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Synthesis of Novel Pyrrolo-[3,2-c]quinolines via
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Grignard Reagents
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2My Ismaı̈l University, Faculty of Sciences, Meknès, Morocco

Abstract: Cross-coupling reaction of alkyl and aryl magnesium halides with
4-chloro-pyrrolo-[3,2-c]quinoline in the presence of a catalytic amount of iron salt
is described. The reactions are completed in 30min, resulting in moderate to
excellent yields of 52–94% in a tetrahydrofuran (THF)–N-methylpyrrolidinone
(NMP) solvent mixture.

Keywords: Cross-coupling, imidoyl chloride, iron catalysis, nitrogen heterocycles,
organomagnesium reagents

Very few metal-catalyzed cross-coupling reactions of imidoyl chlorides
have been studied, and most of the reported reactions require the use
of expensive palladium or toxic nickel catalysts.[1] Despite their excellent
compatibility with many functional groups, their high cost, toxicity, the
need for ancillary ligands, extended reaction time, and elevated tempera-
ture are the most common disadvantages of their use. In contrast, Fe(acac)3
as catalyst for cross-coupling reaction is very cheap, easily available,
nontoxic, environmentally benign, and easy to handle (nonhygroscopic),
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and the reactions are usually characterized by high rates under mild
conditions.[2–7]

As a continuation of our ongoing studies of the development of novel
routes for the synthesis of substituted pyrroles,[8–10] we decided to
investigate the cross-coupling reaction between the 4-chloro-1H-
pyrrolo-[3,2-c]quinoline 1, synthesized as previously reported by us,[10]

in the presence of alkyl and aryl Grignard reagents, catalyzed by an iron
salt. No examples are described in the literature for the cross-coupling
reaction between imidoyl chloride, confined in a pyrrolo-quinoline struc-
ture, and Grignard reagents in the presence of Fe(acac)3 as catalyst.

In a typical experiment, the imidoyl chloride 1 was reacted in the
presence of Fe(acac)3 (5mol%) with different Grignard reagents in a
10:1 mixture of tetrahydrofuran (THF)=NMP at room temperature,
leading to a new series of pyrrolo-[3,2-c]quinoline derivatives 2–7

(Scheme 1, Table 1). The results are summarized in Table 1.
Under iron-free reaction conditions, no reaction occurred, confirming

the importance of iron catalyst in the rapid and high-yielding reactions.
The kinetic study by thin-layer chromatography (TLC) and high per-
formance liquid chromatography (HPLC) showed a completed reaction
after only 30min at room temperature. Our reaction conditions proved
to be general for the formation of Csp2 � Csp3 and Csp2 � Csp2 bonds,
and the ortho-substitution on the imidoyl chloride with the pyrrole ring
does not affect the yield.

The analysis of the crude products by HPLC and liquid chromato-
graphy–mass spectrometry (LC-MS) showed the formation of the
expected products along with some by-products, according to four main
secondary reactions responsible for the moderate yield obtained in some
cases: (i) dehalogenation reaction of imidoyl chloride 1 to afford the cor-
responding unsubstituted imine (entries 2–6); (ii) hydrolysis of the imine
function in 1 to afford the corresponding cyclic amide[10] (entries 1–3);
(iii) homocoupling of imidoyl chloride 1 (entry 7); and (iv) the oxidative
dimerization of the Grignard reagents.[3]

For alkyl Grignard reagents (entries 1–4, Table 1), independent of
the nature of halogen atom (RMgX, X¼ I, Br, Cl), the cross coupling
products 2–5 were obtained in moderate to good yields. Contrary to pre-
vious reports on the reactivity of the secondary alkyl Grignard, for which
[Fe(salen)Cl][2,3] should be used to achieve the cross-coupling reaction, in
our case a good yield of product 4 could be obtained in the presence of
Fe(acac)3. With the more sterically demanding 2-methyl-2-phenylpropyl-
magnesium chloride (entry 8), coupling with imidoyl chloride 1 was
unsuccessful, and the unreacted substrate 1 was recovered. When the less
hindered substrate benzylmagnesium chloride (entry 5) was used, the
cross-coupling product 6 was obtained in a satisfactory yield.

1584 E. Colacino et al.
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Table 1. Cross-coupling product of imidoyl chloride 1 in the presence of RMgX

Entry RMgX Product Yield (%)a

1 MeMgI 2 52

2 EtMgBr 3 74

3 i-PrMgCl 4 86

4 BuMgCl 5 64

5 PhCH2MgCl 6 60

(Continued )
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Only traces of product 7 (entry 6) were obtained in the presence
of allyl magnesium bromide, and the result could not be improved by
adding some more catalyst (10% mol), extending the reaction time (up
to 24 h), adding an excess of Grignard reagent, or heating the mixture
up to 60�C, classically or under microwave activation. In all cases,
unreacted 1 was recovered.

To our great satisfaction, the aryl–aryl bond formation was successful
when phenyl magnesium chloride was coupled with imidoyl chloride 1,
affording compound 8 in a very high yield (entry 7). In this case, the cat-
alytic decomposition of the Grignard reagent[11–13] to afford biphenyl in
the presence of transition-metal salts and aryl halides acting as oxidizing
agents is diminished. This is may be due to the lower oxidizing power of
the pyrrolo-quinoline aromatic system, showing that the reaction is applic-
able to p-electron-deficient heterocycles,[3,5] associated with a stabilization
of frontier orbital energy, which allow the reaction to proceed.

In conclusion, we have shown that the developed conditions are quite
general and mild for the formation of Csp2 � Csp3 and Csp2 � Csp2 bonds,
affording differently substituted pyrrolo-quinoline derivatives, which are
useful scaffolds for medicinal chemistry.[14,15]

Table 1. Continued

Entry RMgX Product Yield (%)a

6 CH2¼CHCH2MgBr 7 Traces

7 PhMgCl 8 94b

8 (CH3)2CH(Ph)MgCl – 9 0

aIsolated yield after purification on column chromatography;
bThe product was recovered by crystallization from CH2Cl2.
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EXPERIMENTAL

General

All reagents were purchased from Aldrich Chemical Co. and used without
further purification. 1H and 13C NMR analyses were performed with Bru-
ker Avance DPX 200-MHz, Bruker Avance AM 300-MHz or Bruker AC
400-MHz instruments, reported in parts per million (ppm), and calibrated
using residual undeuterated solvents as an internal reference. Data are
reported as br¼ broad, s¼ singlet, d¼ doublet, t¼ triplet, q¼ quartet,
and m¼multiplet, and coupling constant(s) are in Hertz (Hz). Mass spec-
tra (electrospray ionization mode, ESI-MS) were recorded on a Platform
II (Micromass, Manchester, U.K.) quadrupole mass spectrometer fitted
with an electrospray interface. The mass spectrometer was calibrated in
the positive- and negative-ion ESI mode. The samples were dissolved in
H2O=CH3CN (50=50 v=v). Fast atom bombardment (FAB) mass spectra
and HRMS (high-resolution mass spectrum) were recorded on a Jeol JMS
DX300-S� 102 instrument in positive mode using NBA (3-nitrobenzylal-
cool) or GT (mixture of glycerol=thioglycerol 50=50 v=v) as matrix. Infra-
red (IR) spectra were recorded by diffuse reflectance or by transmittance
in KBr salt plates on a Nicolet Avatar 330FT-IR instrument. Data are
reported according their group absorption regions as s¼ strong,
m¼medium, and w¼weak. Analytical high-performance liquid chroma-
tography (HPLC) was performed on a Waters Millenium 717 instrument
equipped with autosampler and a variable-wavelength diode detector
using a Chromolith RP18 column (50� 4.6mm) [flow 5mL=min, linear
gradient CH3CN in water 0–100% (þ0.1% TFA)] in 4.5min.

Representative Experimental Procedure for the Iron-Catalyzed

Synthesis of Compounds 2–8

A flame-dried flask was charged under nitrogen with 4-chloro-1H-pyrrolo-
[3,2-c]quinoline 1[7] (0.093mmol, 20mg), Fe(acac)3 (0.05mol, 1.64mg), and
THF=NMP 10:1 v=v (2.2mL). A solution of the Grignard reagent (2.0M
in THF, 0.1mL, 0.186mmol) was added via syringe to the solution, and
the resulting mixture was stirred for 30min at room temperature.
Then, the reaction mixture was diluted with Et2O (10mL) and carefully
quenched upon addition of sat. NH4Cl (5mL). The organic phase was
washed with water (2� 10mL) and with sat. NaCl (1� 10mL). The
organic phase was dried on MgSO4, filtered, and evaporated. The crude
was purified by column chromatography (compounds 3–6; eluent is
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given in brackets for each compound) or by hot recrystallization
(compounds 2 and 8).

Data

1,4-Dimethyl-1H-pyrrolo[3,2-c]quinoline (2)

Hot crystallization from n-pentane afforded 9.39mg (52% yield) of com-
pound 2. Product decomposes at temperatures greater than 200�C. 1H
NMR (CDCl3, Me4Si) d (ppm): 3.23 (s, 3H), 4.34 (s, 3H), 6.92 (d,
J¼ 3.2Hz, 1H), 7.29 (d, J¼ 3.2Hz, 1H), 7.67–7.76 (m, 2H), 8.39 (d,
J¼ 8.2Hz, 1H), 8.97 (d, J¼ 8.2Hz, 1H); 13C NMR (CDCl3, Me4Si) d
(ppm) 17.77, 38.56, 104.84, 116.63, 120.40, 120.77, 122.98, 128.08,
129.56, 133.37, 134.97, 135.74, 152.41; ESI-MS m=z 197.2 [MþH]þ.
HRMS calcd. for C13H13N2 197.1082; found 197.1079.

4-Ethyl-1-methyl-1h-Pyrrolo[3,2-c]quinoline (3)

Purification of the crude by column chromatography [cyclohexane=Et2O:
linear gradient 100=0–30=70 v=v) afforded 14mg (74% yield) of 3. Mp
84–88�C; 1H NMR (CDCl3, Me4Si) d (ppm): 1.38–1.43 (t, J¼ 7.5Hz,
3H), 3.13–3.2 (q, J¼ 7.5Hz, 4H), 4.22 (s, 3H). 6.67 (d, J¼ 2.9Hz, 1H),
7.03 (d, J¼ 2.9Hz, 1H), 7.44–7.56 (m, 2H), 8.18 (d, J¼ 7.4Hz, 1H),
8.30 (d, J¼ 8.0Hz, 1H); 1H NMR [(CD3)2CO, Me4Si] d (ppm): 8.35
(dd, J¼ 6.8 and 1.5Hz, 1H), 7.97 (dd, J¼ 6.8 and 1.5Hz, 1H), 7.49–
7.31 (m, 2H), 7.17 (d, J¼ 3.1Hz, 1H), 6.62 (d, J¼ 3.1Hz, 1H), 4.15 (s,
3H), 3.03 (q, J¼ 7.3Hz, 2H), 1.29 (t, J¼ 7.3Hz, 3H); 13C NMR (CDCl3,
Me4Si) d (ppm): 13.78, 29.69, 38.02, 101.79, 118.23, 120.19, 120.76,
125.00, 126.30, 129.42, 134.14, 159.35; 13C NMR [(CD3)2CO, Me4Si] d
(ppm): 136.18, 132.4 (2C), 132.0, 128.6, 128.2, 127.3, 127.2, 124.3,
123.6, 122.9, 121.1, 39.9, 15.1. ESI-MS m=z 211.1 [MþH]þ HRMS calcd.
for C14H15N2 211.1235; found 211.1238.

4-Isopropyl-1-methyl-1H-pyrrolo[3,2-c]quinoline (4)

Purification of the crude by column chromatography [cyclohexane=Et2O:
linear gradient 100=0–80=20 v=v) afforded 18mg (86% yield) of 4. 1H
NMR (CDCl3, Me4Si) d (ppm): 1.44 (d, J¼ 6.9Hz, 6H), 3.52–3.61 (m,
1H), 8.38 (s, 3H), 6.69 (d, J¼ 2.5Hz, 1H), 7.00 (d, J¼ 2.5Hz, 1H),
7.41–7.54 (m, 2H), 8.19 (d, J¼ 6.7Hz, 1H), 8.27 (d, J¼ 8.00Hz, 1H);
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13C NMR (CDCl3, Me4Si) d (ppm): 22.69, 29.70, 38.08, 118.13, 120.13,
121.22, 125.08, 126.33, 129.43, 131.40, 134.31, 162.42; ESI-MS m=z
225.1 [MþH]þ.

4-Butyl-1-methyl-1H-pyrrolo[3,2-c]quinoline (5)

Purification of the crude by column chromatography [cyclohexane=Et2O:
linear gradient 100=0–80=20 v=v) afforded 14mg (64% yield) of com-
pound 5. Mp 80–82�C; 1H NMR (CDCl3, Me4Si) d (ppm): 0.85–0.96
(t, J¼ 3.0Hz, 3H), 1.38–1.49 (m, 2H), 1.80–1.86 (m, 2H), 3.1 (t,
J¼ 8.0Hz, 2H), 4.22 (s, 3H), 6.65 (d, J¼ 3.7Hz, 1H); 7.01 (d, J¼ 3.7Hz,
Hz, 1H), 7.42–7.55 (m, 2H), 8.13 (d, J¼ 8.2Hz, 1H), 8.30 (d, J¼ 8.2Hz,
1H); 13C NMR (CDCl3, Me4Si) d (ppm): 14.26, 23.27, 32.05, 36.63, 38.21,
101.98, 118.48, 120.38, 121.46, 125.00, 126.32, 129.40, 134.19, 158.76;
ESI-MS m=z 239.0 [MþH]þ. HRMS calcd. for C16H19N2 239.1545;
found 239.1548.

4-Benzyl-1-methyl-1H-pyrrolo[3,2-c]quinoline (6)

Purification of the crude by column chromatography [cyclohexane=Et2O:
linear gradient 100=0–60=40 v=v) afforded 15mg (60% yield) of com-
pound 6. Mp 68–70�C; 1H NMR (CDCl3, Me4Si) d (ppm): 4.17 (s,
3H), 4.5 (s, 2H), 6.52 (d, J¼ 3.0Hz, 1H), 7.01 (d, J¼ 3.0Hz, 1H),
7.06–7.11 (m, 3H), 7.15–7.19 (m, 2H), 7.45–7.58 (m, 2H), 8.22 (d,
J¼ 7.9Hz, 1H), 8.30 (d, J¼ 8.3Hz, 1H); 13C NMR (CDCl3, Me4Si) d
(ppm): 42.72, 53.42, 102.38, 118.31, 120.22, 121.24, 125.42, 126.28,
126.51, 128.17, 128.43, 128.93, 129.34, 129.75, 129.95, 134.52, 139.05,
155.86, ESI-MS m=z 273.2 [MþH]þ. HRMS calcd. for C19H17N2

273.1393; found 273.1392.

1-Methyl-4-phenyl-1H-pyrrolo[3,2-c]quinoline (8)

Hot crystallization from CH2Cl2 afforded 22.3mg (94% yield) of
compound 8. Mp 124–126�C; 1H NMR (CDCl3, Me4Si) d (ppm): 4.25
(s, 3H), 6.78 (d, J¼ 3.1Hz, 1H), 7.23 (d, J¼ 3.1Hz, 1H), 7.40–7.61
(m, 5H), 7.97 (d, J¼ 2.9Hz, 2H), 8.34 (d, J¼ 2.9Hz, 2H); 13C NMR
(CDCl3, Me4Si) d (ppm): 38.2, 102.4, 118.3, 120.2, 120.4, 125.3,
126.3, 128.8, 129.1, 129.7, 130.7, 134.9, 140,7, 144.7, 154.7; ESI-MS
m=z 259.19 [MþH]þ. HRMS calcd. for C18H15N2 259.1235; found
259.1238.
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