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Abstract: Reaction of an Al-centered anion with toluene
proceeded to form C�H cleaved product with a perfect meta-
selectivity and a relatively small kinetic isotope effect (KIE, kH/
kD = 1.51). DFT calculations suggested a two-step reaction
mechanism and electronically controlled meta-selectivity aris-
ing from the electron-donating methyl group. The reaction with
other mono-substituted arenes was also investigated.

Nucleophilic aromatic substitution (SNAr) reactions pro-
ceed through a formation of Meisenheimer intermediate and
a subsequent elimination of a leaving group (Scheme 1 a).[1]

Although an elimination of hydride is thermodynamically
disadvantageous, hydride-eliminating SNAr (H-SNAr) reac-
tions would have a huge potential to functionalize aromatic
compounds.[2] In the presence of hydride-abstracting reagents,
electron-poor pyridine[3] and nitrobenzene[4] derivatives have
been known as a substrate for the H-SNAr reaction (Sche-
me 1b). In contrast, H-SNAr reaction of electron-neutral and
-rich benzenes require a formation of h6-arene-transition
metal complex followed by a treatment with an external
oxidant (Scheme 1c).[5] Recently, a direct alkylation of
electronically neutral benzene by using alkyl-calcium or
-strontium hydride reagents has been reported as an example
of H-SNAr reactions (Scheme 1d).[6]

Aluminum-substituted arenes have been widely used as
a reagent in organic synthesis.[7] There are two types of the
reactions on C�H alumination of benzene: 1) ortho-deproto-
nation/alumination reaction of an arene possessing a directing
group by using bulky and basic ate complex of AlIII,[8] and
2) oxidative addition of C�H bond to AlI species (Scheme 2).
In a combination with transition metals, Cp*Al/Ni0 A[9] and
(nacnac)Al species B/Pd catalyst reacted with benzene,[10] in
which C�H cleavage was proposed to occur on the transition-
metal center. In contrast to these neutral AlI species,[11] some
of recently developed Al-centered anions[12] underwent C�H
cleavage of benzene without transition metals. A base-
stabilized Al anion C reacted with benzene at 57 8C to
afford (hydrido)(phenyl)aluminate.[12a] Reaction of a sepa-
rated ion pair D derived from C with naphthalene furnished
an isomeric mixture of 1- and 2-aluminated naphthalenes.[12c]

Diaminoalumanyl anion E generated from B is also capable
for C�H cleavage of benzene to give dialuminated benze-
ne.[12l] A dialkylalumanylpotassium 1 also underwent C�H
cleavage of benzene at RT.[12j] It should be noted that B
reacted with benzene in the presence of [(nacnac)CaH]2

catalyst to give (nacnac)Al(H)(Ph) through a intermediate
F having a character of base-stabilized Al-centered anion,[13]

although B itself does not react with benzene.[14]

Herein, we report H-SNAr reaction of toluene with
a perfect selectively for meta-C�H bond by using dialkylalu-
manyl anion 1. Mechanistic study with DFT calculations and
kinetic analysis proposed the reaction proceeded through
a H-SNAr reaction and the perfect selectivity for meta-C�H
bond cleavage was controlled by electronics of the methyl

Scheme 1. a) Classical SNAr, b) H-SNAr on electron-poor arenes, c) H-
SNAr on electron-rich arenes via p-arene complex, d) H-SNAr alkylation
of electronically neutral arenes.

Scheme 2. Alumination of benzene using AlI species (L: neutral or
anionic ligand, n = 2–3, Dip = 2,6-iPr2C6H3).
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group. The present alumination was also applied to the
reaction with other monosubstituted arenes.

Leaving a toluene solution of 1 at room temperature led to
a formation of (hydrido)(m-tolyl)aluminate 2 as a crystalline
solid in 63 % yield (Scheme 3). The 1H NMR spectrum of the
crude product exhibited no signal that corresponds to other
isomers (NMR yield: 99 %). The perfect meta-selectivity is
slightly better than that in the recently reported alumination
reaction of toluene by using B in the presence of [(nacnac)-
CaH]2 catalyst (meta:para = 9:1).[13] The existence of m-tolyl
group in 2 was unambiguously confirmed by a single crystals
X-ray diffraction analysis (Figure 1). The solid-state structure
of 2 is similar to the previously reported (hydrido)-
(phenyl)aluminate[12j] generated by a reaction of 1 with
benzene. Considering the low electronegativity of Al
(1.61)[15] and the similar reactivity of diaminoboryl anion
toward benzene,[16] we originally assumed alumanyl anion
1 has a high Brønsted basicity to deprotonate benzene.[12j]

However, the present meta-selective C�H cleavage by 1 is
completely different from the reactivity of diaminoboryl
anion that deprotonates benzylic C�H bond of toluene.[17]

Therefore, the kinetic isotope effect (KIE) was investigated to
reveal further details of the reaction mechanism. Consump-
tion of 1 or 1-d16

[18] in either toluene or [D8]toluene were
monitored at 35 8C by UV/Vis spectroscopy. The decay of the
absorption at 468 nm obeyed pseudo-first order kinetics with
rate constants of kH = 5.42� 0.03 � 10�4 s�1 and kD = 3.58�
0.02 � 10�4 s�1 (Supporting Information, Figure S11). The
obtained KIE (kH/kD = 1.51) is smaller than the reported
values for the deprotonation of benzene with either ethyl-
potassium (kH/kD = 2.0),[19] nBuLi/tBuOK (kH/kD = 2.7),[20] or

diaminoboryl anion (kH/kD = 2.8).[16] This relatively small
value of kH/kD in the present study would reflect non-
deprotonating character with triangular or non-linear tran-
sition state (see below), where the change in C�H bending is
more important than the change in C�H stretching.[21]

To shed light on the origin of the present meta-selective
C�H cleavage of toluene with 1 to furnish 2, the reaction
mechanism and property of the transition state were exam-
ined by using DFT calculations (Figure 2). Energy profiles for
C�H cleavage at meta-, para-, and benzylic positions were
summarized in Figure 2a. The ortho-cleavage was not taken
account because of the steric hindrance. The obtained path-
way for meta-C�H cleavage is two-step reaction involving
a formation of Meisenheimer intermediate meta-INT. The
first transition state, meta-TS1, for the nucleophilic attack of
Al anion, has an almost coplanar configuration of the bending
hydrogen atom and benzene ring with incoming out-of-plane
aluminum atom with an activation energy of 26.1 kcalmol�1

(Figure 2b for structural parameters). It should be noted that
the p*-orbital of toluene in 1 was lower than that of free
toluene (Supporting Information, Figure S13), indicating the
decrease of electron density of toluene upon coordination.
The second transition state, meta-TS2, for the hydride
migration to the Al center has a lower activation energy
(4.2 kcalmol�1) where the aluminum atom is almost coplanar
with the benzene ring. The sum of two TSs having non-linear
arrangement of Al, C, and H atoms would contribute to the
experimentally obtained small KIE value.[21] Similar two-step
pathway for para-C�H cleavage through para-TS1 was found
to have a slightly higher activation energy (27.8 kcal mol�1). In
the case of benzylic C�H cleavage, reaction proceeds through
a concerted pathway without an intermediate. The difference
between two transition states, para-TS1 and meta-TS1, would

Scheme 3. Reaction of 1 with toluene to afford 2 (Si = SiMe3,
1H NMR

yield in parentheses).

Figure 1. Crystal structure of 2 with ellipsoids set at 50% probability;
hydrogen atoms except Al�H and intermolecular interaction between
potassium cation and SiMe3 group have been omitted for clarity.[24]

Figure 2. a) Energy profiles of the DFT-based mechanism for C�H
cleavage of toluene by 1, including schematic structures of transition
states, calculated at the M06-HF/def2-TZVP//PBE0/def2-SVP/
PCM(SMD, Toluene) level of theory. Relative Gibbs free energies are
given in kcalmol�1. b) Selected bond lengths (�) of meta-TS1.

Angewandte
ChemieZuschriften

2 www.angewandte.de � 2020 Wiley-VCH GmbH Angew. Chem. 2020, 132, 1 – 5
� �

These are not the final page numbers!

http://www.angewandte.de


arise from the electron-donating character of the methyl
group. In fact, HOMO of both transition states has large
coefficients at ortho- and para-positions of the carbon atom
being attacked by Al anion (Figure 3), therefore, the methyl
group on the para-position in para-TS1 contributes to
destabilize HOMO of the transition state. The calculated
NPA charges of the ipso-carbon of the methyl group (�0.06 in
meta-TS1 and�0.17 in para-TS1) also support destabilization
of para-TS1. Thus, absence of destabilizing effect by methyl
group in meta-TS1 would be the reason why the meta-
selective C�H cleavage was obtained. It should be noted that
the second transition states para-TS2 and meta-TS2 having
a coplanarity between the aluminum atom and the benzene
ring seem to be similar to that found in the reaction of B with
toluene with an assistance of calcium catalyst.[13]

Subsequently, we examined the reactivity of alumanyl
anion 1 toward mono-substituted benzenes (Scheme 4). The
reaction of 1 with fluorobenzene followed by an addition of I2

gave a crude reaction mixture, which involves 3-fluoroiodo-
benzene 3 (25%) and iodobenzene 4 (28%) as judged by the
1H NMR spectrum. The former would be generated from a m-
fluorophenyl-substituted aluminate, which has a similar struc-
ture of 2. The latter would form via SNAr reaction at the ipso
carbon of the fluorine substituent, as found for the reaction of
1 with C6F6.

[12j] Treatment of 1 with anisole gave (methyl)-
(phenoxy)aluminate 5 in 90% yield through SN2 reaction at
methyl group with phenoxide anion as a leaving group. The
structure of 5 was determined by NMR spectroscopy and X-
ray crystallographic analysis (see the Supporting Informa-
tion). On the other hand, the reaction of 1 with diphenyl ether
gave (hydrido)(m-phenoxyphenyl)aluminate 6 through C�H

bond cleavage at meta-position. The dimeric structure of
isolated 6 was confirmed by X-ray analysis, in which the
hydride was found as a peak in the Fourier difference map
(see the Supporting Information). In the reaction of 1 with
trifluoromethylbenzene, detectable product is limited to
tetraalkyldialumane (65 % NMR yield), which would be
generated via single-electron-transfer from 1 to trifluorome-
thylbenzene (Supporting Information, Scheme S1).[22] Thus,
meta-selective C�H alumination could be applied to fluoro-
benzene and diphenyl ether.

In summary, we revealed the reactivity of alumanylpotas-
sium 1 toward toluene to form C�H cleaved product 2 with
a perfect meta-selectivity.[23] A relatively small kinetic isotope
effect (kH/kD = 1.51) suggested a non-linear transition state.
DFT calculations suggested a two-step reaction mechanism
and electronically controlled meta-selectivity arising from the
electron-donating methyl group. The reactivity of 1 toward
other mono-substituted arenes was also investigated.
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Reaction Mechanisms

S. Kurumada, K. Sugita, R. Nakano,
M. Yamashita* &&&&—&&&&

A meta-Selective C�H Alumination of
Mono-Substituted Benzene by Using An
Alkyl-Substituted Al Anion through
Hydride-Eliminating SNAr Reaction

Reaction of an Al-centered anion with
toluene proceeded to form C�H cleaved
product with a perfect meta-selectivity
and a relatively small kinetic isotope
effect (KIE, kH/kD = 1.51). DFT calcula-
tions suggested a two-step reaction
mechanism and electronically controlled
meta-selectivity arising from the electron-
donating methyl group. The reaction with
other mono-substituted arenes was also
investigated.

Angewandte
ChemieZuschriften

5Angew. Chem. 2020, 132, 1 – 5 � 2020 Wiley-VCH GmbH www.angewandte.de

These are not the final page numbers! � �

http://www.angewandte.de

