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Abstract: Palladium-catalyzed Suzuki cross-coupling reactions of
an indole vinyl triflate provides an efficient pathway for the synthe-
sis of a diverse class of novel hymenialdisine analogues.
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Protein kinases have emerged as one of the major drug tar-
get classes that are amenable to the development of small-
molecule inhibitors.1 Because protein kinases play critical
roles in cellular signaling networks, the development and
application of small-molecule kinase inhibitors as poten-
tial therapeutic agents and experimental tools to help un-
derstand the physiological role of these enzymes, has
generated much interest.2,3 Towards this end, intense ef-
forts have been devoted to the identification and develop-
ment of such small-molecule inhibitors to fight diseases;
such drug discovery projects currently account for 20–
30% of research and development work at many pharma-
ceutical companies.3 Currently, several small-molecule
kinase inhibitors are either approved or being developed
for use in the treatment of various human diseases includ-
ing cancer, cardiovascular disorders, and inflammation.3–5

Among them, the natural product hymenialdisine (HMD;
1), and its annulated analogues (2), exhibited promising
results in inhibiting various kinases selectively
(Figure 1).6 For example, Meijer et al. reported the crystal
structure of hymenialdisine (1) as a complex in the ATP
(adenosine triphosphate) binding pocket of the protein
kinase CDK2. Hymenialdisine (1) binds to the CDK2
pocket in a competitive manner. The crucial structural el-
ements of the molecule were identified as the NH–CO–C–
NH sequence on the lower part of the molecule, and the
heterocycle connected at the a-position of the upper part
of the molecule (for its effective hydrogen bonding).7 In
agreement with this analysis, it was also reported that the
kinase-inhibiting activity of HMDs varies significantly
depending on the heterocycle that is attached to its core
structure.6 It should be also noted that stevensine (or
odiline; 3), a marine alkaloid with a similar structural
scaffold, showed antitumor and weak antimicrobial activ-
ity.7,8 Hence, the synthesis of HMD analogues is of signif-

icant interest for researchers in a number of areas of
medicinal chemistry.

Figure 1

As part of our program devoted to the application of cata-
lytic methods to the synthesis of potential bio-active com-
pounds,9 and because of our background in catalytic
oxidation methodologies,10 we became interested in pre-
paring a novel compound library of small-molecule ki-
nase inhibitors using the hymenialdisine (1) scaffold as
backbone. Our initial efforts in this field recently culmi-
nated in the synthesis of novel annulated HMD-type bis-
indoles employing ring-opening reactions of aziridines
and epoxides.11 In order to investigate structure–activity
relationships of these novel analogues,11d we set out to
prepare a set of novel hybrid annulated analogues (4) of
hymenialdisine (1) and stevensine (3) by introducing ar-
enes and heteroarenes instead of the imidazole ring on its
core scaffold (Figure 1). Here, we report a convenient,
diversified synthetic strategy using palladium-catalyzed
Suzuki coupling reactions of indole triflate derivatives.12

Initially, we prepared ketone 6 from commercially avail-
able indole-2-carboxylic acid (5) following a protocol re-
ported previously by us (Scheme 1).11 In order to increase
the solubility and purity, the crude ketone 6 was treated
with excess (Boc)2O, DMAP, and triethylamine in dichlo-
romethane at room temperature to obtain the pure, stable
di-Boc-protected ketone 7 in 25–28% yield from 5. 
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Scheme 1 Synthesis of di-Boc-protected ketone 7

Initial attempts to transform compound 7 into triflate 8 us-
ing methods such as LDA/triflimide at –78 °C or Hünig’s
base/triflimide, were unsuccessful.13 However, to our de-
light, the reaction proceeded smoothly in good yield (60%
with 30% recovery of 7) to give triflate 8 using trifluo-
romethanesulfonic anhydride in dichloromethane in the
presence of 2,6-di-tert-butyl-4-methylpyridine at 0 °C for
eight hours (Scheme 2).14 Our repeated attempts to en-
courage the reaction to proceed further towards comple-
tion by varying the reaction conditions, such as increasing
the amount of base/triflic anhydride and prolonged reac-
tion time, were not successful but showed a tendency to
decrease the yield (14 h, 35%; 20 h, 27%). This is ex-
plained by slow decomposition of 8 in the reaction mix-
ture.15

Scheme 2 Synthesis of indole triflate 8

Nevertheless, with the key building block 8 in hand, we
envisioned the synthesis of novel hymenialdisine ana-
logues following standard Suzuki coupling protocols.16

Treatment of 8 with 4-methoxyphenyl boronic acid (1.1
equiv) in the presence of Pd(PPh3)4 (1 mol%) and aqueous
sodium carbonate (2 M) as base in a mixture of toluene
and ethanol (1:1) at 70 °C for 12–16 h, gave the desired
product along with minor amounts of the deprotected
compound 9a (R = 4-methoxyphenyl). Because the next
step involves removal of the protecting groups, to simpli-
fy the synthetic procedure we used the crude mixture di-
rectly. Thus, the reaction mixture was adsorbed onto
activated silica gel using dichloromethane and the mixture
was heated at 100 °C for one hour following our previous
deprotection protocol,12 which yielded 9a in 75% yield
over two steps (Table 1, entry 1).

Consequently, we applied this protocol to the preparation
of a number of novel hybrid analogues of hymenialdisine

starting from triflate 8 (Table 1). Most of the boronic ac-
ids reacted smoothly to give 9a–k in moderate to good
yields (40–78%).17 Functional groups on the boronic acids
such as electron-rich (methoxy) and electron-withdrawing
(trifluoromethyl and cyano) were tolerated (Table 1, en-
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Table 1 Suzuki Coupling Reactions of Indole Triflate 8a

Entry R Product Yield (%)b

1 9a 75

2 9b 74

3 9c 52

4 9d 63

5 9e 40

6 9f 60

7 9g 50

8 9h 78

9 9i 0c

10 9j 59

11 9k 52

a Reaction conditions: (1) triflate 8 (600 mg, 1.10 mmol), boronic acid 
(1.2 mmol), 2 M Na2CO3 (0.55 mL), Pd(PPh3)4 (0.011 mmol), tolu-
ene–EtOH (1:1, 6 mL), Argon, 70 °C, overnight; (2) activated silica 
(0.040–0.063 mm, 2.46 g), argon, 100 °C, 1 h. 
b Isolated yield.
c Compound 6 was formed as the major product (75%).
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tries 3–5). The structure of 9d was confirmed by X-ray
crystal structure analysis (Figure 2).18 Notably, heteroaro-
matic boronic acids were also effective under these condi-
tions, giving the expected products in good yields
(Table 1, entries 7–11). 

Figure 2 Molecular structure of 9d; thermal ellipsoids correspond
to 30% probability18,19

The one exception was 2-furylboronic acid (Table 1, entry
9), which gave 6 in 75% yield. Efforts to elucidate the bi-
ological activity of these novel analogues are currently
underway.

In conclusion, we have developed a convenient method
for the synthesis of novel hybrid annulated analogues of
hymenialdsine (1) and stevansine (3) using a Suzuki-
coupling protocol.17

The strategy described is of particular significance for
providing a synthetic pathway for a diverse class of new
HMD kinase inhibitors and can be applied to other biolog-
ically interesting compounds.
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