

Tetrahedron Letters 42 (2001) 5485-5488

TETRAHEDRON LETTERS

Vinylidene to alkyne rearrangement to form polyynes: synthesis and photolysis of dialkynylmethylenebicyclo[4.3.1]deca-1,3,5-triene derivatives

Yoshito Tobe,* Naruhito Iwasa, Rui Umeda and Motohiro Sonoda

Department of Chemistry, Faculty of Engineering Science, Osaka University, and CREST, Japan Science and Technology Corporation (JST), Toyonaka, Osaka 560-8531, Japan

Received 23 May 2001; revised 13 June 2001; accepted 14 June 2001

Abstract—Dialkynylmethylenebicyclo[4.3.1]deca-1,3,5-triene derivatives were synthesized as precursors to generate dialkynylvinylidenes by extrusion of an aromatic fragment, indane. Photolysis of the trienes gave linear polyynes as the major products produced by rearrangement of the vinylidenes, together with the isomerization products having a methylenecycloheptatriene moiety. © 2001 Elsevier Science Ltd. All rights reserved.

In connection with the formation of novel, conjugated polyynes such as cyclo[n]carbons,¹ there has been considerable interest in the development of methods to generate polyynes under unconventional, mild conditions. These include retro Diels–Alder reaction of dibenzobicy-clo[2.2.2]octatriene derivatives,² decarbonylation of cyclobutenedione derivatives,^{2b,3} retro [2+2] fragmentation of cyclobutene-containing propellanes,⁴ and others.⁵ Similarly, in order to generate diethynylcarbene, which is a repeating unit of cyclo[5n]carbons, cheletropic fragmentation of cyclopropane-containing propellanes has been investigated under mass spectrometric conditions.⁶ As a new, alternative method, we planned to utilize the vinvlidene to alkyne rearrangement⁷ of dialkynylvinylidenes to form reactive, conjugated polyynes. Recently, Tykwinski reported an ingenious use of the rearrangement of vinylidene carbenoids generated from dialkynyldibromoalkenes,8 known as the Fritsch-Buttenberg-Wiechell rearrangement,9 leading to the efficient formation of polyynes. By contrast, as precursors to dialkynylvinylidenes, we designed dialkynylmethylenebicyclo[4.3.1]deca-1,3,5-trienes, which would produce dialkynylvinylidenes by extrusion of an aromatic fragment (indane) presumably via the corresponding propelladiene valence isomers. The preceding observations underlying our design are following: (1) Thermally induced fragmentation of dihalomethano[10]annulenes has been reported to form dihalocarbenes by elimination of naphthalene,¹⁰ although the mechanism, whether or not the corresponding [4.4.1]propellatetraene is involved, is not clear.^{10b} (2) Photolysis of cyclopropane-containing

Imethylenebiuld produce romatic fragnding propelobservations 1) Thermally Ullannulenes

propellanes has been recognized as a method to form 'real carbenes',¹¹ including such peculiar species as

homocubylidene.^{11c} (3) Photolysis of alkylidenecyclo-

propane derivatives produced alkylidene carbenes which

either rearranged to alkynes or were trapped by olefins.¹² Herein, we report the synthesis of dialkynylmethylenebicyclo[4.3.1]decatriene derivatives **1a** and **2** and their

The synthesis of the vinylidene precursors 1a and 2 was

carried out as outlined in Scheme 1. Dibromo[4.3.1]propellene 3, prepared by dibromocarbene addition to

dihydroindane,¹³ was converted to the propelladiene $4^{11b,d,e}$ by bromination–dehydrobromination. Halogen–

lithium exchange of **4** followed by treatment of diethynyl ketone **5** and TMSCl gave adduct **6** as a single diastereo-

mer. Treatment of 6 with t-BuLi gave methylenebicyclo-

triene 1a by Peterson type elimination¹⁴ and subsequent

ring opening of the three-membered ring. Apparently,

the open form 1a having a bridged methylenecyclohepta-

photolysis forming the corresponding polyynes.

7a R = TMS 7b R = H

Keywords: vinylidene; alkynes; polyynes; photolysis.

^{*} Corresponding author. Fax: +81-6-6850-6229; e-mail: tobe@ chem.es.osaka-u.ac.jp

The ¹³C NMR spectra of **1a**, **1b** and **2** exhibit characteristic chemical shifts due to polarization of the exocyclic double bond. Namely, the signals for C(10) of 1a, 1b and 2 shift remarkably low field to 167.0, 168.0, and 171.9 ppm, respectively, which are even lower than that of dicycanomethylenecycloheptatriene (163.7 ppm).¹⁶ By contrast, the signals for C(11) of 1a, 1b and 2 appear upfield at 93.1, 90.8, and 91.2 ppm, respectively. These observations are explained in terms of the electronic polarization of the double bond due to the electron-withdrawing effect of the ethynyl group and to the steric effect imposed by the bridged bicyclic system. For example, it has been reported by Itô that the chemical shifts of the carbonyl carbons of 2,7-methylene-bridged tropones shift low field with decreasing length of the methylene bridge presumably due to bond angle strain.¹⁷ The effect of the non-planar structure of 1a and 2 is also evidenced by their electronic spectra [1a $\lambda_{\rm max}$ (hexane) 258 nm (ε 16500), **2** $\lambda_{\rm max}$ (hexane) 306 (ε 19600), 288 (19200), 269 (15400), 256 (13300) nm], which do not exhibit an absorption in the visible region (around 400 nm) characteristic of the heptafulvene chromophore.¹⁸ This indicates that the exocyclic double bond is not fully conjugated with the bridged triene system due to the out-of-plane bending of the double bond.

Irradiation of a hexane solution of 1a with a low pressure mercury lamp in an ice bath yielded hexatriyne 9^{19} as the major product as we had expected, which was isolated in 46% yield after chromatography together with indane (45% yield determined by GLC).²⁰ In addition, the isomerization product 10 of the starting material was obtained in 30% yield as a brown oil (Scheme 2). The structure of 10 was elucidated on the basis of the NMR and UV-vis spectra. The salient features of the NMR spectra include four vinyl proton signals at 6.90 (d, 1H), 6.37 (dd, 1H), and 6.21–6.12 (m, 2H) ppm and six vinyl carbon signals at 151.3, 145.1, 144.9, 134.4, 132.0, 130.5, 128.7, and 93.5 ppm. It should be pointed out that, although the ¹³C NMR chemical shifts of the exocyclic double bond of 10 indicate its polarization as in the case of 1a, the chemical shift for C(2) is not as much downfield shifted as that of 1a,

Scheme 1. (a) (i) $C_5H_5N \cdot HBr_3$, C_5H_5N , CH_2Cl_2 , rt; (ii) DBU, toluene, 42°C, 35%; (b) BuLi, -100°C, then (TMS-C=C)₂C=O (5), -70°C, then TMSCl, THF, 46%; (c) *t*-BuLi, pentane, -110°C, then TMSCl, 80%; (d) LiOH·H₂O, THF, rt, 78%; (e) TIPS-C=C-Br (8), CuCl, NH₂OH·HCl, aq. EtNH₂, THF-MeOH (1:2), rt, 63%.

Scheme 2.

Scheme 3.

implying the presence of steric effect in the latter. The UV-vis spectrum of **10** (hexane) exhibits a strong absorption at 385 nm (ε 3300) consistent with the heptafulvene chromophore.¹⁸ The formation of **10** can be explained in terms of a 1,5-signatropic shift of a cyclopropane bond of the propelladiene intermediate **7a**, the valence isomer of **1a**, followed by electrocyclic ring opening of the norcaradiene moiety (Scheme 3).

Irradiation of the extended system 2 under similar conditions gave decapentayne $11^{19c,d}$ in 59% isolated yield together with isomerization product 12 (ca. 24%). Indane was also detected by GLC and ¹H NMR (irradiation in THF- d_8). Thus, despite the formation of undesired isomerization products, generation of vinylidenes and subsequent isomerization to polyynes took place as the major course of the photoreaction of the methylenebicyclo[4.3.1]decadienes. Preparation and fragmentation of cyclic oligomers of 1b are being undertaken in these laboratories and will be reported in due course.

Acknowledgements

This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology. Y.T. is grateful to Shin-Etsu Co. for the generous gift of organosilicon reagents.

References

 For reviews, see: (a) Diederich, F. Modern Acetylene Chemistry; Stang, P. J.; Diederich, F., Eds.; VCH: Weinheim, 1995; pp. 443–471; (b) Diederich, F.; Gobbi, L. Top. Curr. Chem. 1999, 201, 43; (c) Tobe, Y. Advances in Strained and Interesting Organic Molecules; Halton, B., Ed.; JAI Press: Stamford, 1999; Vol. 7, pp. 153–184.

- (a) Diederich, F.; Rubin, Y.; Knobler, C. B.; Whetten, R. L.; Schriver, K.; Houk, K. N.; Li, Y. *Science* **1989**, *245*, 1088; (b) Diederich, F.; Rubin, Y.; Chapman, O. L.; Goroff, N. S. *Helv. Chim. Acta* **1994**, *77*, 1441.
- (a) Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 1607; (b) Rubin, Y.; Kahr, M.; Knobler, C. B.; Diederich, F.; Wilkins, C. L. J. Am. Chem. Soc. 1991, 113, 495; (c) McElvany, S. W.; Ross, M. M.; Goroff, N. S.; Diederich, F. Science 1993, 259, 1594.
- (a) Tobe, Y.; Fujii, T.; Matsumoto, H.; Naemura, K.; Achiba, Y.; Wakabayashi, T. J. Am. Chem. Soc. 1996, 118, 2758; (b) Tobe, Y.; Matsumoto, H.; Naemura, K.; Achiba, Y.; Wakabayashi, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1800; (c) Tobe, Y.; Fujii, T.; Matsumoto, H.; Tsumuraya, K.; Noguchi, D.; Nakagawa, N.; Sonoda, M.; Naemura, K.; Achiba, Y.; Wakabayashi, T. J. Am. Chem. Soc. 2000, 122, 1762.
- (a) Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 4966; (b) Adamson, G. A.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1996, 1535.
- (a) Isaacs, L.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1995, 34, 1466; (b) Isascs, L.; Diederich, F.; Haldiman, R. F. Helv. Chim. Acta 1997, 80, 317; (c) de Meijere, A.; Kozhushkov, S. I. Top. Curr. Chem. 1999, 201, 1.
- For a review of the rearrangement of carbenes, see: Kirmse, W. *Carbene Chemistry*, 2nd ed.; Academic Press: New York, 1971; pp. 457–503.
- Eisler, S.; Tykwinski, R. R. J. Am. Chem. Soc. 2000, 122, 10736.
- (a) Fritsch, P. Liebigs Ann. Chem. 1894, 272, 319; (b) Buttenberg, W. P. Liebigs Ann. Chem. 1894, 272, 324; (c) Wiechell, H. Liebigs Ann. Chem. 1894, 272, 337.
- (a) Rautenstrauch, V.; Scholl, H.-J.; Vogel, E. Angew. Chem., Int. Ed. Engl. 1968, 7, 288; (b) Lambert, J. B.; Ziemnicka-Merchant, B. T. J. Org. Chem. 1990, 55, 3460.
- (a) Hartwig, J. F.; Jones, Jr., M.; Moss, R. A.; Lawrynowicz, W. *Tetrahedron Lett.* **1986**, *27*, 5907; (b) Warner, P. M.; Lu, S.-L.; Gurumurthy, R. J. Phys. Org. Chem. **1988**, *1*, 281; (c) Chen, N.; Jones, Jr., M. *Tetra*-

hedron Lett. **1989**, *30*, 6969; (d) Chen, N.; Jones, Jr., M.; White, W. R.; Platz, M. S. *J. Am. Chem. Soc.* **1991**, *113*, 4981; (e) Likhotvorik, I. R.; Tippmann, E.; Platz, M. S. *Tetrahedron Lett.* **2001**, *42*, 3049; (f) For a review on generation of carbenes by photochemical cycloelimination from cyclopropanes, see: Griffin, G. W.; Bertoniere, N. R. In *Carbenes*; Jones, Jr., M.; Moss, R. A., Eds.; John Wiley & Sons: New York, 1973; Vol. 1, pp. 305–349.

- (a) Brinton, R. K. J. Phys. Chem. 1968, 72, 321; (b) Gillbert, J. C.; Butler, J. R. J. Am. Chem. Soc. 1970, 92, 7493; (c) Kende, A. S.; Goldschmidt, Z.; Smith, R. F. J. Am. Chem. Soc. 1970, 92, 7606.
- Vogel, E.; Wiedemann, W.; Roth, H. D.; Eimer, J.; Günther, H. Liebigs Ann. Chem. 1972, 759, 1.
- For similar transformations, see: (a) Seebach, D.; Hässig, R.; Siegel, H. *Chem. Ber.* **1982**, *115*, 1990; (b) Roth, W. R.; Quast, M. *Eur. J. Org. Chem.* **1998**, 763.
- 15. For example, semi-empirical AM1 calculations for **1b** and **7b** indicate that the former is 2.7 kcal/mol more stable than the latter.

- Bönzli, P.; Neuenschwamder, M. Helv. Chim. Acta 1991, 74, 255.
- 17. Mazaki, Y.; Fujise, Y.; Fukazawa, Y.; Itô, S. Tetrahedron Lett. 1987, 28, 977.
- For example, see: (a) Doering, W. von E.; Wiley, D. W. *Tetrahedron* **1960**, *11*, 183; (b) Nozoe, T.; Mukai, T.; Osaka, K.; Shishido, N. *Bull. Chem. Soc. Jpn.* **1961**, *34*, 1384; (c) Schenk, W. K.; Kyburz, R.; Neuenschwander, M. *Helv. Chim. Acta* **1975**, *58*, 1099; (d) Komatsu, K.; Fujimori, M.; Okamoto, K. *Tetrahedron* **1977**, *33*, 2791.
- (a) Alberts, A. H. Recl. Trav. Chim. Pays-Bas 1989, 108, 242; (b) Fritch, J. R.; Vollhardt, K. P. C. Organometallics 1982, 1, 590; (c) Rubin, Y.; Lin, S. S.; Knobler, C. B.; Anthony, J.; Boldi, A. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 6943; (d) Tobe, Y.; Fujii, T.; Naemura, K. J. Org. Chem. 1994, 59, 1236.
- 20. Neither irradiation at low temperature (-78°C) nor with a high-pressure mercury lamp changed the product distribution.