
This article was downloaded by: [Chulalongkorn University] On: 03 January 2015, At: 23:43 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

Synthesis of Chromonyl-Containing a-Aminophosphonates

Si-Yao Lang^a, Duo-Zhi Wang^a & Ling-Hua Cao^a ^a College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang, P. R. China Published online: 21 Sep 2009.

To cite this article: Si-Yao Lang , Duo-Zhi Wang & Ling-Hua Cao (2009) Synthesis of Chromonyl-Containing α -Aminophosphonates, Phosphorus, Sulfur, and Silicon and the Related Elements, 184:10, 2560-2568, DOI: <u>10.1080/10426500802529127</u>

To link to this article: http://dx.doi.org/10.1080/10426500802529127

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Synthesis of Chromonyl-Containing α-Aminophosphonates

Si-Yao Lang, Duo-Zhi Wang, and Ling-Hua Cao

College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi Xinjiang, P. R. China

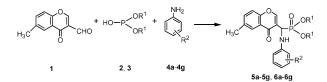
A series of novel chromonyl-containing α -aminophosphonates were synthesized by a one-pot reaction from 3-formylchromones, substituted aromatic amines, and dialkylphosphites. Synthesized compounds were characterized by elemental analysis, and ¹H NMR and IR spectroscopy. Single crystal x-ray diffraction data of compound **6e** was obtained, and analysis indicates that the crystal belongs to triclinic system with space group P-1, a = 9.4200(4) Å, b = 10.5970(6) Å, c = 12.3506(5) Å, $\alpha =$ $84.178(2)^{\circ}$, $\beta = 73.5830(10)^{\circ}$, $\gamma = 68.2720(10)^{\circ}$. V = 1098.59(9) Å³, Z = 2, $\mu =$ 0.163 mm⁻¹, F(000) = 456, $R[F^2 > 2\sigma(F^2)] = 0.0835$, $\omega R(F^2) = 0.2328$.

Keywords α-Aminophosphate; chromone; crystal structure; synthesis

INTRODUCTION

 α -Aminophosphoric acids and α -aminophosphates are phosphorussubstituted analogs of α -amino carboxylic acids. Their utilities as enzyme inhibitors, antitumor, antibiotics, antihypertensive, pharmacological agents, and many other applications have attracted chemists' interests since 1959.^{1–4} Among the literature methods, the Kabachnik–Fields reaction is one of the most convenient approaches to the synthesis of α -aminophosphonates. It is a one-pot, three-component reaction of carbonyl compound, amines, and dialkylphosphites. The reaction usually needs a Lewis acid catalyst such as indium (III) chloride, rare earth elements triflates, and scandium tris (dodecyl sulfate). Recently, SmI₂, LiClO₄, metal triflates [M(OTf)_n, M = Li, Mg, Al, Cu, Ce], TaCl₅-SiO₂, montmorillonite clay, Al₂O₃, CF₃CO₂H, scandium (tris-dodecyl sulfate), BF₃·H₂O, and tetra-*tert*butyl-substituted

Received 8 July 2008; accepted 1 October 2008.


This work was supported by the National Natural Science Foundation of China (Grant No. 20462006).

Address correspondence to Ling-Hua Cao, College of Chemistry and Chemical Engineering, Xinjiang University, 14 Shengli Road, Urumqi Xinjiang 830046, P. R. China. E-mail: clhxj@xju.edu.cn

phthalocyanines Pht-1-Pht-3 have also been reported as catalysts. A broad range of catalysts has been employed for the Kabachnik–Fields reaction. However, many of these catalysts are expensive. The catalyst-free synthesis of α -aminophosphonates is rather limited.⁵

Chromones and their derivatives are a group of naturally occurring compounds that are ubiquitous in nature, especially in fruits, vegetables, nuts, seeds, flowers, and tree bark. Due to their abundance in plants and their low mammalian toxicity, chromone derivatives are present in large amounts in the diet of humans.^{6,7} Chromones not only have been extracted from natural products, but also synthesized by chemical methods.⁸ In studies to improve the bioactivity of chromones, chemists have found that chromone-linked heterocyclic frameworks have a broad biological activity, especially at the C-3 position, with strong propensities to act as antitumor, antibacterial, antivirus, antimicrobial, and antiphlogistic agents.⁹ Several flavonoid and chromone derivatives have also been found with inhibitory activity against the AR enzyme.¹⁰

In this article, the catalyst-free synthesis and physical characterization of new α -aminophosphonates containing chromonyl group are described. Base on previous work,¹¹ compounds **5a–5g** and **6a–6g** were synthesized, and a single-crystal structure of compound **6e** was obtained. All new compounds were analyzed by elemental analysis, and ¹H NMR and IR spectroscopy. The route of synthesis is shown in Scheme 1.

R¹ **5a–5g**: CH₃; **6a–6g**: C₂H₅

R² 5a, 6a: H; 5b, 6b: 2-CH₃; 5c, 6c: 4-CH₃; 5d, 6d: 4-Cl; 5e, 6e: 4-OCH₃; 5f, 6f: 2-NO₂; 6g,

6g: 4-NO₂

SCHEME 1

RESULTS AND DISCUSSION

In the process of the synthesis of these all new compounds, we found that the reaction could take more time when there is an electronwithdrawing group (for instance NO_2) on the benzene-ring, but is faster with electron-contributing groups, for example OCH₃. The data of

				Analysis found (calcd.)%		
Compd.	$mp \ (^{\circ}C)$	Yield (%)	Formula	С	Н	Ν
5a	169–170	59.4	$C_{19}H_{20}NO_5P$	60.98(61.11)	5.42(5.40)	3.74(3.75)
5b	152 - 154	42.4	$C_{20}H_{22}NO_5P$	61.87(62.00)	5.71(5.73)	3.63(3.62)
5c	151 - 153	57.1	$C_{20}H_{22}NO_5P$	61.82(62.00)	5.71(5.73)	3.61(3.62)
5d	168 - 169	65.7	C ₁₉ H ₁₉ ClNO ₅ P	55.89(56.01)	4.68(4.70)	3.42(3.44)
5e	148 - 150	59.4	$C_{20}H_{22}NO_6P$	59.66(59.54)	5.52(5.50)	3.45(3.47)
5f	165.5 - 167	52.2	$C_{19}H_{19}N_2O_7P$	54.64(54.53)	4.57(4.58)	6.68(6.70)
5g	177 - 180	16.0	$C_{19}H_{19}N_2O_7P$	54.42(54.53)	4.60(4.58)	6.68(6.70)
6a	165 - 166	51.7	$C_{21}H_{24}NO_5P$	62.94(62.82)	6.01(6.03)	3.50(3.49
6b	164 - 166	51.9	$C_{22}H_{26}NO_5P$	63.71(63.59)	6.33(6.31)	3.38(3.37
6c	181.5 - 182.5	57.1	$C_{22}H_{26}NO_5P$	63.46(63.59)	6.29(6.31)	3.36(3.37)
6d	199-201	53.4	C ₂₁ H ₂₃ ClNO ₅ P	58.03(57.92)	5.31(5.33)	3.23(3.22
6e	185 - 186	69.5	C ₂₂ H ₂₆ NO ₆ P	61.35(61.23)	6.06(6.08)	3.26(3.25)
6f	134 - 135	18.3	$C_{21}H_{23}N_2O_7P$	56.60(56.49)	5.22(5.20)	6.26(6.28
6g	176 - 177.5	47.5	$C_{21}H_{23}N_2O_7P$	56.38(56.49)	5.18(5.20)	6.30(6.28

TABLE I Physical Data and Elemental Analysis of Compounds

physical properties and elemental analysis of all new compounds are listed in Table I.

In the IR spectra, all new compounds exhibited medium-strong bands at $3400 \sim 3100 \text{ cm}^{-1}$, assigned to their NH stretches. The strong band that appeared at about 1650 cm⁻¹ was assigned to the carbonyl group of all new compounds.

In the ¹H NMR spectra, the signal of methyl group protons that connects with chromone appeared at about δ 2.3, and the proton in chromone at C-2 position appeared at about δ 8.0. The signal of NH appeared as a broad peak, at about δ 4.5. Because of coupling with the phosphorus atom, the proton of P(O)CH exhibited a doublet at about δ 5.2 and their coupling constants (²*J*_{HP}) are around 24.0 Hz. The data of the ¹H NMR and IR spectra of the new compounds are listed in Table II.

A single crystal of compound **6e** was gained by slow evaporation of solvent in its diluted toluene solution. X-ray single crystal diffraction analysis indicates that the crystal belongs to triclinic system with space group *P*-1, $\alpha = 9.4200(4)$ Å, b = 10.5970(6) Å, c = 12.3506(5) Å, $\alpha = 84.178(2)^{\circ}$, $\beta = 73.5830(10)^{\circ}$, $\gamma = 68.2720(10)^{\circ}$. V = 1098.59(9) Å³, Z = 2, $\mu = 0.163$ mm⁻¹, F(000) = 456, $R[F^2 > 2\sigma(F^2)] = 0.0835$, $\omega R(F^2)$ = 0.2328. The benzene ring [C(12), C(13), C(14), C(15), C(17), C(18)] and the conjunction nitrogen N(1) atom are fairly planar, and the deviation from the least squares plane through the ring atom is 0.0188 Å. The plane equation is 1.5323 (0.0124) × -6.2256 (0.0126) y + 8.8682

Compd.	$^{1}\mathrm{H}$ NMR (CDCl ₃) δ	${\rm IR} \; \nu \; {\rm cm}^{-1}$
5a	8.10–6.55 (m, 8H, ArH), 8.04 (s, 1H, OCH), 5.40 (d, ${}^{2}J =$	3334 (NH), 1682
	23.8 Hz, 1H, NCH), 4.71 (br, 1H, NH), 4.01 (d, ${}^{3}J =$	(C=O), 1339
	10.4 Hz, 3H, POCH ₃), 3.76 (d, ${}^{3}J = 10.4$ Hz, 3H,	(P=O), 1060
	POCH ₃), 2.42 (s, 3H, CH ₃)	(P-O-C)
5b	8.20–6.77 (m, 7H, ArH), 8.10 (s, 1H, OCH), 5.36 (d, ${}^{2}J =$	3350 (NH), 1680
	22.6 Hz, 1H, NCH), 4.40 (br, 1H, NH), 3.98 (d, ${}^{3}J =$	(C=O), 1342
	10.8 Hz, 3H, POCH ₃), 3.86 (d, ${}^{3}J = 10.8$ Hz, 3H,	(P=O), 1066
	POCH ₃), 2.35 (s, 3H, CH ₃), 2.24 (s, 3H, CH ₃)	(P-O-C)
5c	7.96–6.70 (m, 7H, ArH), 8.06 (s, 1H, OCH), 5.29 (d, ${}^{2}J =$	3451 (NH), 1684
	23.0 Hz, 1H, NCH), 4.73 (br, 1H, NH), 3.91 (d, ${}^{3}J =$	(C=O), 1339
	10.8 Hz, 3H, POCH ₃), 3.61 (d, ${}^{3}J = 10.8$ Hz, 3H,	(P=O), 1084
	POCH ₃), 2.52 (s, 3H, CH ₃), 2.35 (s, 3H, CH ₃)	(P-O-C)
5d	8.10–6.70 (m, 7H, ArH), 8.03 (s, 1H, OCH), 5.30 (d, ${}^{2}J =$	3300 (NH), 1643
	24.0 Hz, 1H, NCH), 4.70 (br, 1H, NH), 3.92 (d, ${}^{3}J =$	(C=O), 1324
	10.8 Hz, 3H, POCH ₃), 3.68 (d, ${}^{3}J = 10.8$ Hz, 3H,	(P=O), 1033
	POCH ₃), 2.42 (s, 3H, CH ₃)	(P-O-C)
5e	8.01–6.70 (m, 7H, ArH), 8.03 (s, 1H, OCH), 5.31 (d, ${}^{2}J =$	3100 (NH), 1674
	22.6 Hz, 1H, NCH), 4.35 (br, 1H, NH), 3.92 (d, 3H,	(C=O), 1277
	OCH_3 , 3.73 (d, ${}^{3}J = 10.6$ Hz, 3H, POCH ₃), 3.68 (d, ${}^{3}J$	(P=O), 1014
	$= 10.6 \text{ Hz}, 3\text{H}, \text{POCH}_3), 2.43 (\text{s}, 3\text{H}, \text{CH}_3)$	(P-O-C)
5f	7.83–6.69 (m, 7H, ArH), 8.14 (s, 1H, OCH), 5.34 (d, ${}^{2}J =$	3270 (NH), 1698
	23.8 Hz, 1H, NCH), 4.68 (br, 1H, NH), 3.64 (d, ${}^{3}J =$	(C=O), 1337
	11.0 Hz, 3H, POCH ₃), 3.39 (d, ${}^{3}J = 11.0$ Hz, 3H,	(P=O), 1035
_	POCH ₃), 2.42 (s, 3H, CH ₃)	(P-O-C)
5g	7.84–6.80 (m, 7H, ArH), 8.14 (s, 1H, OCH), 5.32 (d, ${}^{2}J =$	3342 (NH), 1652
	23.8 Hz, 1H, NCH), 4.68 (br, 1H, NH), 3.91 (d, ${}^{3}J =$	(C=O), 1311
	11.0 Hz, 3H, POCH ₃), 3.58 (d, ${}^{3}J = 11.0$ Hz, 3H,	(P=O), 1059
_	POCH ₃), 2.42 (s, 3H, CH ₃)	(P-O-C)
6a	$8.10-6.74$ (m, 8H, ArH), 8.04 (d, ${}^{4}J = 1.2$ Hz, 1H, OCH),	3492 (NH), 1686
	$5.35 (d, {}^{2}J = 23.6 Hz, 1H, NCH), 4.70 (br, 1H, NH),$	(C=O), 1270
	4.26 (m, 2H, POCH ₂), 4.09 (m, 2H, POCH ₂), 2.50 (s,	(P=O), 1020
	$3H, CH_3$, 1.32 (t, ${}^{3}J = 7.2$ Hz, $3H, CH_3$), 1.22 (t, ${}^{3}J =$	(P-O-C)
	7.2 Hz, 3H, CH ₃)	0000 (NTT) 4000
6b	$8.14-6.76$ (m, 7H, ArH), 8.01 (d, ${}^{4}J = 1.2$ Hz, 1H, OCH),	3332 (NH), 1682
	5.34 (d, ${}^{2}J = 23.4$ Hz, 1H, NCH), 4.72 (br, 1H, NH),	(C=O), 1354
	4.01 (m, 2H, POCH ₂), 3.97 (m, 2H, POCH ₂), 2.52 (s,	(P=O), 1004
	3H, CH ₃), 2.35 (s, 3H, CH ₃), 1.23 (t, ${}^{3}J = 7.1$ Hz, 3H,	(P-O-C)
	CH ₃), 1.11 (t, ${}^{3}J = 7.1$ Hz, 3H, CH ₃)	
6c	7.98–6.67 (m, 7H, ArH), 8.03 (d, ${}^{4}J = 1.6$ Hz, 1H, OCH),	3421 (NH), 1681
	5.43 (d, ${}^{2}J = 24.0$ Hz, 1H, NCH), 4.52 (br, 1H, NH),	(C=O), 1331
	4.11 (m, 2H, POCH ₂), 4.05 (m, 2H, POCH ₂), 2.49 (s,	(P=0), 1048
	$3H, CH_3), 2.34 (s, 3H, CH_3), 1.20 (t, {}^{3}J = 7.4 Hz, 3H, CH_3), 1.14 (t, {}^{3}J = 7.4 Hz, 3H, CH_3)$	(P-O-C)
	CH ₃), 1.14 (t, ${}^{3}J = 7.4$ Hz, 3H, CH ₃)	0.440 (3777) 2011
6d	7.70–6.37 (m, 7H, ArH), 8.20 (d, ${}^{4}J = 1.2$ Hz, 1H, OCH),	3418 (NH), 1641
	5.21 (d, ${}^{2}J = 23.2$ Hz, 1H, NCH), 4.56 (br, 1H, NH),	(C=O), 1339
	3.97 (m, 2H, POCH ₂), 3.67 (m, 2H, POCH ₂), 2.40 (s,	(P=O), 1011
	3H, CH ₃), 1.28 (t, ${}^{3}J = 7.1$ Hz, 3H, CH ₃), 1.12 (t, ${}^{3}J = 7.1$	(P-O-C)
	$7.1 \text{ Hz}, 3 \text{H}, \text{CH}_3)$	

TABLE II ¹H NMR and IR Data of Compounds

(Continued on next page)

TABLE II ¹H NMR and IR Data of Compounds (Continued)

Compd.	$^{1}\mathrm{H}$ NMR (CDCl ₃) δ	${ m IR}~\nu~{ m cm}^{-1}$
6e	7.92–6.40 (m, 7H, ArH), 8.14 (d, ${}^{4}J$ = 1.6 Hz, 1H, OCH), 5.18 (d, ${}^{2}J$ = 22.8 Hz, 1H, NCH), 4.65 (br, 1H, NH), 3.97 (m, 2H, POCH ₂), 3.73 (m, 2H, OCH ₃), 3.67 (m, 3H, POCH ₂), 2.53 (s, 3H, CH ₃), 1.26 (t, ${}^{3}J$ = 7.5 Hz, 3H, CH ₃), 1.14 (t, ${}^{3}J$ = 7.5 Hz, 3H, CH ₃)	3491 (NH), 1689 (C=O), 1390 (P=O), 1005 (P-O-C)
6f	8.08–6.47 (m, 7H, ArH), 8.11 (d, ${}^{4}J = 1.4$ Hz, 1H, OCH), 5.30 (d, ${}^{2}J = 23.0$ Hz, 1H, NCH), 4.65 (br, 1H, NH), 4.11 (m, 2H, POCH ₂), 3.78 (m, 2H, POCH ₂), 2.36 (s, 3H, CH ₃), 1.20 (t, ${}^{3}J = 7.3$ Hz, 3H, CH ₃), 1.12 (t, ${}^{3}J = 7.3$ Hz, 3H, CH ₃)	3497 (NH), 1698 (C=O), 1396 (P=O), 1034 (P-O-C)
6g		3481 (NH), 1686 (C=O), 1297 (P=O), 1020 (P-O-C)

(0.0112) z = 3.8664 (0.0097). Atoms in chromone ring [C(1), C(2), C(3), C(4), C(5), C(7), C(8), C(9), C(10), O(2)] are also quite planar, and the deviation from the least squares plane through the ring atom is 0.0136 Å. The plane equation is $-7.2607 (0.0042) \times -0.5413 (0.0100) \text{ y} + 4.2302$ (0.0070) z = 2.4239 (0.0068). The dihedral angle between the plane of chromone group and the plane of the benzene is $83.84(0.08)^{\circ}$, and the torsion angle of C(10)-C(11)-N(1)-C(12) is 74.5(4)°. The structure of the phosphorus atom in compound 6e is distorted tetrahedron. Two kinds of hydrogen bond exist in the crystal lattice. Intramolecular H-bond exists in this structure and the structure is stabilized by the hydrogen bond between the hydrogen attached to the amine nitrogen (N1) and the phosphite oxygen (O5). The N1–H1...O5 distance is 3.158(4)Å and the N1-H1...O5 angle is 104.2°. The data of the crystal of the compound are listed in Table III, Table IV, and Table V. The molecular structure of the title compound 6e is shown in Figure 1. The packing diagram of the unit cell of compound **6e** is shown in Figure 2. Complete crystallographic data for the structural analysis of compound 6e have been deposited with the Cambridge Crystallographic Data Centre, CCDC numbers 684911.

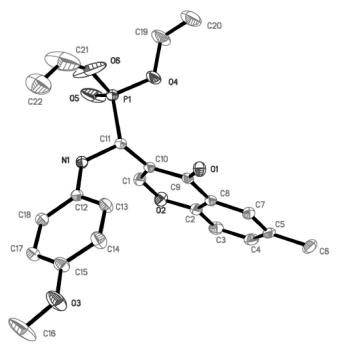
EXPERIMENTAL

General Method

Melting points were taken on a Yanaco MP-S3 micromelting point apparatus. The IR spectra were recorded in KBr pellets on a Bruker

Empirical formula	$\mathrm{C}_{22}\mathrm{H}_{26}\mathrm{NO}_{6}\mathrm{P}$	Limiting indices	$\begin{array}{l} \text{-}12 < = h < = 12, \text{-}13 < = \\ k < = 13, \text{-}13 < = l < = \\ 16 \end{array}$
Formula weight	431.41	Reflections collected/unique	$10899/4995 \ [R(int) = 0.0186]$
Temperature	153(2) K	Completeness to theta $= 27.48$	99.1%
Wavelength	0.71073 Å	Max. and min. transmission	0.9483 and 0.9058
Crystal system, space group	triclinic, P-1	Refinement method	Full-matrix least-squares on F^2
Unit cell dimensions	a = 9.4200(4) Å,	Data/restraints/ parameters	4995/0/272
	b = 10.5970(6) Å,	•	
	c = 12.3506(5) Å		
	$\alpha=84.178(2)^\circ,$		
	$\beta = 73.5830(10)^{\circ},$		
	$\gamma = 68.2720(10)^{\circ}$		
Volume	$1098.59(9) { m \AA}^3$	Goodness-of-fit on F^2	1.117
Z, Calculated density	$2,1.304~\mathrm{Mg/m^3}$	Final R indices [I>2sigma(I)]	$R1 = 0.0835, \omega R2 = 0.2328$
Absorption coefficient	$0.163 \ {\rm mm^{-1}}$	R indices (all data)	$R1 = 0.1061, \omega R2 = 0.2635$
F(000)	456	Absolute structure parameter	0(10)
Crystal size	0.62 imes 0.58 imes 0.33~ m mm	Extinction coefficient	0.014(5)
Theta range for data collection	3.31 to 27.48 deg.	Largest diff. peak and hole	1.710 and -1.601 e. ${\rm \AA}^{-3}$

TABLE III Crystal Data and Structure Refinement for 6e


TABLE IV Selected Bond Lengths (Å) for the Compound 6e

-			
P(1)-O(5)	1.429(4) O(3)-C(16)	1.335(5) C(8)-C(9)	1.463(4)
P(1)-O(6)	1.530(4) O(4)-C(19)	1.464(4) C(9)-C(10)	1.457(4)
P(1)-O(4)	1.541(3) O(6)-C(21)	1.160(8) C(10)-C(11)	1.517(4)
P(1)-C(11)	1.812(3) C(1)-C(10)	1.345(4) C(12)-C(18)	1.392(4)
N(1)-C(12)	1.407(4) C(2)-C(3)	1.382(5) C(12)-C(13)	1.386(5)
N(1)-C(11)	1.454(4) C(2)-C(8)	1.388(4) C(13)-C(14)	1.391(5)
O(1)-C(9)	1.233(4) C(3)-C(4)	1.378(5) C(14)-C(15)	1.381(5)
C(1)-C(10)	1.345(4) C(4)-C(5)	1.399(5) C(15)-C(17)	1.381(5)
O(2)-C(1)	1.342(4) C(5)-C(6)	1.513(5) C(17)-C(18)	1.394(4)
O(2)-C(2)	1.377(4) C(5)-C(7)	1.385(5) C(19)-C(20)	1.442(7)
O(3)-C(15)	1.388(4) C(7)-C(8)	1.405(4) C(21)-C(22)	1.418(9)

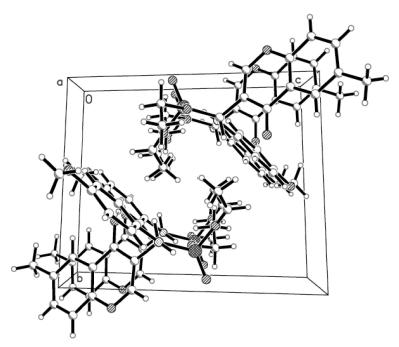

O(5)-P(1)-O(6)	111.8(4)	O(2)-C(2)-C(3)	116.5(3)	C(9)-C(10)-C(11)	119.5(3)
O(5)-P(1)-O(4)	117.4(2)	C(3)-C(2)-C(8)	122.2(3)	N(1)-C(11)-C(10)	115.4(2)
O(6)-P(1)-O(4)	102.6(3)	C(4)-C(3)-C(2)	118.4(3)	C(10)-C(11)-P(1)	113.6(2)
O(5)-P(1)-C(11)	115.39(17)	C(3)-C(4)-C(5)	122.1(3)	C(18)-C(12)-N(1)	118.8(3)
O(6)-P(1)-C(11)	106.7(2)	C(7)-C(5)-C(4)	118.0(3)	C(13)-C(12)-N(1)	122.9(3)
O(4)-P(1)-C(11)	101.62(14)	C(7)-C(5)-C(6)	121.0(3)	C(17)-C(15)-O(3)	124.6(3)
C(12)-N(1)-C(11)	119.1(3)	C(5)-C(7)-C(8)	121.5(3)	C(14)-C(15)-O(3)	115.2(3)
C(16)-O(3)-C(15)	120.5(3)	C(1)-C(10)-C(9)	119.7(3)	C(15)-C(17)-C(18)	119.1(3)
C(19)-O(4)-P(1)	122.2(3)	C(2)-C(8)-C(7)	117.8(3)	C(12)-C(18)-C(17)	121.6(3)
C(21)-O(6)-P(1)	156.2(7)	C(2)-C(8)-C(9)	120.6(3)	C(20)-C(19)-O(4)	110.1(4)
O(2)-C(1)-C(10)	125.5(3)	N(1)-C(11)-P(1)	107.3(2)	O(6)-C(21)-C(22)	133.6(8)

TABLE V Selected Bond Angles (°) for the Compound 6e

FT-IR Equinox apparatus. The ¹H NMR spectra were recorded on a Varian INOVA-400 (using TMS as internal standard, CDCl₃ as solvent). Elemental analyses were performed on a Thermo Flash EA-1112 elemental analyzer. X-ray single-crystal diffraction data for compound

FIGURE 1 Molecular structure of compound **6e.** (Displacement ellipsoid view with 30% ellipsoids.)

FIGURE 2 Packing diagram of the unit cell of compound **6e**. (Displacement ellipsoid view with 50% ellipsoids.)

6e were collected on a Bruker Smart 1000 CCD diffractometer at 293(2) K with Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) by ω - ϕ scan mode. The structures was solved by direct methods using the SHELXS program of the SHELXTL package and refined by full-matrix least-squares methods with SHELXL.¹² Analytical thin-layer chromatography (TLC) was performed by GF₂₅₄ and 0.5% CMC. Detection made use of UV light; the mobile phase was petroleum ether (fraction boiling in the range of 60–90°C) and ethyl acetate (1:2). All reagents were commercial products of analytical grade and were used directly without processing except when mentioned.

Compounds 1–3

Compounds 1-3 were prepared according to reported methods.^{13,14}

Preparation of *N*-Aryl- α -amino- α -(chromon-3-yl)-*O*,*O*'dialkylphosphites (5a–5g, 6a–6g)

To a stirred solution of 6-methyl-3-formylchromone (1 mmol) and substituted aniline (1 mmol) in anhydrous toluene (40 mL), an equimolar amount of dialkylphosphite was added. The mixture was refluxed for 2–5 h. The end of the reaction was detected by TLC. The reaction mixture was concentrated. The precipitate was filtered off and recrystallized from ethanol-water.

REFERENCES

- [1] M. Horiguthi and M. Kandosn, Nature, 184, 901 (1959).
- [2] R. Chen and L. Liu, *The Research of Organic Phosphrus Chemistry*, 2nd ed. (China Higher Education Press, Beijing, 2001), Chap. 1, pp. 1–3.
- [3] F. Tanaka, K. Kincshita, and R. Tanimura, J. Am. Chem. Soc., 118, 2332 (1996).
- [4] A. K. Bhattacharya and K. C. Rana, Tetrahedron Lett., 49, 2598 (2008).
- [5] X. Mu, M. Lei, J. Zou, and W. Zhang, Tetrahedron Lett., 47, 1125 (2006).
- [6] T. Nagao, F. Abe, J. Ninjo, and H. Okabe, Biol. Pharm. Bull., 25, 875 (2002).
- [7] Z. Liu, X. Luo, Y. Sun, W. Wu, C. Liu, Z. Liu, and S. Liu, J. Pharm. Pharmacol., 56, 1557 (2004).
- [8] G. Yang, L. Cao, and P. Cui, J. Chin. Chem. Soc., 52, 1033 (2005).
- [9] P. Wu and L. Cao, Chin. J. Org. Chem., 25, 1121 (2005).
- [10] H. Xie, T. Wang, H. Matsuda, T. Morikawa, M. Yoshikawa, and T. Tani, Chem. Pharm. Bull., 53, 1416 (2005).
- [11] L. Cao and K. Yan, Chin. J. Org. Chem., 27, 255 (2007).
- [12] G. M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures, University of Göttingen, Germany (1997).
- [13] L. Cao, L. Zhang, and J. Gu, Chin. J. Org. Chem., 22, 405 (2002).
- [14] Z. Li, Q. Wang, and J. Huang, *The Preparation of Organic Intermediates*, 2nd ed. (Chemical Industrial Press, Beijing, 2001), Chap. 10, pp. 224–225.