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ABSTRACT

Alkyl carbamate (such as 1) reacts with triphosgene at the nitrogen atom,

whereas the analogous thionocarbamates (5) react at the sulfur.

Subsequent treatment with various phenols or alcohols leads to the

corresponding aryl carbamates or alkyl carbamates (6) respectively. The

process thus involves both desulfurization and transesterification.
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INTRODUCTION

We had earlier disclosed a strategy for converting alkyl carbamates to aryl

carbamates.[1–3] This was based on the use of phosphorus oxychloride in a

modified Vilsmeier reaction, during which the counter ion (Cl2), attacked the

alkyl group resulting in alkyl–oxygen cleavage.

This reaction was successfully developed into a process for the industrial

production of several aryl carbamate pesticides.[4] In a detailed exploration of

the scope and mechanism of the reaction we have now investigated the use of

reagents other than POCl3 for effecting this transformation. Earlier reports in

the literature have indicated that phosgene or oxalyl chloride may also bring

about the conventional Vilsmeier reaction.[5,6] However the former possess

serious problems in storage and handling; a better substitute would be

bis(trichloromethyl)carbonate i.e., triphosgene.[7,8] We now describe the

results on the reaction on alkyl carbamate such as 1 and alkyl thiono-

carbamates with oxygen nucleophiles in the presence of triphosgene in an

attempt to extend the scope of the transesterification.

A. Reaction of Methyl N-Methyl Carbamate (1) with

Triphosgene: Products Obtained on Treatment of the

Complex with Phenols and Benzyl Alcohol

Methyl N-methylcarbamate (1) (0.089 g, 1mmol) was treated with

triphosgene (0.099 g, 0.33mmol) and pyridine (0.079 g, 1 nmol) in

dichloromethane at 2108C. The resulting complex was then treated with

phenol (0.094 g, 1mmol). Purification of the crude product by column

chromatography led to the isolation of a colorless liquid, which showed the

presence of both an OMe and an NMe in the 1H NMR spectrum. It was

therefore not the desired phenyl N-methylcarbamate, but either (2a) or (3a).

Other substituted phenols reacted similarly. The products were ultimately

shown to be the aryl esters (2) of N-methylimidodicarbonic acid methyl ester

by X-ray crystallographic analysis of the 4-bromo phenyl derivative (2c).[9] It
was thus obvious that the ambident nucleophile (1) had reacted with POCl3 at

the oxygen,[1–3] but when the electrophilic reagent was triphosgene (or the

derived phosgene analogue obtained in situ from triphosgene and pyridine)[7,8]

the site of attack was the nitrogen atom (Sch. 1). Earlier, our attempt at

converting methyl N-methylcarbamate (1) to benzyl N-methylcarbamate

using POCl3 as the reagent had proved abortive; the sole product obtained was

benzyl chloride. The use of triphosgene instead of POCl3 in this reaction again

led to the attack at nitrogen, similar to the reaction with phenols as described

above, to afford the bis carbamate (4).
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B. Reaction of Alkyl Thionocarbamates with Triphosgene:

Transesterification with Phenols and Alcohols

It thus transpired that when triphosgene was the “Vilsmeier reagent,” the

initial attack on alkyl carbamates was at the nitrogen and not on the oxygen. In

the hope of changing the site of electrophilic attack, it was decided to

investigate the reactivity of alkyl thionocarbamates under the same

conditions; it was expected that in this case, the sulfur of the thiocarbonyl

group would be the preferred nucleophilic site. Earlier, it had been shown that

reaction of methyl N-methylthionocarbamate (5a) with POCl3, followed by

treatment with a-naphthol, led to carbaryl in 32% yield.[1]

Scheme 1.

Scheme 2.
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In the event, reaction of thionocarbamates with triphosgene and pyridine

followed by addition of phenols afforded, after purification by columnchro-

matography, the corresponding aryl carbamates (6) as shown in Scheme 2

(entries 1–9 in Table 1). The most significant difference between POCl3 and

triphosgene in this series emerged during attempted transesterification of alkyl

thionocarbamates with other alcohols instead of phenols.

Reaction of methyl N-methylthionocarbamate (5a) with POCl3, followed

by treatment with benzyl alcohol still resulted in the exclusive formation of

benzyl chloride; no transesterified product could be detected. In contrast,

thionocarbamates (5) (1mmol) when treated with triphosgene (0.099 g,

0.33mmol) and pyridine (0.079 g, 1mmol) in dichloromethane at 2108C
followed by alcohols (1mmol), led to the desired alkyl carbamates (6) (entries

10–15).

EXPERIMENTAL

1H NMR spectra were recorded in CDCl3 solution on a Bruker AC200

spectrometer at 200MHz and chemical shifts are reported in ppm downfield

from tetramethylsilane. 13CNMR spectra were recorded in CDCl3 solution on

Table 1. Carbamates from thionocarbamates.

Entry no.

RNHCOOR0 (6)

Yield ReferenceR R0

1 CH3 C6H5 32 [2]

2 CH3 4-ClC6H4 16 [2]

3 CH3 4-MeC6H4 20 [2]

4 n-Bu C6H5 39 [10]

5 n-Bu 4-ClC6H4 54 [10]

6 n-Bu 4-MeC6H4 45 [11]

7 PhCH2 C6H5 38 [10]

8 PhCH2 4-ClC6H4 61 [10]

9 PhCH2 4-MeC6H4 43 [12]

10 CH3 PhCH2 54 [2]

11 CH3 HC;;C–CH2 32 [13]

12 CH3 t-Bu 68a [14]

13 n-Bu PhCH2 52 [15]

14 n-Bu HC;;C–CH2 35 [16]

15 n-Bu t-Bu 65a [17]

aYield by GC.
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a Bruker AC 200 or MSL 300MHz instrument. Chemical shifts are reported in

ppm relative to the center line of CDCl3 (77.0 ppm). Infrared spectra were

recorded on a Perkin–Elmer Infracord spectrophotometer Model 599-B using

sodium chloride optics. Mass spectra were recorded on a Perkin–Elmer Q-

Mass 910 Mass spectrometer. Melting points were determined on a

Thermonik Campbell melting point apparatus and are uncorrected.

Microanalyses were performed on a Carlo-Erba CHNS-O 1108 elemental

analyzer. Dichloromethane was distilled over P2O5 under argon and pyridine

was distilled over KOH under argon. Silica gel (SD’s 60–120 mesh) was used

for column chromatography.

N-Methoxycarbonyl-N-phenoxycarbonyl methylamine (2a). Yield:

35%; colourless oil; 1HNMR (CDCl3): d3.40 (3H, s, NCH3), 3.85 (3H, s,

OCH3), 7.15–7.45 (5H, m, Ar); 13CNMR: d633.54, 53.73, 121.27, 125.78,

129.21, 150.59, 151.93, 153.85; IR (neat): 1760, 1700, 1590, 1490,

1450 cm21; MS (m/z, %): 209 (Mþ, 0.66), 116 (10), 39 (100); Anal. Calcd.

for C10H11NO4: C, 57.41; H, 5.30; Found: C, 57.82; H, 5.20%.

N-(4-Chlorophenoxycarbonyl)-N-methoxycarbonyl methylamine (2b).

Yield: 46%; mp 678C; 1HNMR (CDCl3): d3.35 (311, s, NCH3), 3.85 (3H, s,

OCH3), 7.11 (2H, d, J ¼ 8.8Hz, Ar), 7.36 (2H, d, J ¼ 8.8Hz, Ar); 13CNMR:

d33.84, 54.15, 122.87, 129.46, 131.41, 149.12, 151.99, 155.26; IR (nujol):

2900, 1750, 1720, 1440 cm21; (m/z, %): 243 (Mþ, 2), 116 (16), 18 (100);

Anal. Calcd. for C10H10ClNO4: C, 49.30; H, 4.14; N, 5.75; Found: C, 49.55;

H, 4.22; N, 5.66%.

N-(4-Bromophenoxycarbonyl)-N-methoxycarbonyl methylamine (2c).

Yield: 58%; mp 79–808C; 1HNMR (CDCl3): d 3.35 (3H, s, NCH3), 3.90 (3H,

s, OCH3), 7.05 (2H, d, J ¼ 9Hz, Ar), 7.50 (2H, d, J ¼ 9Hz, Ar); 13CNMR:

d 33.79, 54.05, 119.02, 123.17, 132.36, 149.63, 151.77, 153.87; IR (nujol):

2900, 1750, 1720, 1440 cm21; MS (m/z, %): 288 (Mþ, 4), 116 (56), 59 (100);

Anal. Calcd. for C10H10BrNO4: C, 41.69; 11, 3.50; N, 4.86; Found: C, 41.80;

11, 3.55; N, 4.70%.

N-Methoxycarbonyl-N-(4-nitrophenoxycarbonyl) methylamine (2d).

Yield: 30%; mp 758C; 1HNMR (CDCl3): d 3.40 (3H, s, NCH3), 3.90 (3H, s,

OCH3), 7.35 (2H, d, J ¼ 9.3Hz, Ar), 8.30 (2H, d, J ¼ 9.3Hz, Ar); 13CNMR:

d 33.80, 54.15, 122.27, 125.03, 145.31, 151.05, 153.54, 155.12; IR (nujol):

2900, 1760, 1730, 1440, 1340 cm21; MS (m/z, %): 122 (Mþ2132, 0.66), 116

(8.5), 30 (100); Anal. Calcd. for C10H10N2O6: C, 47.25; 11,3.97; N, 11.02;

Found: C, 47.16; 11,3.89; N, 10.75%.

N-Methoxycarbonyl-N-(4-methylphenoxycarbonyl) methylamine (2e).

Yield: 32%; mp 588C; 1HNMR (CDCl3): d 2.40 (3H, s, ArCH3), 3.40 (3H,

s,NCH3), 3.90 (3H, s, OCH3), 7.04 (2H, d, J ¼ 8.6Hz, Ar), 7.18 (2H, d,

J ¼ 8.6Hz, Ar); 13C NMR: d20.52, 33.54, 53.75, 120.90, 129.67, 135.38,

148.36, 152.15, 153.95; IR (nujol): 2900, 1760, 1720, 1460 cm21; MS (m/z,
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%): 223 (Mþ, 5), 116 (10), 18 (100); Anal. Calcd. for C11H13NO4: C, 59.19;

11, 5.83; N, 6.27; Found: C, 59.19; 11, 6.00; N, 6.08%.

N-Benzyloxycarbonyl-N-methoxycarbonyl methylamine (4). Yield:

33%; colourless oil; 1HVNMR (CDCl3): d 3.25 (3H, s, NCH3), 3.84 (3H, s,

OCH3), 5.25 (2H, s, CH2), 7.30–7.45 (5H, m, Ar); 13CNMR: d 32.97, 53.30,

67.98, 127.56, 127.87, 128.14, 135.31, 153.10, 153.79; IR (neat): 2900, 1760,

1700, 1300 cm21; MS (m/z, %): 224 (Mþ þ 1, 0.15), 107 (0.35), 91 (100);

Anal. Calcd. for C11H13NO4: C, 59.19; 11, 5.83; N, 6.28; Found: C, 59.02; 11,

6.28; N, 6.49%.
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