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Abstract: A total synthesis of (±)-lepadiformine A was accom-
plished through construction of the 1-azaspiro[4.5]decane skeleton
by a sequential radical translocation–cyclization reaction.
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A variety of structurally unique alkaloids are found in ma-
rine sources. Among them, lepadiformines (A–C, 1–3)
isolated from the tunicate Clavelina lepadiformis and
Clavelina moluccensis by Biard and co-workers
(Figure 1),3 exhibit modest cytotoxic activity towards var-
ious cardiovascular effects in vitro and in vivo.3b,4 In
2000, Kibayashi and co-workers revised the originally
proposed structure of lepadiformine (4) to structure 1 by
their first total synthesis.5a Because of the unique azaspi-
rocyclic skeleton with four asymmetric stereocenters,
these compounds have been attractive targets for the syn-
thetic community. To date, a number of synthetic ap-
proaches have been reported.5

Figure 1 The family of lepadiformines A–C (1–3) and the putative
structure of lepadiformine (4)

Recently, we have developed a diastereoselective cascade
radical translocation–cyclization reaction6 to construct the
6-azaspiro[4.5]decane skeleton of (±)-halichlorine
(Scheme 1).7 The reaction is initiated by the 1,5-radical
translocation from sp2-radical 7 to generate the more sta-
ble nitrogen-substituted sp3-radical 8. Then 5-exo cycliza-
tion proceeds to construct the azaspiro compound 6. This
reaction was proven to be quite effective for stereoselec-
tive construction of the consecutive quaternary and tertia-
ry stereogenic centers from a readily available lactam

precursor under neutral conditions. During the studies of
this process, we then investigated the feasibility of the
construction of a 1-azaspiro[4.5]decane framework,
which is the core skeleton of lepadiformines. Herein, we
report the total synthesis of (±)-lepadiformine A (1) fea-
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turing a diastereoselective radical translocation–cycliza-
tion reaction.

We planned to introduce two alkyl chains (R1 and R2) at
the later stage of the synthesis, which would provide facile
access to a variety of derivatives (Scheme 2). According
to several synthetic studies,5b,d,m  lepadiformine A (1) is
derived from aldehyde 10 via diastereoselective nucleo-

philic addition to the iminium ion 9. Compound 10 could
be prepared from lactam 12 by introduction of a hy-
droxymethyl group followed by alkylation at the a-posi-
tion of sulfone.

For the crucial construction of the azaspirocyclic frame-
work, we applied the radical translocation–cyclization re-
action to alkenyl sulfone 13, which is readily prepared
from succinimide (14).

The synthesis of the precursor for the key radical reaction
commenced with alkylation of succinimide (14) with
known benzyl chloride 15 according to the reported pro-
cedure (Scheme 3).8 The imide 16 thus obtained was
transformed to the corresponding sulfone 17 by partial re-
duction of imide and subsequent sulfonylation. The alkyl
side chain was then introduced by addition of a Grignard
reagent in the presence of ZnCl2 to provide 18,9 which was
subjected to cross metathesis with vinyl sulfone to give
the radical reaction precursor 13.10

We were delighted to find that the key radical transloca-
tion–cyclization reaction took place smoothly to furnish
the desired azaspirocyclic compound 12 in good yield as
a single diastereomer (Table 1). Among reaction condi-
tions tested, combination of AIBN (0.50 equiv) and n-
Bu3SnH (2.0 equiv) was found to effective to reduce the
amount of deiodinated 13 and give the desired 12 in 60%
yield with excellent diastereoselectivity (entries 1 and
2).11,12 The radical reaction also proceeded with a sub-
strate 19 comprising an a,b-unsaturated ester moiety to
provide the corresponding azaspirocyclic compound 20 in
a moderate yield (entry 3). Deprotection of the PMB
group13 provided crystalline lactam 23, which allowed us

Scheme 3 Synthesis of the precursor for the radical translocation–
cyclization reaction
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824 M. Fujitani et al. LETTER

Synlett 2010, No. 5, 822–826 © Thieme Stuttgart · New York

to determine its relative stereochemistry by X-ray crystal-
lography (Scheme 4).14 The excellent stereochemical con-
trol is explained by taking TS in the 6-exo cyclization due
to decreased 1,3-diaxial steric repulsion between the vinyl
sulfonyl group and benzylic methylene hydrogens
(Figure 2).

Having successfully constructed the requisite azaspiro cy-
clic system, our efforts were then focused on stereoselec-
tive introduction of side chains toward (±)-lepadiformine
A (Scheme 5). First, lactam 23 was converted into sulfone

24 by Boc protection, partial reduction of imide, and sul-
fonylation for introduction of the side chain at C-1 posi-
tion. Unexpectedly, however, it was quite difficult to
carry out direct introduction of hydroxymethyl group.15

Thus, we turned our attention to the construction of the
hydroxymethyl group in a stepwise manner.

After survey of various nucleophiles, we found that vinyl
Grignard reagents, which are synthetic equivalents of the
hydroxymethyl anion, served as appropriate reagents for
the additional reaction. Furthermore, the more sterically
demanding reagent provided the desired diastereomer in
higher selectivity. For instance, while poor facial selectiv-
ity was observed with vinyl magnesium bromide giving
the diastereomeric mixtures 25a and 25b in a ratio of ca.
2:1, a bulky Grignard reagent, such as prenyl Grignard re-
agent, dramatically improved selectivity up to the ratio of
4.7:1. We anticipated that the stereochemical course of
this addition reaction would be governed by the sulfonyl
methyl group by blocking the b-face of the acyl iminium
ion (Scheme 5).

The prenyl group was converted into a hydroxymethyl
group by ozonolysis followed by reductive workup, which
was then protected as a benzyl ether (Scheme 6). Elonga-
tion of sulfone 27 was executed by allylation at the a-
position of sulfone and subsequent reductive removal
of sulfone. Then, the terminal olefin was cleaved by
Lemieux–Johnson oxidation to provide the known ad-

Table 1 Radical Translocation–Cyclization Reaction

Entry R n-Bu3SnH 
(equiv)

Additive 
(equiv)

Yield 
(%)a

1 SO2Ph 0.50 NaBH3CN (3.0) 51b

2 SO2Ph 2.0 none 60c (67d)

3 CO2Me 2.0 none 63e

a Isolated yield.
b De-iodinated 13 was isolated in 26% yield.
c De-iodinated 13 was isolated in 11% yield.
d The reaction was carried out for 6 h in a gram scale.
e De-iodinated 19 was isolated in 18% yield.
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vanced synthetic intermediate 10,16 which was converted
into (±)-lepadiformine A (1) according to Weinreb’s pro-
cedure.5b,d Finally, treatment of (±)-lepadiformine A (1)
with 1 M HCl in Et2O gave the hydrochloride salt 30,
whose physical properties were identical in all aspects to
those reported for the natural product.3

In conclusion, we have achieved a total synthesis of (±)-
lepadiformine A (1) featuring a highly diastereoselective
radical translocation–cyclization reaction. The cascade
radical process enabled us to carry out diastereocontrolled
construction of 1-azaspiro[4.5]decane skeleton. Due to
the mild and neutral reaction conditions, this strategy is a
powerful tool for the synthesis of a variety of azaspiro-
cyclic compounds, which are often involved in bioactive
natural products and important medicines.
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