = 5.8$ Hz, $J_2 = 1.2$ Hz); 2.43 (d, 3 H, H₃C(1), J = 1.2 Hz); 6.99 (m, 2 H, H(3a), H(4a)); 7.26 (m, 1 H, H(2a)); 7.46 (m, 1 H, H(5a)); 10.00 (br.s, 1 H, NH_{indole}).

Amide of (+)-(1R,3S)-2,2-dimethyl-3-(2-methyl-1H-indol-3-yl)cyclopropanecarboxylic acid (9). NaOH (0.40 g, 10 mmol) was added to a solution of nitrile 7 (0.45 g, 2.0 mmol) in 15 mL of MeOH, and 15 mL of a 33% aqueous solution of H₂O₂ was added dropwise with stirring. The reaction mixture was stored for 2 days at ~20 °C, diluted with water (50 mL), saturated with solid NaCl, and extracted with Bu^tOMe (3×10 mL). The ether extract was dried with anhydrous Na₂SO₄, and the solvent was removed in vacuo. The yellow oil that obtained (0.42 g) was chromatographed on a column packed with SiO₂ (eluent AcOEt-petroleum ether, 1:1). Glassy amide 9 was obtained in 45% yield (0.22 g), $[\alpha]_{578}^{28}$ +95 (c 1.98). UV (EtOH), λ_{max}/nm (e): 226 (33900), 283 (6500), 291 (6000). IR (in CHCl₃), v/cm⁻¹: 3500 (NH_{amide}), 3475 (NH_{indole}), 1670 $(C=O_{amide})$, 1650 (NH_{amide}) , 1455 $(C=C_{arom})$. ¹H NMR (CDCl₃), δ: 1.24 (s, 3 H, H₃C(8)); 1.40 (s, 3 H, H₃C(9)); 1.74 (d, 1 H, H(6), J = 8.5 Hz); 2.13 (d, 1 H, H(4), J = 8.3 Hz); 2.24 (s, 3 H, $H_3C(1)$); 5.43, 5.63 (both br.s, 1 H + 1 H, NH_2); 6.99-7.05 (m, 2 H, H(3a), H(4a)); 7.15 (m, 1 H, H(2a)); 7.44 (m, 1 H, H(5a)); 8.52 (br.s, 1 H, NH_{indole}). ¹³C NMR (CDCl₃), δ: 12.61 (q, C(1)); 17.39 (q, C(8)); 24.26 (s, C(5)); 28.09 and 31.97 (both d, C(4), C(6)); 29.41 (q, C(9)); 31.97 (d, C(4)); 104.93 (s, C(3)); 110.32 (d, C(5a)); 118.92, 118.97 and 120.80 (all d, C(2a), C(3a), C(4a)); 128.88 (s, C(1a)); 134.96 and 135.37 (both s, C(2), C(6a)); 174.34 (s, C(7)). MS, m/z ($I_{\rm rel}$ (%)): 242 [M]⁺ (22), 199 (15), 198 (100), 183 (16), 182 (14), 168 (15), 43 (15). Found: *m*/*z* 242.1415 [M]⁺. $C_{15}H_{18}N_2O$. Calculated: M = 242.1419.

(±)-4,4-Dimethyl-5-(2-methyl-1*H*-indol-3-yl)pyrrolidin-2-one (10). Powdered KOH (0.56 g, 10.0 mmol) was added to a solution of nitrile 7 (0.45 g, 2.0 mmol) in 10 mL of Bu^tOH, and the mixture was boiled with stirring at 1 h. The reaction mixture was cooled, diluted with water (50 mL), and extracted with Bu^tOMe (3×10 mL). The ether extract was dried with anhydrous Na₂SO₄, the solvent was removed *in vacuo*, and crystalline product 10 was obtained in 83% yield (0.40 g) with m.p. 265–267 °C (from MeOH), $[\alpha]_{578}^{30}$ 0.0 (c 2.14). UV (EtOH), λ_{max}/nm (ε): 224 (36600), 282 (7000), 290 (6100). IR (in KBr), v/cm^{-1} : 3250, 3225 (NH_{indole} and NH_{lactam}); 1670 (C=O_{lactam}); 1455 (C=C_{arom}); 755 and 740 (C-H_{arom}). ¹H NMR ((CD₃)₂SO), δ: 0.72 (s, 3 H, H₃C(8)); 1.20 (s, 3 H, H₃C(9)); 2.16 (m, 2 H, H₂C(6)); 2.37 (s, 3 H, H₃C(1)); 4.64 (s, 1 H, H(4)); 6.92 and 6.99 (both m, 1 H, H(3a), H(4a)); 7.26 (m, 1 H, H(2a)); 7.43 (m, 1 H, H(5a)); 7.83 (br.s, 1 H, NH_{indole}); 10.85 (br.s, 1 H, NH_{amide}). ¹³C NMR ((CD₃)₂SO), δ: 11.95 (q, C(1)); 24.21 (q, C(8)); 28.12 (q, C(9)); 40.52 (s, C(5)); 46.08 (t, C(6)); 61.12 (d, C(4)); 107.48 (s, C(3)); 110.41 (d, C(5a)); 118.30, 118.74 and 119.84 (all d, C(2a), C(3a), C(4a)); 127.47 (s, C(1a)); 132.81 and 135.17 (both s, C(2), C(6a)); 175.60 (s, C(7)). MS, m/z (I_{rel} (%)): 243 (16), 242 [M]⁺ (53), 185 (11), 159 (36), 158 (100), 157 (27), 143 (17), 130 (16). Found: m/z 242.1418 [M]⁺. C₁₅H₁₈N₂O. Calculated: M = 242.1419.

Reaction of amide 9 with EtOH in the presence of H_2SO_4 . Water (1.9 mL) and concentrated H_2SO_4 (3.6 mL) were added to a solution of amide 9 (0.48 g, 2.0 mmol) in 16.3 mL of EtOH. The mixture was boiled with a reflux condenser for 10 h. After cooling H_2O (50 mL) was added, and the mixture was extracted with Bu^tOMe (3×10 mL). The ether extract was washed with an aqueous solution of Na₂CO₃ (0.5 mol L⁻¹, 15 mL) and a saturated solution of NaCl (15 mL) and dried with anhydrous Na₂SO₄. The solvent was removed *in vacuo*, and a glassy brown mixture (0.34 g) was obtained and chromatographed (SiO₂, eluent AcOEt). Crystalline lactam 10 was obtained in 30% yield (0.15 g).

Reduction of nitriles to amines (general procedure A). A solution of nitrile in the corresponding ether (20 mL) was added dropwise to a suspension of LiAlH₄ in Et₂O or Bu^tOMe. The mixture was stirred at ~20 °C for several hours until the reaction completed (TLC monitoring). Then ether (20 mL) was added, and the reaction mixture was poured into water (50 mL). The organic layer was separated, and the aqueous phase was extracted with ether (3×15 mL). The combined organic phase was reated with a 1 *N* solution of HCl (3×10 mL). The aqueous phase was neutralized with a 25% aqueous solution of NH₃ to pH ~9 and extracted with ether (3×10 mL). The extract was dried with anhydrous Na₂SO₄, the solvent was removed *in vacuo*, and the corresponding amine was obtained.

(±)-*C*-[*trans*-2,2-Dimethyl-3-(2-methyl-1*H*-indol-3yl)cyclopropyl]methylamine (13) was prepared by procedure *A* from a suspension of LiAlH₄ (0.51 g, 13.5 mmol) in freshly distilled Bu^tOMe (10 mL) and a solution of nitrile 7 (1.01 g, 4.5 mmol) in Bu^tOMe (20 mL). The reaction was carried out for 2 days at ~20 °C. After standard treatment amine 13 was obtained in 63% yield (0.65 g). ¹H NMR (CDCl₃--CCl₄), 8: 0.83 (s, 3 H, H₃C(8)); 1.32 (m, 1 H, H(6)); 1.34 (s, 3 H, H₃C(9)); 1.60 (br.s, 2 H, NH₂); 1.66 (dq, 1 H, H(4), J_1 = 9.0 Hz, J_2 = 1.0 Hz); 2.35 (d, 3 H, H₃C(1), J = 1.0 Hz); 3.05 (m, 2 H, H₂C(7)); 6.96 (m, 2 H, H(3a), H(4a)); 7.10 (m, 1 H, H(2a)); 7.42 (m, 1 H, H(5a)); 7.81 (br.s, 1 H, NH_{indole}).

A mixture (0.33 g, 97%) of *cis*- and *trans*-amines **11** and **13** (according to the data of the ¹H NMR spectrum, 1 : 2 ratio, respectively) was obtained after standard treatment using procedure *A* from a suspension of LiAlH₄ (0.15 g, 4.5 mmol) in anhydrous Et₂O (10 mL) and a solution of nitrile **7** (0.34 g, 1.5 mmol) in Et₂O (20 mL).

C-[*cis*-2,2-Dimethyl-3-(2-methyl-1*H*-indol-3-yl)cyclopropyl]methylamine (11). ¹H NMR (CDCl₃--CCl₄), δ : 1.04 (s, 3 H, H₃C(8)); 1.34 (m, 1 H, H(6)); 1.35 (s, 3 H, H₃C(9)); 1.52 (br.s, 2 H, NH₂); 1.76 (dq, 1 H, H(4); *J*₁ = 9.0 Hz, *J*₂ = 1.0 Hz); 2.33 (d, 3 H, H₃C(1), *J* = 1.0 Hz),); 2.85 (m, 2 H, H₂C(7)); 6.96 (m, 2 H, H(3a), H(4a)); 7.10 (m, 1 H, H(2a)); 7.42 (m, 1 H, H(5a)); 7.86 (br.s, 1 H, NH_{indole}).

(±)-N-[trans-2,2-Dimethyl-3-(2-methyl-1H-indol-3yl)cyclopropylmethyl]acetamide (14). Et₃N (0.08 g, 0.75 mmol) was added to a solution of amine 13 (0.11 g, 0.50 mmol) in anhydrous CH₂Cl₂, and AcCl (0.06 g, 0.75 mmol) was added dropwise with stirring. After 15 min the solvent was removed in vacuo, the residue was stirred with H₂O (10 mL) and Bu^tOMe (10 mL), and the organic layer was extracted with Bu^tOMe (3×5 mL). The combined organic extracts were washed with a 1 *M* aqueous solution of HCl and a 0.5 *M* solution of Na_2CO_3 , and the solvent was removed in vacuo. The brown oil that formed (0.12 g) was chromatographed on a column packed with SiO₂ (eluent AcOEt-petroleum ether, 1 : 1, AcOEt, 5% MeOH in AcOEt). Amide 14 was obtained in 45% yield (0.11 g), $[\alpha]_{578}^{15}$ 0.0 (c 1.27). UV (EtOH), λ_{max}/nm (ϵ): 227 (21900), 284 (6000), 292 (5500). IR (in CHCl₃), v/cm⁻¹: 3470 (NH_{indole}), 3315 (NH_{amide}), 1665 (C=O_{amide}), 1515 (NH_{amide}), 1460 (C=C_{arom}). ¹H NMR ((CD₃)₂CO), δ : 0.81 (s, 3 H, H₃C(8)); 1.26 (m, 1 H, H(6)); 1.35 (s, 3 H, H₃C(9)); 1.48 (dq, 1 H, H(4), $J_1 = 6.0$ Hz, $J_2 = 1.0$ Hz); 1.94 (s, 3 H, H₃C(2b)); 2.37 (d, 3 H, H₃C(1), J = 1.0 Hz); 3.37 (ddd, 1 H, H(7 α), $J_1 = 14.0 \text{ Hz}, J_2 = 8.0 \text{ Hz}, J_3 = 6.5 \text{ Hz}$; 3.59 (ddd, 1 H, H(7 β), $J_1 = 14.0 \text{ Hz}, J_2 = 7.0 \text{ Hz}, J_3 = 6.0 \text{ Hz}$; 6.94 (m, 2 H, H(3a), H(4a)); 7.22 (m, 1 H, H(2a)); 7.41 (m, 1 H, NH_{amide}); 7.46 (m, 1 H, H(5a)); 9.87 (br.s, 1 H, NH_{indole}). ¹³C NMR $((CD_3)_2CO)$, δ : 12.29 (q, C(1)); 21.45 (q, C(8)); 21.58 (s, C(5)); 22.97 (q, C(9)); 23.17 (d, C(4)); 26.03 (d, C(6)); 30.56 (q, C(2b)); 40.69 (t, C(7)); 109.66 (s, C(3)); 111.05 (d, C(5a)); 119.17, 119.17 and 120.82 (all d, C(2a), C(3a), C(4a)); 130.86 (s, C(1b)); 134.29 and 136.50 (both s, C(2), C(6a)); 170.10 (s, (1b)). MS, *m*/*z* (*I*_{rel} (%)): 270 [M]⁺ (7), 199 (16), 198 (100), 183 (18), 182 (12), 168 (16), 167 (7), 144 (11), 28 (7). Found: m/z 270.1729 [M]⁺. C₁₇H₂₂N₂O. Calculated: M = 270.1732.

Acetylation of a mixture of amines 11 and 13. A mixture of acetamides 12 and 14 (0.15 g, 56%) was obtained similarly to the previous procedure from a mixture of amines 11 and 13 (0.23 g, 1.0 mmol), Et_3N (0.15 g, 1.5 mmol), and AcCl (0.12 g, 1.5 mmol).

N-[*cis*-2,2-Dimethyl-3-(2-methyl-1*H*-indol-3-yl)cyclopropylmethyl]acetamide (12). ¹H NMR (CDCl₃), δ: 1.02 (s, 3 H, H₃C(8)); 1.19 (m, 1 H, H(6)); 1.32 (s, 3 H, H₃C(9)); 1.72 (dq, 1 H, H(4), $J_1 = 9.0$ Hz, $J_2 = 1.2$ Hz); 1.93 (s, 3 H, CH₃CO); 2.26 (d, 3 H, H₃C(1), J = 1.2 Hz); 2.77 (ddd, 1 H, H(7 α), $J_1 = 14.0$ Hz, $J_2 = 9.5$ Hz, $J_3 = 5.0$ Hz); 3.70 (ddd, 1 H, H(7 β), $J_1 = 14.0$ Hz, $J_2 = J_3 = 6.0$ Hz); 5.76 (br.t, 1 H, NH_{amide}, $J_1 = 6.0$ Hz, $J_2 = 5.0$ Hz); 7.03 (m, 2 H, H(3a), H(4a)); 7.18 (m, 1 H, H(2a)); 7.46 (m, 1 H, H(5a)); 8.30 (br.s, 1 H, NH_{indole}). ¹³C NMR (CDCl₃), δ: 12.76 (q, C(1)); 16.92 (q, C(8)); 18.22 (s, C(5)); 22.92 (d, C(4)); 23.11 (q, C(2b)); 26.16 (d, C(6)); 28.88 (q, C(9)); 38.28 (t, C(7)); 107.46 (s, C(3)); 110.05 (d, C(5a)); 118.54, 118.84 and 120.55 (all d, C(2a), C(3a), C(4a)); 129.60 (s, C(1a)); 133.86 and 135.38 (both s, C(2), C(6a)); 169.94 (s, C(1b)).

Synthesis of disubstituted amines (general procedure *B*). Aromatic aldehyde (1.1 mmol) was added to a solution of amine 13 (0.23 g, 1 mmol) in C₆H₆ (15 mL). The mixture was boiled with a Dean-Stark trap for 2 h until the initial amide disappeared (TLC monitoring), after which the solvent was removed *in vacuo*. The resulting imine obtained as a yellowish oil was dissolved in MeOH (10 mL), and NaBH₄ (0.19 g, 5 mmol) was added by portions for 10–15 min. The reaction mixture was boiled for 0.5 h, and the solvent was removed *in vacuo*. The residue was mixed with Bu^tOMe (10 mL), and 20 mL of water were added. The organic layer was separated, and the aqueous phase was extracted with Bu^tOMe (3×10 mL). The combined organic extracts were dried with anhydrous Na₂SO₄, and the solvent was removed *in vacuo*. The residue was removed *in vacuo*. The residue was chromatographed on a column packed with SiO₂ (eluent ethyl acetate—hexane, 2 : 3) to isolate the corresponding amine.

(±)-N-[trans-2,2-Dimethyl-3-(2-methyl-1H-indol-3yl)cyclopropylmethyl]-N-(3-phenoxybenzyl)amine (15) was prepared using procedure **B** from amine 13 (0.23 g) and $m-C_6H_5OC_6H_4CHO$ (0.22 g). Chromatography gave amine 15 $(0.30 \text{ g}, 73\%), [\alpha]_{578}^{15} 0.0 (c \ 1.62). \text{ UV (EtOH)}, \lambda_{\text{max}}/\text{nm}$ (ε): 228 (23700), 280 (5800), 293 (5600). IR (film), v/cm⁻¹: 3405 (NH_{indole}), 3290 (NH_{amine}), 1585, 1490, 1460 (C=C_{arom}), 1250, 1210, 740 and 695 (C–H_{arom}). ¹H NMR (CDCl₃–CCl₄), δ : 0.86 (s, 3 H, H₃C(8)); 1.30–1.46 (m, 2 H, H(4), H(6)); 1.32 (s, 3 H, H₃C(9)); 1.60 (br.s, 1 H, NH_{amine}); 2.36 (s, 3 H, $H_3C(1)$; 2.80 (dd, 1 H, H(7 α), $J_1 = 12.5$ Hz, $J_2 = 8.0$ Hz); 3.02 (dd, 1 H, H(7 β), J_1 = 14.0 Hz, J_2 = 6.5 Hz); 3.89 (m, 2 H, H(1b)); 6.88-7.19 and 7.26-7.33 (both m, 9 H and 3 H, respectively, H(2a), H(3a), H(4a), H(3b), H(5b), H(6b), H(7b) H(9b), H(10b), H(11b)); 7.55 (m, 1 H, H(5a)); 7.73 (br.s, 1 H, NH_{indole}). ¹³C NMR (CDCl₃-CCl₄), δ: 12.33 (q, C(1)); 20.72 (s, C(5)); 21.23 (q, C(8)); 22.97 (q, C(9)); 25.13 (d, C(4)); 30.12 (d, C(6)); 50.25 (t, C(7)); 53.73 (t, C(1b)); 109.90 (d, C(5a)); 109.99 (s, C(3)); 117.33* (d, C(5b)); 118.41, 119.06, 120.70 (all d, C(2a), C(3a), C(4a)); 118.82* (d, 3 C, C(3b), C(9b)); 122.80 and 123.04 (both d, C(7b), C(11b)); 129.56 (d, 2 C, C(10b); 129.61 (d, C(6b)); 129.96 (s, C(1a)); 132.59 and 135.02 (both s, C(2), C(6a)); 142.65 (s, C(2b)); 157.28 and 157.39 (both s, C(6b), C(8b)). MS, $m/z (I_{rel} (\%))$: 410 [M]⁺ (3), 212 (29), 199 (45), 198 (100), 184 (13), 183 (69), 182 (11), 168 (14), 167 (11), 149 (13), 28 (12). Found: *m/z* 410.2359 [M]⁺. $C_{28}H_{30}N_2O$. Calculated: M = 410.2358.

(±)-N-Benzyl-N-[trans-2,2-dimethyl-3-(2-methyl-1H-indol-3-yl)cyclopropylmethyl]amine (16) was prepared according to procedure **B** from amine **13** (0.23 g) and C_6H_5CHO (0.12 g). Amine 16 (0.20 g, 64%) was isolated after chromatography, $[α]_{578}^{15}$ 0.0 (c 1.62). UV (EtOH), $λ_{max}/nm$ (ε): 227 (22100), 284 (5700), 294 (5400). IR (film), v/cm⁻¹: 3405 (NH_{indole}), 3285 (NH_{amine}), 1460 (C=C_{arom}), 740 and 700 (C-H_{arom}). ¹H NMR (CDCl₃-CCl₄), δ: 0.87 (s, 3 H, H₃C(8)); 1.29-1.44 (m, 2 H, H(4), H(6)); 1.33 (s, 3 H, H₃C(9)); 1.70 (br.s, 1 H, NH_{amine}); 2.38 (s, 3 H, $H_3C(1)$); 2.80 (dd, 1 H, $H(7\alpha)$, $J_1 = 12.0 \text{ Hz}, J_2 = 8.0 \text{ Hz}$; 3.06 (dd, 1 H, H(7 β), $J_1 = 12.0 \text{ Hz}$, $J_2 = 6.2$ Hz); 3.92 (m, 2 H, H₂C(1b)); 7.04–7.09 (m, 2 H, H(3a), H(4a)); 7.15-7.38 (m, 6 H, H(2a), H(3b), H(4b), H(5b)); 7.55 (m, 1 H, H(5a)); 7.75 (br.s, 1 H, NH_{indole}). ¹³C NMR (CDCl₃–CCl₄), δ: 12.31 (q, C(1)); 20.72 (s, C(5)); 21.16 (q, C(8)); 22.94 (q, C(9)); 25.13 (d, C(4)); 30.12 (d, C(6)); 50.31 (t, C(7)); 54.06 (t, C(1b)); 109.89 (s, C(3));

109.89 (d, C(5a)); 118.81, 119.00 and 120.65 (all d, C(2a), C(3a), C(4a)); 126.81 (d, C(5b)); 128.00 and 128.30 (both d, 2 C, C(3b), C(4b)); 129.98 (s, C(1a)); 132.66 and 135.02 (both s, C(2), C(6a)); 140.41 (s, C(2b)). MS, m/z (I_{rel} (%)): 318 [M]⁺ (3), 254 (13), 199 (33), 198 (100), 183 (10), 168 (11),

culated: M = 318.2096. (+)-(1*R*,3*S*)-2-[2,2-Dimethyl-3-(2-methyl-1*H*-indol-3yl)cyclopropyl]ethylamine (18) was synthesized according to procedure *A* from a suspension of LiAlH₄ (0.19 g, 5.0 mmol) in anhydrous Et₂O (10 mL) and a solution of nitrile 17 (0.48 g, 2.0 mmol) in 20 mL of Et₂O. The reaction was carried out for 2 days at ~20 °C. Amine 18 was obtained in 70% yield (0.34 g) after standard treatment. ¹H NMR (CDCl₃--CCl₄), δ : 0.84 (m, 1 H, H(6)); 0.95 (s, 3 H, H₃C(8)); 1.28 (s, 3 H, H₃C(9)); 1.38 (br.s, 2 H, NH₂); 1.59 (dq, 1 H, H(4), J₁ = 8.6 Hz, J₂ = 1.0 Hz); 1.80 (m, 2 H, H₂C(7)); 2.25 (d, 3 H, H₃C(9); J₁ = 1.0 Hz); 2.70 (m, 2 H, H₂C(8)); 6.94 (m, 2 H, H(3a), H(4a)); 7.03 (m, 1 H, H(2a)); 7.41 (m, 1 H, H(5a)); 8.12 (br.s, 1 H, NH_{indole}).

120 (45), 91 (72). Found: *m/z* 318.2098 [M]⁺. C₂₂H₂₆N₂. Cal-

 $(+)-(1R,3S)-N-\{2-[2,2-Dimethy]-3-(2-methy]-1H-indo]-3$ yl)cyclopropyl]ethyl}acetamide (19) was synthesized according to the procedure used for preparation of acetamide 14. Acetamide 19 was obtained in 86% yield (0.12 g) from amine 18 (0.12 g, 0.5 mmol), Et₃N (0.07 g, 0.7 mmol), and AcCl $(0.06 \text{ g}, 0.7 \text{ mmol}). [\alpha]_{578}^{24} + 84 (c 2.35). \text{ UV (EtOH)},$ λ_{max}/nm (ε): 227 (23000), 284 (6200), 291 (5700). IR (KBr), v/cm^{-1} : 3400 (NH_{indole}), 3285 (NH_{amide}), 1655 (C=O_{amide}), 1555 (NH_{amide}), 1460 (C=C_{arom}), 740 (C-H_{arom}). ¹H NMR ((CD₃)₂CO-CDCl₃-CCl₄), δ: 0.91 (ddd, 1 H, H(6), $J_1 = 13.0 \text{ Hz}, J_2 = 9.0 \text{ Hz}, J_3 = 4.5 \text{ Hz}$; 1.05 (m, 1 H, H(7 α)); 1.10 (s, 3 H, H₃C(9)); 1.28 (s, 3 H, H₃C(10)); 1.59 (dq, 1 H, $H(4), J_1 = 9.0 Hz, J_2 = 1.0 Hz$; 1.81 (s, 3 H, CH₃CO); 1.89 (m, 1 H, H(7 β)); 2.33 (d, 3 H, C(1)Me, J = 1.0 Hz); 3.16 (m, 2 H, H₂C(8)); 6.86 (m, 2 H, H(3a), H(4a)); 7.05 (br.s, 1 H, NH_{amide}); 7.14 (m, 1 H, H(2a)); 7.38 (m, 1 H, H(5a)); 9.72 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO-CDCl₃-CCl₄), δ: 13.31 (q, C(1)); 17.45 (q, C(9)); 18.54 (s, C(5)); 22.83 (q, <u>CH</u>₃CO); 23.55 (t, C(7)); 23.66 (d, C(4)); 27.74 (d, C(6)); 29.70 (q, C(10)); 40.19 (t, C(8)); 108.51 (s, C(3)); 110.62 (d, C(5a)); 118.58, 119.80 and 120.54 (all d, C(2a), C(3a), C(4a)); 130.53 (s, C(1a)); 134.57 and 136.52 (both s, C(2), C(6a)); 169.90 (s, <u>C</u>=O). MS, m/z (I_{rel} (%)): 285 [M⁺+1] (10), 284 [M]⁺ (50), 225 (19), 224 (12), 212 (34), 210 (37), 199 (17), 198 (100), 183 (20), 182 (32), 170 (19), 169 (15), 168 (36), 167 (13), 154 (11), 144 (41), 131 (63). Found: m/z 284.1888 [M]⁺. $C_{18}H_{24}N_2O$. Calculated: M = 284.1889.

Synthesis of indoles 20a–d and 21a–d (general procedure C). Arylhydrazine (or its hydrochloride) (0.55 mmol) and powdered Na₂CO₃ (0.03 g) (only in the case of using arylhydrazine salt) were added to a solution of ketone **6** (0.50 mmol) in 10 mL of MeOH. The mixture was stored for 2 h at ~20 °C, and after filtration the solvent was removed *in vacuo*. The residue (hydrazone in the form of a light yellow oil) was dissolved in 10 mL of anhydrous CH₂Cl₂, and PPE (1.0 g) was added. After stirring the reaction mixture was left for 12 h at ~20 °C, and the solvent was removed *in vacuo*. A 0.5 *M* aqueous solution of Na₂CO₃ (15 mL) was poured to the obtained dark brown oil, and the resulting solution was extracted with Bu^tOMe (3×10 mL). The ether extract was dried with anhydrous Na₂SO₄, and the solvent was removed *in vacuo*. The corresponding indoles were

^{*} Alternative assignment of signals is possible.

obtained after chromatography on a column packed with SiO_2 (eluent AcOEt—petroleum ether, 1 : 4).

(+)-(1R,3S)-N-Benzyl-N-[2,2-dimethyl-3-(2-methyl-1Hindol-3-yl)cyclopropylmethyl]cyanamide (20a) was obtained according to procedure C from ketone **6a** (0.14 g) and phenylhydrazine (0.06 g). After chromatography cyanamide 20a was isolated as a light yellow oil (0.16 g, 95%), $[\alpha]_{578}^{20}$ +110 (c 3.68). UV (EtOH), λ_{max}/nm (ε): 226 (32700), 283 (7300), 291 (6500). IR (CCl₄), v/cm^{-1} : 3480 (NH_{indole}), 2210 (C=N), 1460 (C=C_{arom}), 800, 740 and 700 (C-H_{arom}). ¹H NMR (CDCl₃-CCl₄), δ: 1.07 (s, 3 H, H₃C(8)); 1.32 (ddd, 1 H, H(6), $J_1 = 11.0$ Hz, $J_2 = 9.0$ Hz, $J_3 = 6.0$ Hz); 1.36 (s, 3 H, $H_3C(9)$; 1.81 (dq, 1 H, H(4), $J_1 = 9.0$ Hz, $J_2 = 0.8$ Hz); 2.28 (d, 3 H, H₃C(1), J = 0.8 Hz); 2.48 (dd, 1 H, H(7 α), $J_1 = 12.5$, $J_2 = 11.0$ Hz); 3.42 (dd, 1 H, H(7 β), $J_1 = 12.5$ Hz, $J_2 =$ 6.0 Hz); 4.04 (m, 2 H, H₂C(1b)); 6.92–7.00 (m, 2 H, H(3a), H(4a)); 7.10-7.14 (m, 1 H, H(2a); 7.14-7.21 (m, 4 H, H(5a), H(3b), H(4b), H(5b)); 7.81 (br.s, 1 H, NH_{indole}). ¹³C NMR $(CDCl_3-CCl_4)$, δ : 12.95 (q, C(1)); 17.01 (q, C(8)); 19.71 (s, C(5)); 23.67 (d, C(4)); 24.44 (d, C(6)); 28.68 (q, C(9)); 49.47 (t, C(7)); 55.87 (t, C(1b)); 107.37 (s, C(3)); 110.16 (d, C(5a)); 117.54 (s, C(10)); 118.79, 118.92 and 120.87 (all d, C(2a), C(3a), C(4a)); 128.25 (d, C(5b)); 128.25 and 128.66 (both d, 2 C each, C(3b), C(4b)); 129.42 (s, C(1a)); 133.55 (s, C(2b)); 134.80 and 135.49 (both s, C(2), C(6a)). MS, m/z (I_{rel} (%)): 344 (2), 343 [M]⁺ (7), 199 (16), 198 (100), 183 (6), 182 (7), 168 (7), 167 (4), 91 (11). Found: m/z 343.2049 [M]⁺. C₂₃H₂₅N₃. Calculated: M = 343.2048.

(+)-(1R,3S)-N-(2,6-Difluorophenylmethyl)-N-[2,2-dimethyl-3-(2-methyl-1H-indol-3-yl)cyclopropylmethyl]cyanamide (20b) was prepared according to procedure C from ketone 6b (0.15 g) and phenylhydrazine (0.06 g). After chromatography cyanamide 20b was obtained in 79% yield (0.15 g) as a light yellow viscous oil, $[\alpha]_{578}^{20}$ +107 (c 1.18). UV (EtOH), λ_{max}/nm (ϵ): 226 (30400), 283 (6200), 291 (5600). IR (CCl₄), v/cm^{-1} : 3480 (NH_{indole}), 2215 (C=N), 1475, 1460 (C=C_{arom}), 1235, 1030, 810 (C–H_{arom}). ¹H NMR ((CD₃)₂CO), δ: 1.07 (s, 3 H, H₃C(8)); 1.38 (ddd, 1 H, H(6), $J_1 = 11.0$ Hz, $J_2 = 9.0$ Hz, $J_3 = 5.0$ Hz); 1.40 (s, 3 H, H₃C(9)); 1.83 (dq, 1 H, H(4), $J_1 =$ 9.0 Hz, $J_2 = 1.0$ Hz); 2.36 (d, 3 H, H₃C(1), J = 1.0 Hz); 2.63 (dd, 1 H, H(7 α), $J_1 = 12.5$ Hz, $J_2 = 11.0$ Hz); 3.72 (dd, 1 H, $H(7\beta), J_1 = 12.5 \text{ Hz}, J_2 = 5.0 \text{ Hz}); 4.27 \text{ (m, 2 H, H}_2C(1b));$ 6.91-7.06, 7.21-7.26 and 7.33-7.50 (all m, 4 H, 1 H and 2 H, H(2a), H(3a), H(4a), H(5a), H(4b), H(5b)); 9.92 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO), δ: 13.14 (q, C(1)); 17.30 (q, C(8)); 20.37 (s, C(5)); 24.91 (d, C(4)); 25.72 (d, C(6)); 28.64 (q, C(9)); 43.61 (t, C(7)); 51.07 (t, C(1b)); 107.84 (s, C(3)); 111.19 (d, C(5a)); 112.35 (dd, ${}^{2}J_{C,F} = 25.4$ Hz, C(4b)); 112.41 (t, ${}^{2}J_{C,F} = 6.8$ Hz, C(2b)); 117.18 (s, C(10)); 119.38, 119.71, 121.33 (all d, C(2a), C(3a), C(4a)); 130.71 (s, C(1a)); 132.30 (dt, ${}^{3}J_{C,F} = 10.6$ Hz, C(5b)); 135.21 and 137.06 (both s, C(2), C(6a)); 162.45 (dd, ${}^{1}J_{C,F} = 250.4$ Hz, ${}^{3}J_{C,F} =$ 8.1 Hz, C(3b)). ¹⁹F NMR (CDCl₃-CCl₄), δ: 48.04 (t, F(3b), J = 7.0 Hz). MS, m/z (I_{rel} (%)): 379 [M]⁺ (6), 199 (16), 198 (100), 183 (7), 182 (10), 170 (5), 168 (10), 127 (17). Found: m/z 379.1867 [M]⁺. C₂₃H₂₃N₃F₂. Calculated: M = 379.1860.

(+)-(1R,3S)-N-[2,2-Dimethyl-3-(2-methyl-1H-indol-3yl)cyclopropylmethyl]-N-(pentafluorophenylmethyl)cyanamide (20c) was prepared using procedure C from ketone 6c (0.18 g) and phenylhydrazine (0.06 g). After chromatography compound 20c was isolated in 51% yield (0.11 g) as colorless crystals with m.p. 160–162 °C (from EtOAc–hexane mixture), $[\alpha]_{578}^{20}$ +102 (c 0.92). UV (EtOH), λ_{max}/nm (ϵ): 226 (49000), 283 (10100), 291 (9100). IR (KBr), v/cm⁻¹: 3375 (NH_{indole}), 2205 (C=N), 1510 (C=C_{arom}), 745 (C-H_{arom}). ¹H NMR ((CD₃)₂CO), δ: 1.10 (s, 3 H, H₃C(8)); 1.36 (ddd, 1 H, H(6), $J_1 = 11.0$ Hz, $J_2 =$ 9.0 Hz, $J_3 = 5.0$ Hz); 1.38 (s, 3 H, H₃C(9)); 1.88 (d, 1 H, H(4), J = 9.0 Hz; 2.39 (s, 3 H, H₃C(1)); 2.69 (dd, 1 H, H(7 α), $J_1 =$ 12.0 Hz, $J_2 = 11.0$ Hz); 3.75 (dd, 1 H, H(7 β), $J_1 = 12.0$ Hz, $J_2 = 5.0$ Hz); 4.40 (s, 2 H, H₂C(1b)); 6.94 and 7.00 (both dd, 1[°]H, H(3a), H(4a), $J_1 = J_2 = \tilde{8}.0$ Hz); 7.24 (d, 1 H, H(2a), J =8.0 Hz); 7.42 (d, 1 H, H(5a), J = 8.0 Hz); 9.87 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO), δ*: 13.11 (q, C(1)); 17.24 (q, C(8)); 20.39 (s, C(5)); 24.75 (d, C(4)); 25.39 (d, C(6)); 28.93 (q, C(9)); 43.46 (t, C(7)); 51.04 (t, C(1b)); 107.62 (s, C(3)); 111.13 (d, C(5a)); 116.73 (s, C(10)); 119.29, 119.61 and 121.29 (all d, C(2a), C(3a), C(4a)); 130.52 (s, C(1a)); 135.23 and 136.90 (both s, C(2), C(6a)). ¹⁹F NMR (CDCl₃-CCl₄), δ: 0.70 (m, F(4b)); 9.04 (m, F(5b)); 21.29 (m, F(3b)). MS, m/z (I_{rel} (%)): 433 [M]⁺ (10), 199 (16), 198 (100), 183 (8), 182 (9), 181 (9), 170 (13), 168 (9), 167 (5). Found: m/z 433.1579 [M]⁺. C₂₃H₂₀N₃F₅. Calculated: M = 433.1577.

(+)-(1R,3S)-N-[2,2-Dimethyl-3-(2-methyl-1H-indol-3yl)cyclopropylmethyl]-N-(3-phenoxybenzyl)cyanamide (20d) was prepared according to procedure C from ketone 6d (0.18 g) and phenylhydrazine (0.06 g). After chromatography compound 20d was obtained in 74% yield (0.16 g) as colorless crystals with m.p. 160–163 °C (from MeCN), $[\alpha]_{578}^{20}$ +89 (c 1.65). UV (EtOH), λ_{max}/nm (ε): 226 (44500), 280 (8800), 291 (7100). IR (KBr), v/cm⁻¹: 3290 (NH_{indole}), 2215 (C=N), 1585, 1490, 1460 (C=C_{arom}), 780, 735 and 690 (C-H_{arom}). ¹H NMR ((CD₃)₂CO), δ: 1.07 (s, 3 H, H₃C(8)); 1.34 (ddd, 1 H, H(6), $J_1 = 11.0 \text{ Hz}, J_2 = 9.1 \text{ Hz}, J_3 = 4.7 \text{ Hz}); 1.36 \text{ (s, 3 H, H}_3\text{C}(9));$ 1.83 (dq, 1 H, H(4), $J_1 = 9.1$ Hz, $J_2 = 0.9$ Hz); 2.34 (d, 3 H, $H_{3}C(1), J = 0.9 \text{ Hz}$; 2.59 (dd, 1 H, H(7 α), $J_{1} = 12.5 \text{ Hz}, J_{2} =$ 11.0 Hz),); 3.72 (dd, 1 H, H(7 β), $J_1 = 12.5$ Hz, $J_2 = 4.7$ Hz); 4.19 (s, 2 H, H₂C(1b)); 6.90-7.00, 7.09-7.13 and 7.31-7.37 (all m, 6 H, 2 H and 3 H, H(3a), H(4a), H(3b), H(5b), H(6b), H(7b), H(9b), H(10b), H(11b)); 7.22 (d, 1 H, H(2a), J =8.0 Hz); 7.39 (d, 1 H, H(5a), J = 8.0 Hz); 9.78 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO), δ: 13.15 (q, C(1)); 17.50 (q, C(8)); 20.23 (s, C(5)); 24.54 (d, C(4)); 25.60 (d, C(6)); 29.00 (q, C(9)); 50.64 (t, C(7)); 55.99 (t, C(1b)); 107.63 (s, C(3)); 111.12 (d, C(5a)); 118.08 (s, C(10)); 119.18, 119.28, 119.39, 119.64 and 121.23 (all d, C(2a), C(3a), C(4a), C(3b), C(5b)); 119.68 (d, 2 C, C(9b)); 124.18 and 124.33 (both d, C(7b), C(11b)); 130.75 (d, 2 C, C(10b)); 131.01 (d, C(6b)); 130.57 (s, C(1a)); 135.13 and 136.87 (both s, C(2), C(6a)); 138.96 (s, C(2b)); 157.88 and 158.47 (both s, C(4b), C(8b)). MS, m/z (I_{rel} (%)): 435 [M]⁺ (3), 199 (15), 198 (100), 196 (9), 183 (19), 182 (10), 181 (9), 168 (16), 45 (13), 31 (25), 28 (13). Found: m/z 435.2309 [M]⁺. C₂₉H₂₉N₃O. Calculated: M = 435.2311.

(+)-(1R,3S)-N-Benzyl-N-[2,2-dimethyl-3-(2-methyl-1Hpyrrolo[3,2-h]quinolin-3-yl)cyclopropylmethyl]cyanamide (21a) was prepared according to procedure C from ketone 6a (0.14 g) and 8-quinolylhydrazine (0.11 g). After chromatography com-

^{*} In the ¹³C NMR spectra of compounds **20c** and **21c** chemical shifts of carbon atoms of the pentafluorobenzyl ring were not determined because of their low intensity due to multiple SSC constants $J_{C,F}$.

pound 21a was isolated (0.14 g, 69%) as a light yellow oil, $[\alpha]_{578}^{20}$ +96 (c 1.85). UV (EtOH), λ_{max}/nm (ε): 277 (33100), 354 (3200). IR (CCl₄), v/cm^{-1} : 3470 (NH_{indole}), 2205 (C=N), $1375 (C=C_{arom}), 1030, 825 (C-H_{arom}).$ ¹H NMR ((CD₃)₂CO), δ: 1.14 (s, 3 H, H₃C(8)); 1.42 (ddd, 1 H, H(6), $J_1 = 10.8$ Hz, $J_2 = 9.2$ Hz, $J_3 = 4.9$ Hz); 1.42 (s, 3 H, H₃C(9)); 1.95 (d, 1 H, H(4), J = 9.2 Hz; 2.50 (s, 3 H, $H_3C(1)$); 2.65 (dd, 1 H, $H(7\alpha)$, $J_1 = 12.6$ Hz, $J_2 = 10.8$ Hz); 3.66 (dd, 1 H, H(7 β), $J_1 =$ 12.6 Hz, $J_2 = 4.9$ Hz); 4.21 (s, 2 H, H₂C(1b)); 7.28–7.36 (m, 6 H, H(9a), H(3b), H(4b), H(5b)); 7.40 and 7.65 (both d, 1 H, H(2a), H(3a), *J* = 8.6 Hz); 8.26 (d, 1 H, H(10a), *J* = 8.1 Hz); 8.74 (d, 1 H, H(8a), J = 4.1 Hz); 11.01 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO), δ : 13.17 (q, C(1)); 17.45 (q, C(8)); 20.33 (s, C(5)); 24.43 (d, C(4)); 25.67 (d, C(6)); 28.98 (q, C(9)); 50.45 (t, C(7)); 56.40 (t, C(1b)); 110.08 (s, C(3)); 118.16 (s, C(10)); 118.94, 119.49 and 121.49 (all d, C(2a), C(3a), C(9a)); 125.05, 129.06, 129.17 and 130.81 (four s, C(1a), C(4a), C(5a), C(6a)); 128.92 (d, C(5b)); 129.37 (d, C(3b)); 129.42 (d, C(4b)); 135.30 (s, C(2)); 136.84 (d, C(10a)); 138.46 (s, C(2b)); 148.61 (d, C(8a)). MS, m/z (I_{rel} (%)): 394 [M]⁺ (7), 250 (19), 249 (100), 234 (8), 233 (8), 219 (7), 218 (4), 195 (3), 91 (7). Found: m/z 394.2163 [M]⁺. C₂₆H₂₆N₄. Calculated: M = 394.2157.

(+)-(1R,3S)-N-(2,6-Difluorophenylmethyl)-N-[2,2-dimethyl-3-(2-methyl-1H-pyrrolo[3,2-h]quinolin-3-yl)cyclopropylmethyl]cyanamide (21b) was prepared according to procedure C from ketone 6b (0.15 g) and 8-quinolylhydrazine (0.11 g). After chromatography compound 21b was isolated (0.07 g, 33%) as a light yellow oil, $[\alpha]_{578}^{20}$ +91 (c 1.85). UV (EtOH), λ_{max}/nm (ε): 276 (35500), 353 (3600). IR (CHCl₃), v/cm^{-1} : 3460 (NH_{indole}), 2210 (C=N), 1465, 1375 (C=C_{arom}), 1030, 825 (C–H_{arom}). ¹H NMR ((CD₃)₂CO), δ: 1.10 (s, 3 H, $H_3C(8)$; 1.36 (ddd, 1 H, H(6), $J_1 = 11.0$ Hz, $J_2 = 9.0$ Hz, $J_3 =$ 4.8 Hz); 1.40 (s, 3 H, H₃C(9)); 1.96 (dq, 1 H, H(4), $J_1 =$ 9.0 Hz, $J_2 = 0.8$ Hz); 2.53 (d, 3 H, H₃C(1), J = 0.8 Hz); 2.68 (dd, 1 H, H(7 α), J_1 = 12.3 Hz, J_2 = 11.0 Hz); 3.77 (dd, 1 H, $H(7\beta)$, $J_1 = 12.3 \text{ Hz}$, $J_2 = 4.8 \text{ Hz}$; 4.29 (m, 2 H, $H_2C(1b)$); 6.98-7.06 (m, 2 H, H(4b)); 7.34 (dd, 1 H, H(9a), $J_1 = 8.0$ Hz, $J_2 = 4.3$ Hz); 7.40 (m, 1 H, H(5b)); 7.41 and 7.67 (both d, 1 H, H(2a), H(3a), J = 8.5 Hz; 8.26 (dd, 1 H, H(10a), $J_1 = 8.0 Hz$, $J_2 = 2.0$ Hz); 8.73 (dd, 1 H, H(8a), $J_1 = 4.3$ Hz, $J_2 = 2.0$ Hz); 11.05 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂ \overline{CO}), δ : 13.13 (q, C(1)); 17.17 (q, C(8)); 20.39 (s, C(5)); 24.60 (d, C(4)); $25.53 \ (d, C(6)); 28.93 \ (q, C(9)); 50.78 \ (t, C(7)); 43.50 \ (t, C(1a));$ 110.00 (s, C(3)); 112.24 (t, C(2b), ${}^{2}J_{C,F} = 6.8$ Hz); 112.30 (dd, C(4b), ${}^{2}J_{C,F} = 25.1$ Hz); 117.11 (s, C(10)); 118.98, 119.52 and 121.42 (all d, C(2a), C(3a), C(9a)); 125.07, 129.01, 130.96 and 130.81 (all s, C(1a), C(4a), C(5a), C(6a)); 132.09 (dt, C(5b), ${}^{3}J_{CF} = 10.5 \text{ Hz}$; 135.20 (s, C(2)); 136.73 (d, C(10a)); 148.74 (d, C(8a)); 162.57 (dd, C(3b), ${}^{1}J_{C,F} = 248.1 \text{ Hz}, {}^{3}J_{C,F} = 8.4 \text{ Hz}$). ¹⁹F NMR (CDCl₃-CCl₄), δ : 48.56 (t, F(3b), J = 7.0 Hz). MS, m/z ($I_{\rm rel}$ (%)): 430 [M]⁺ (2), 289 (9), 250 (20), 249 (100), 234 (15), 233 (12), 219 (12), 218 (7), 127 (9), 99 (8). Found: m/z 430.1973 [M]⁺. C₂₆H₂₄N₄F₂. Calculated: M = 430.1969.

(+)-(1R,3S)-N-[2,2-Dimethyl-3-(2-methyl-1H-benzo[g]indol-3-yl)cyclopropylmethyl]-N-(pentafluorophenylmethyl)cyanamide (21c) was obtained according to procedure C from ketone 6c (0.18 g) and 1-naphthylhydrazine (0.11 g). After chromatography compound 21c was isolated in 30% yield (0.07 g) as colorless crystals with m.p. 210–212 °C (from MeCN), $[\alpha]_{578}^{20}$ +99 (c 1.84). UV (EtOH), λ_{max} /nm (ϵ): 269 (53900), 334 (1600). IR (KBr), v/cm⁻¹: 3310 (NH_{indole}), 2210 (C=N), 1525, 1510 (C=C_{arom}), 1140, 810 and 760 (C-H_{arom}). ¹H NMR ((CD₃)₂CO), δ: 1.13 (s, 3 H, H₃C(8)); 1.39 (ddd, 1 H, H(6), $J_1 = 11.0$ Hz, $J_2 = 9.0$ Hz, $J_3 = 4.8$ Hz); 1.41 (s, 3 H, H₃C(9)); 1.95 (d, 1 H, H(4), J = 9.0 Hz); 2.47 (s, 3 H, H₃C(1)); 2.71 (dd, 1 H, H(7α), $J_1 = 12.3$ Hz, $J_2 = 11.0$ Hz); 3.77 (dd, 1 H, H(7β), $J_1 = 12.3$ Hz, $J_2 = 4.8$ Hz); 4.35 (s, 2 H, H₂C(1b)); 7.34 and 7.45 (both dd, 1 H, H(8a), H(9a), $J_1 = J_2 = 7.4$ Hz); 7.42 and 7.58 (both d, 1 H, H(2a), H(3a), J = 8.7 Hz); 7.87 (d, 1 H, H(7a), J = 7.4 Hz); 8.21 (d, 1 H, H(10a), J = 7.4 Hz); 10.82 (br.s, 1 H, NH_{indole}). ¹³C NMR ((CD₃)₂CO), δ*: 13.11

(q, C(1)); 17.20 (q, C(8)); 20.41 (s, C(5)); 24.70 (d, C(4));

25.38 (d, C(6)); 28.92 (q, C(9)); 43.41 (t, C(7)); 50.97 (t, C(1b));

109.52 (s, C(3)); 116.74 (s, C(10)); 119.92, 120.52, 120.73,

123.85, 125.85 and 129.20 (all d, C(2a), C(3a), C(7a), C(8a),

C(9a), C(10a); 122.70 and 126.08 (both s, C(4a), C(5a));

130.82 and 133.42 (both s, 2 C and 1 C, respectively, C(2), C(1a), C(6a)). ¹⁹F NMR ((CD₃)₂CO), δ: 0.65 (m, F(4b)); 8.97

(m, F(5b)); 21.44 (m, F(3b)). MS, m/z (I_{rel} (%)): 483 [M]⁺

(12), 249 (20), 248 (100), 233 (21), 232 (10), 220 (12), 218

(11), 41 (19). Found: m/z 483.1730 [M]⁺. C₂₇H₂₂N₃F₅. Calcu-

lated: M = 483.1734. (+)-(1R,3S)-N-[2,2-Dimethyl-3-(2-methyl-1H-pyrrolo[3,2-h]quinolin-3-yl)cyclopropylmethyl]-N-(3-phenoxybenzyl)cyanamide (21d) was prepared according to procedure C from ketone 6d (0.18 g) and 8-quinolylhydrazine (0.11 g). After chromatography product 21d was isolated in 41% yield (0.10 g) as a light yellow oil, $[\alpha]_{578}^{20}$ +81 (c 3.05). UV (EtOH), λ_{max}/nm (ϵ): 277 (39000), 354 (3800). IR (CCl₄), v/cm⁻¹: 3460 (NH_{indole}), 2210 (C≡N), 1490, 1375 (C=C_{arom}), 1255, 830, 685 (C-H_{arom}). ¹H NMR ((CD₃)₂CO), δ: 1.10 (s, 3 H, H₃C(8)); 1.34 (ddd, 1 H, H(6), $J_1 = 11.0$ Hz, $J_2 = 9.0$ Hz, $J_3 = 4.8$ Hz); 1.40 (s, 3 H, H₃C(9)); 1.91 (dq, 1 H, H(4), $J_1 = 9.0$ Hz, $J_2 =$ 0.8 Hz); 2.48 (d, 3 H, $H_3C(1)$, J = 0.8 Hz); 2.62 (dd, 1 H, $H(7\alpha), J_1 = 12.5 \text{ Hz}, J_2 = 11.0 \text{ Hz}); 3.68 \text{ (dd, 1 H, } H(7\beta), J_1 =$ 12.5 Hz, $J_2 = 4.8$ Hz); 4.19 (s, 2 H, H₂C(1b)); 6.91–6.97, 7.02-7.15, 7.26-7.39, 7.61-7.65, 8.21-8.26 and 8.72-8.75 (all m, 4 H, 2 H, 5 H, 1 H, 1 H, 1 H, respectively, H(2a), H(3a), H(8a), H(9a), H(10a), H(3b), H(5b), H(6b), H(7b), H(9b), H(10b), H(11b)); 11.11 (br.s, 1 H, NH_{indole}) ¹³C NMR ((CD₃)₂CO), δ: 13.20 (q, C(1)); 17.48 (q, C(8)); 20.35 (s, C(5)); 24.47 (d, C(4)); 25.66 (d, C(6)); 29.04 (q, C(9)); 50.50 (t, C(7)); 56.07 (t, C(1b)); 110.05 (s, C(3)); 117.09 (s, C(10)); 118.96, 119.20, 119.42, 119.52, 121.43, 124.21, 124.29 and 131.01 (all d, C(2a), C(3a), C(9a), C(3b), C(5b), C(6b), C(7b), C(11b)); 119.65 (d, 2 C, C(9b)); 130.72 (d, 2 C, C(10b)); 136.68 (d, C(10a)); 148.77 (d, C(8a)); 119.52 and 124.87 (both s, C(4a), C(5a)); 128.88, 131.01 and 135.18 (all s, C(2), C(1a), C(6a)); 138.91 (s, C(2b)); 157.83 and 158.46 (both s, C(4b), C(8b)). MS, m/z (I_{rel} (%)): 486 [M]⁺ (2), 289 (13), 250 (19), 249 (100), 234 (17), 233 (13), 219 (13), 218 (8), 43 (7). Found: m/z 486.2408 [M]⁺. C₃₂H₃₀N₄O. Calculated: M = 486.2419.

(+)-(1R,3S)-N-Benzyl-N-[2,2-dimethyl-3-(2-methyl-1Hindol-3-yl)cyclopropylmethyl]amine (22). A solution of indole 20a (0.34 g, 1 mmol) in 15 mL of Bu^tOMe was added dropwise to a suspension of LiAlH₄ (0.19 g, 5 mmol) in 5 mL of an-

^{*} In the ¹³C NMR spectrum of compound **21c** chemical shifts of carbon atoms of the pentafluorobenzyl ring were not determined because of their low intensity due to multiple SSC constants $J_{C,F}$.

hydrous Bu^tOMe. The mixture was stirred at ~20 °C for 2 h until initial compound 20a disappeared (TLC monitoring). The reaction mixture was diluted with 20 mL of ButOMe and poured into water (30 mL). The organic layer was separated, and the aqueous phase was extracted with Bu^tOMe (3×10 mL). The combined organic extracts were dried with anhydrous Na₂SO₄, and the solvent was removed in vacuo. The residue (0.31 g) was chromatographed on a column packed with SiO₂ (eluent EtOAc-hexane, 1:1), and amine 22 was obtained (0.17 g, 53%), $[\alpha]_{578}^{15}$ +30 (c 1.62). UV (EtOH), λ_{max}/nm (ε): 227 (31000), 284 (7000), 292 (6400). IR (CCl₄), v/cm⁻¹: 3480 (NH_{indole}), 1460 (C=C_{arom}), 1235, 735 and 700 (C-H_{arom}). ¹H NMR (CDCl₃-CCl₄), δ: 0.98 (s, 3 H, H₃C(8)); 1.10 (ddd, 1 H, H(6), $J_1 = J_2 = 9.0$ Hz, $J_3 = 5.5$ Hz); 1.31 (s, 3 H, $H_3C(9)$; 1.62 (d, 1 H, H(4), J = 9.0 Hz); 2.07 (br.s, 1 H, NH_{amine}); 2.26 (s, 3 H, H₃C(1)); 2.29 (dd, 1 H, H(7 α), $J_1 =$ 12.5 Hz, $J_2 = 9.0$); 2.89 (dd, 1 H, H(7 β), $J_1 = 12.5$ Hz, $J_2 =$ 5.5 Hz); 3.62 (m, 2 H, H₂C(1b)); 6.81–7.02 (m, 2 H, H(3a), H(4a); 7.08–7.14 (m, 1 H, H(2a)); 7.14–7.21 (m, 5 H, H(3b), H(4b), H(5b)); 7.34-7.40 (m, 1 H, H(5a)); 7.83 (br.s, 1 H, NH_{indole}). ¹³C NMR (CDCl₃-CCl₄), δ: 13.00 (q, C(1)); 17.06 (q, C(8)); 18.32 (s, C(5)); 23.12 (d, C(4)); 27.39 (d, C(6)); 29.29 (q, C(9)); 47.58 (t, C(7)); 54.15 (t, C(1b)); 108.68 (s, C(3)); 109.86 (d, C(5a)); 118.90, 119.42 and 120.82 (all d, C(2a), C(3a), C(4a)); 128.18 and 128.24 (both d, 2 C, C(3b), С(4b)); 126.68 (d, C(5b)); 129.98 (s, C(1a)); 133.20 и 135.50 (both s, C(2), C(6a)); 139.91 (s, C(2b)). MS, m/z (I_{rel} (%)): 318 [M]⁺ (2), 249 (10), 199 (30), 198 (100), 183 (9), 182 (13), 168 (15), 144 (8), 120 (46), 91 (81). Found: *m/z* 318.2095 [M]⁺. $C_{22}H_{26}N_2$. Calculated: M = 318.2096.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 98-03-32910) and the Presidium of the Siberian Branch of the Russian Academy of Sciences (Grant 2000 for young scientists). A. M. Chibiryaev thanks the Science Support Foundation (grant for talented young researchers) for personal support.

References

- K. Naumann, Synthetic Pyrethroid Insecticides: Chemistry and Patents in Chemistry of Plant Protection, v. 5, Ed. R. Wegler, Springer-Verlag, Berlin—Heidelberg, 1990, 390 pp.
- S. Farooq, J. Drabek, L. Gsell, W. Meyer, and F. Karrer, Ger. Offen. 2,647,368; Chem. Abstrs., 1977, 87, 84808.
- 3. C. A. Henrick, D. A. Garcia, G. D. Staal, D. C. Gerf, R. J. Anderson, K. Gill, H. R. Chinn, J. N. Labowitz, M. M. Leippe, S. L. Woo, R. L. Carney, D. C. Gordon, and G. K. Krohn, *Pestic. Sci.*, 1980, 224.
- 4. C. A. Henrick, R. L. Carney, and J. N. Labovitz, US 4,178,293; Chem. Abstrs., 1980, 92, 128723.
- C. A. Henrick, in *Recent Advances in the Chemistry of Insect* Controll, 133 Proc. Symposium Cambridge, Ed. N. F. Janes, Royal Chem. Soc., London, 1984.
- 6. T. N. Wheeler, J. Agric. Food Chem., 1984, 1125.
- 7. J. Whittle, R. Salmon, and E. McDonald, *Eur. Pat. Appl. EP* 227,415; *Chem. Abstrs.*, 1987, **107**, 236728.
- ICI, Jpn. Kokai Tokkyo Koho JP 60,222,444; Chem. Abstrs., 1986, 105, 24469.

- 9. E. McDonald and R. Salmon, Brit. UK Pat. Appl. GB 2,157,288; Chem. Abstrs., 1986, 105, 148216.
- G. A. Tolstikov, F. Z. Galin, F. Z. Makaev, and V. K. Ignatyuk, *Zh. Org. Khim.*, 1989, **25**, 1337 [*J. Org. Chem.* USSR, 1989, **25** (Engl. Transl.)].
- G. A. Tolstikov, F. Z. Galin, F. Z. Makaev, V. K. Ignatyuk, V. S. Sultamova, and R. G. Davletov, *Zh. Org. Khim.*, 1990, 26, 1671 [*J. Org. Chem. USSR*, 1990, 26 (Engl. Transl.)].
- G. Falsone, F. Cateni, A. El-Alali, A. Papaioannou, L. Ravalico, and A. Furlani, *Pharm. Pharmacol. Lett.*, 1992, 2, 104.
- 13. J. Tessier, J. Demassey, and J. P. Demoute, *Eur. Pat. Appl. EP* 261,035; *Chem. Abstrs.*, 1988, **109**, 110252.
- K. Kyoguku and S. Murayama, Jpn Pat. 73 06,528; Chem. Abstrs., 1974, 81, 59353.
- K. Kyoguku and S. Murayama, Jpn Pat. 76 33,107; Chem. Abstrs., 1977, 86, 90089.
- A. V. Tkachev, A. V. Rukavishnikov, A. M. Chibirjaev, and L. B. Volodarsky, *Synth. Commun.*, 1990, 20, 2123.
- 17. A. V. Rukavishnikov and A. V. Tkachev, *Pat. RF* No. 1679761 (priority of 25. 12. 92) (in Russian).
- 18. S. A. Bakunov, A. V. Rukavishnikov, and A. V. Tkachev, *Synthesis*, 1994, 935.
- 19. O. N. Burchak, A. M. Chibiryaev, and A. V. Tkachev, *Heterocycl. Commun.*, 2000, **6**, 73.
- 20. Z. Muljiani, A. R. A. S. Deshmukh, S. R. Gadre, and V. S. Joshi, *Synth. Commun.*, 1987, **17**, 25.
- A. V. Rukavishnikov, Ph. D. (Chem.) Thesis, Novosibirsk Institute of Organic Chemistry, Novosibirsk, 1993, 222 pp. (in Russian).
- 22. S. Julia, M. Julia, and J. Linstrumelle, *Bull. Soc. Chim. France*, 1964, **10**, 2693.
- E. Peralez, J.-C. Negrel, and M. Chanon, *Tetrahedron Lett.*, 1995, 36, 6457.
- 24. S. A. Bakunov, A. V. Rukavishnikov, and A. V. Tkachev, *Synthesis*, 2000, 1148.
- 25. D. E. Portlock, W. C. Schwarzel, A. C. Ghosh, H. C. Dalzell, and R. K. Razdan, J. Med. Chem., 1975, 18, 764.
- 26. W.-H. Chiu, T. H. Klein, and M. E. Wolff, J. Med. Chem., 1979, 22, 119.
- 27. H. Tecle, L. Robichaud, and C. F. Schwender, J. Med. Chem., 1981, 24, 1095.
- 28. C.-H. Kwon, H. T. Nagasawa, E. G. DeMaster, and F. N. Shirota, J. Med. Chem., 1986, 29, 1922.
- 29. V. A. Dorokhov, M. F. Gordeev, Z. K. Dem'yanets, and V. S. Bogdanov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, 1683 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1987, **36**, 1563 (Engl. Transl.)].
- K. Iio and E. Ichikawa, Bull. Chem. Soc. Japan, 1984, 57, 2009.
- 31. V. A. Dorokhov, M. F. Gordeev, Z. K. Dem'yanets, M. N. Bochkareva, and V. S. Bogdanov, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1989, 1806 [*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1989, **38**, 1654 (Engl. Transl.)].
- 32. Yu. N. Polivin, R. A. Karakhanov, V. I. Kelarev, T. S. Sheveleva, and B. I. Ugrak, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 2078 [*Russ. Chem. Bull.*, 1993, **42**, 1991 (Engl. Transl.)].
- 33. R. P. Subrayan and P. G. Rasmussen, *Tetrahedron*, 1999, **55**, 353.

- 34. H. Lettre, P. Yungmann, and J. Solfeld, *Chem. Ber.*, 1952, 85, 397.
- 35. S.-H. Jung and H. Kohn, J. Am. Chem. Soc., 1985, 107, 2931.
- 36. C. G. Francisco, R. Hernandez, E. I. Leon, J. A. Salazar,
- and E. Suarez, J. Chem. Soc., Perkin Trans. 1, 1990, 2417.
 37. K. W. Morin, R. Kumar, E. E. Knaus, and L. I. Wiebe, J. Heterocycl. Chem., 1991, 28, 807.
- 38. F. L. Wagenaar and J. F. Kerwin, Jr., J. Org. Chem., 1993, 58, 4331.
- 39. Yu. A. Sharanin, Zh. Org. Khim., 1980, 16, 2185 [J. Org. Chem. USSR, 1980, 16 (Engl. Transl.)].
- 40. T. Kato, T. Chiba, T. Shimizu, and H. Takahashi, *Chem. Pharm. Bull.*, 1981, **29**, 862.
- 41. Yu. S. Andreichikov and D. D. Nekrasov, *Zh. Org. Khim.*, 1984, **20**, 1755 [*J. Org. Chem. USSR*, 1984, **20** (Engl. Transl.)].
- 42. Yu. S. Andreichikov and D. D. Nekrasov, *Khim. Geterotsikl.* Soedin., 1985, 166 [Chem. Heterocycl. Compd., 1985 (Engl. Transl.)].
- 43. M. D. Brown, D. W. Gillon, G. D. Meakins, and G. H. Whitham, *J. Chem. Soc.*, *Perkin Trans. 1*, 1985, 1623.
- 44. R. Carrau, R. Hernandez, E. Suarez, and C. Betancor, J. Chem. Soc., Perkin Trans. 1, 1987, 937.

- 45. G. Seitz and R. John, Arch. Pharm. (Weinheim, Ger.), 1991, 323, 65.
- 46. W. Zielinski and M. Mazik, Heterocycles, 1994, 38, 375.
- 47. R. S. Elderfield and H. A. Hageman, J. Org. Chem., 1949, 14, 605.
- 48. V. Prelog, B. C. McKusick, J. R. Merchant, S. Julia, and M. Wilhelm, *Helv. Chim. Acta*, 1956, **39**, 498.
- 49. A. C. Currie, G. T. Newbold, and F. S. Spring, J. Chem. Soc., 1961, 4693.
- 50. A. Donetti, A. Omodei-Sale, and A. Mantegani, *Tetrahedron Lett.*, 1969, **39**, 3327.
- 51. G. Pala, A. Mantegani, and E. Zugna, *Tetrahedron*, 1970, **26**, 1275.
- 52. S. A. Bakunov, A. V. Rukavishnikov, and A. V. Tkachev, *Synthesis*, 2000, 1148.
- 53. W. Pollmann and G. Schramm, *Biochem. Biophis. Acta*, 1964, 1.
- 54. A. J. Birch, R. Jaeger, and R. Robinson, J. Chem. Soc., 1945, 582.

Received October 5, 2001; in revised form January 24, 2002