
LETTER 879

Functionalized Aminocyclopropanes From Functionalized Organozinc 
Compounds and N,N-Dialkylcarboxamides1
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Abstract: Inter- as well as intramolecular competition experiments
have been performed to demonstrate that N,N-dialkylcarboxamides
react faster than tert-butyl esters with the titanium intermediates
formed from ethylmagnesium bromide and methyltitanium triiso-
propoxide to selectively yield cyclopropylamines rather than cyclo-
propanols. Thus, functionalized organozinc reagents including a
series with tert-butyl ester functionalities could be employed under
newly developed conditions to transform N,N-dialkylformamides
into chloroalkyl-substituted N,N-dialkylcyclopropylamines (55–
67%) and tert-butyl (N,N-dialkylaminocyclopropyl)alkanoates
(24–63% yield).
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Quite a number of cyclopropyl-group containing amino
acids occur in nature, and most of them have important bi-
ological activities. The simplest one, 1-aminocyclopro-
panecarboxylic acid 1 (R = H) is abundant as the natural
precursor to the plant growth hormone ethylene,2 and der-
ivatives such as 1 (R = Me, Et) are potent inhibitors of the
ethylene forming enzyme (Figure). Aminocyclopropane
moieties are also essential in many pharmacologically rel-
evant compounds such as the widely used broad-spectrum
antibiotics ciprofloxacin (Ciprobay®) and moxifloxacin
(Avalox®). Our previously reported adaptation of the
Kulinkovich protocol for the conversion of esters to
cyclopropanols3,4 to readily transform N,N-dialkylcarbox-
amides to N,N-dialkylcyclopropylamines4–6 can also be
applied to prepare a variety of 2-substituted 1-aminocy-
clopropanecarboxylic acids7 as well as �-amino acids con-
taining a cyclopropane moiety.8 However, several steps
are required to transform the functional groups like C=C
double bonds, ether or acetal moieties, which are compat-
ible with the standard conditions for the preparation of
Grignard reagents,9 to a carboxylic acid. Other functional-
ities including ester moieties and halogen substituents are
compatible with the well-examined and easily prepared
organozinc reagents,10 and thus we set out to test the pos-
sible use of various functionally substituted organozinc
compounds for the reductive cyclopropanation of N,N-di-
alkylcarboxamides.

Figure

Since the titanium-mediated reductive cyclopropanation
was originally developed for the conversion of esters to
cyclopropanols,2,3 the selectivity question was first ad-
dressed by some inter- as well as intramolecular competi-
tion experiments.

In fact, a 1:1 mixture of N,N-dibenzylformamide (2) and
tert-butyl acetate (3), when treated with ethylmagnesium
bromide and methyltitanium triisopropoxide,5 yielded
only N,N-dibenzylcyclopropylamine (4) (90%), and the
tert-butoxycarbonyl-substituted amides 7 gave the �-cy-
clopropanated �-(dialkyl)aminobutyric esters 8 selective-
ly, albeit in moderate yields (Scheme 1). Thus, it ought to
be possible to apply functionalized organozinc com-
pounds including those with tert-butyl ester functional-
ities in the titanium-mediated reductive cyclopropanation
of amides.

However, none of the original protocols developed for the
use of Grignard reagents4–6 gave the desired aminocyclo-

Scheme 1 A: MeTi(i-PrO)3, EtMgBr, THF, 25 °C, 8 h. – B: R2NH.
– C: Isobutene, H2SO4, Et2O, 25 °C, 24 h. – D: EtMgBr, MeTi(i-
PrO)3, THF, 25 °C, 8 h.
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propane derivatives from tert-butoxycarbonyl-16 and
chloro-substituted organozinc compounds 18.11 Further
modifications of the reaction conditions were first tested
with commercially available diethylzinc which, under es-
tablished conditions, gave cyclopropylamines in yields of
only up to 25%.12 However, it was found that upon addi-
tion of 2 equivalents of sodium isopropoxide, diethylzinc
in tetrahydrofuran in the presence of methyltitanium tri-
isopropoxide converted N,N-dialkylcarboxamides to N,N-
dialkylcyclopropylamines in yields as high as those
achieved with ethylmagnesium halides (up to 89%).13,14

But even these conditions failed when functionalized or-
ganozinc reagents were employed. Therefore, different ti-
tanium derivatives were tested. Indeed, when the
functionalized organozinc was first treated with dichloro-
diisopropyloxytitanium (9), then after 30 minutes an ex-
cess (5 equiv) of methylmagnesium chloride was added,
and finally dibenzylformamide, the (2-dibenzylaminocy-
clopropyl)-substituted tert-butyl acetate 17aa was isolat-
ed at best in 49% yield (Table 1, conditions A). Several
other functionally substituted organozinc derivatives were
employed according to this protocol and gave the corre-
sponding cyclopropylamines in moderate yields (21–
61%). Most probably the dichlorodiisopropyloxytitanium
partially transmetallates the functionalized organozinc, as
evidenced by a change in appearance of the reaction mix-
ture from colorless to red. This can be enhanced by the
added methylmagnesium chloride which can react with
the organozinc before transmetallation to form a more ba-
sic zincate, or also with the unreacted dichlorodiisopropy-
loxytitanium with single or twofold exchange of the
chlorine substituents by methyl groups or with the first
formed alkylchlorodiisopropyloxytitanium intermedi-
ate.15 Eventually, an alkylmethyldiisopropyloxytitanium
intermediate 13 will be formed which, by �-hydride trans-
fer from the functional alkyl to the methyl group, affords
the functionally substituted titanacyclopropane intermedi-
ate 14 that subsequently reacts in the same manner as the
intermediate in the original reductive cyclopropanation4

of carboxamides (Scheme 2).

Scheme 2

Another series of optimization experiments revealed that
consistently and reproducibly better yields were obtained
when dimethyldiisopropyloxytitanium (11) was prepared
from dichlorodiisopropyloxytitanium (9) and two equiva-
lents of methyllithium16 prior to the addition of one equiv-
alent of methylmagnesium chloride and the freshly
prepared organozinc compound (Table 1, conditions B).
The additional equivalent of methylmagnesium chloride –
which turned out to be better than an additional equivalent
of methyllithium – was necessary apparently to form the
more reactive zincate before transmetallation and/or the
more reactive titanate after transmetallation to titanium.15

According to this protocol, various tert-butoxycarbonyl-
and chloroalkyl-substituted cyclopropylamine derivatives
were prepared in yields ranging from 24 to 67% (Table 1
and Table 2).17,18

For the tert-butoxycarbonyl-substituted systems, an in-
crease in the chain length between the functional group
and the metal led to decreasing yields. From bis(4-chlor-
obutyl)zinc, the major product was (2-ethenylcyclopro-
pyl)dibenzylamine (31% yield) formed by subsequent
dehydrochlorination in addition to 27% of the [2-(2�-chlo-
roethyl)cyclopropyl]dibenzylamine (19aa).

Thus, the newly developed protocol makes various func-
tionalized aminocyclopropanes easily accessible in virtu-
ally one operational step. These products are valuable
building blocks for the synthesis of pharmacologically in-
teresting molecules containing aminocyclopropane moi-
eties. Further investigations are continuing towards the
direct synthesis of cyclopropyl-group containing �-amino
acids in one or two steps.

Table 1

16 n Cond.a R,R 17 Yield 
(%)

trans/cis

a 1 A Bn, Bn aa 49 1.1:1

a 1 B Bn, Bn aa 60 1.8:1

a 1 B Me, Me ab 63 1.3:1

a 1 B –(CH2)5– ac 52 1.4:1

b 2 B Bn, Bn ba 40 1.2:1

c 3 B Bn, Bn ca 24 1.1:1

a A: (1) Cl2Ti(i-PrO)2, THF, –30 °C, 1 h. (2) MeMgCl (5 equiv), THF, 
–30 to 20 °C, 8 h; – B: (1) Me2Ti(i-PrO)2, MeMgCl; (2) R2NCHO, 
THF, –30 to 25 °C, 8 h.
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spectroscopic methods (IR, 1H and 13C NMR, MS) and 
elemental analyses. General Procedure B (GPB): To a 
solution of Cl2Ti(O-i-Pr)2 (1043 mg, 4.0 mmol) in THF 
(5 mL) kept at –30 °C, was added 5.3 mL of a 1.65 M 
solution of methyllithium (8.8 mmol) in hexane. Then 1.5 
mL of a 3 M solution of methylmagnesium chloride (4.5 
mmol) in THF was added, and the mixture was stirred for
1 h at this temperature. After that the previously prepared 
solution of the organozinc compound in THF and the N,N-
dialkylcarboxamide (4 mmol) were added, the mixture was 
slowly warmed up to r.t. until gas evolution ceased, and 
stirred for an additional 8 h. The reaction was quenched by 
addition of 2 mL of H2O, and stirring of the mixture 
continued until the color of the suspension had turned 
yellow. The mixture was filtered, and the solid was washed 
with diethyl ether (2 � 10 mL). The combined organic 
phases were dried over Na2SO4. The crude products were 
purified by column chromatography. For example (2-
Dibenzylaminocyclopropyl)acetic Acid tert-Butyl Ester 
(17aa): From tert-butyl 4-iodobutyrate and N,N-
dibenzylformamide, following GPB as above, two 
diastereomeric products were isolated by column 
chromatography (70 g of silica gel, diethyl ether/pentane 
1:10).
Fraction I (Rf = 0.83): 300 mg (21%) of cis-(2-dibenzyl-
aminocyclopropyl)acetic acid tert-butyl ester (cis-17aa) as a 
colorless oil. IR(film): � = 3063, 2977, 2928, 1733, 1494, 
1454, 1367, 1152, 1028, 749, 698 cm–1. 1H NMR (250 MHz, 
CDCl3): � = 0.13 (ddd, 3J = 4.5, 3J = 4.9, 2J = 5.1 Hz, 1 H, 
3�-H), 0.73 (ddd, 2J = 5.1, 3J = 6.9, 3J = 8.6 Hz, 1 H, 3�-H), 
1.14 (ddddd, 3J = 4.9, 3J = 6.8, 3J = 7.0, 3J = 7.2, 3J = 8.6 
Hz, 1 H, 1�-H), 1.34 [s, 9 H, C(CH3)3], 1.96 (ddd, 3J = 4.5, 
3J = 6.9, 3J = 7.0 Hz, 1 H, 2�-H), 2.41 (dd, 3J = 6.8, 2J = 16.4 
Hz, 1 H, 2-H), 2.48 (dd, 3J = 7.2, 2J = 16.4 Hz, 1 H, 2-H), 
3.50 (d, 2J = 13.8 Hz, 2 H, CHHPh), 3.69 (d, 2J = 13.8 Hz, 2 
H, CHHPh), 7.35–7.21 (m, 10 H, Ph-C). 13C NMR (62.9 
MHz, CDCl3, DEPT): � = 12.1 (–, C-3�), 15.1 (+, C-1�), 28.0 
[+,OC(CH3)3], 33.9 (–, C-2), 40.1 (+, C-2�), 57.5 (–, NCH2), 
80.0 [Cquat, OC(CH3)3], 126.8 (+, Ph-C), 128.0 (+, Ph-C), 
129.4 (+, Ph-C), 138.1 (Cquat, Ph-C), 173.5(Cquat, C=O). MS 
(EI, 70 eV): m/z (%) = 351(6) [M+], 278(9), 260(4), 236(9), 
204(100), 181(2), 158(5),106(4), 91(81). Anal. Calcd for 
C23H29NO2: C, 78.60; H, 8.32; N, 3.99. Found: C, 78.44; H, 
8.34; N, 4.04.
Fraction II (Rf = 0.58): 542 mg (39%) of trans-(2-dibenzyl-
aminocyclopropyl)acetic acid tert-butyl ester (trans-17aa) 
as a colorless oil. IR(film): � = 3063, 3028, 2978, 2929, 
1732, 1602, 1494, 1454, 1392, 1367, 1257, 1154, 1076, 
1029, 955, 750, 699, 620 cm–1. 1H NMR (250 MHz, CDCl3): 
� = 0.34 (ddd, 2J = 5.3, 3J = 5.3, 3J = 6.7 Hz, 1 H, 3�-H), 0.61 
(ddd, 3J = 3.3, 2J = 5.3, 3J = 8.0 Hz, 1 H, 3�-H), 1.04 (ddddd, 
3J = 3.4, 3J = 5.3, 3J = 7.2, 3J = 7.2, 3J = 8.0 Hz, 1 H, 1�-H), 
1.42 [s, 9 H, C(CH3)3], 1.68 (ddd, 3J = 3.3, 3J = 3.4, 3J = 6.7 
Hz, 1 H, 2�-H), 2.02 (dd, 3J = 7.2, 2J = 14.6 Hz, 1 H, 2-H), 

Table 2

18 n Cond.a R,R 19 Yield 
(%)

trans/cis

a 2 B Bn, Bn aa 27b 1.2:1

b 3 A Bn, Bn ba 61 1.4:1

b 3 B Me, Me ba 65 1.2:1

b 3 B –(CH2)5– bb 67 1.2:1

b 3 B Bn, Bn bc 55 1.1:1

c 4 A ca 57 1.1:1

c 4 B Bn, Bn ca 61 1.1:1

a A: (1) Cl2Ti(i-PrO)2, THF, –30 °C, 1 h. (2) MeMgCl (5 equiv), THF, 
–30 to 20 °C, 8 h; – B: (1) Me2Ti(i-PrO)2, MeMgCl; (2) R2NCHO, 
THF, –30 to 25 °C, 8 h. –
b In addition, dibenzyl(2-ethenylcyclopropyl)amine was isolated in 
31% yield.

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f A

riz
on

a 
Li

br
ar

y.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



882 S. Wiedemann et al. LETTER

Synlett 2002, No. 6, 879–882 ISSN 0936-5214 © Thieme Stuttgart · New York

2.07 (dd, 3J = 7.2, 2J = 14.6 Hz, 1 H, 2-H), 3.64 (d, 2J = 13.5 
Hz, 2 H, CHHPh), 3.71 (d, 2J = 13.5 Hz, 2 H, CHHPh), 
7.35–7.22 (m, 10 H, Ph-C). 13C NMR (62.9 MHz, CDCl3, 
DEPT): � = 14.2 (–, C-3�), 17.6 (+, C-1�), 28.1 [+, 
OC(CH3)3], 38.6 (–, C-2), 43.1 (+, C-2�), 57.7 (–, NCH2), 
80.2 [Cquat, OC(CH3)3], 126.8 (+, Ph-C), 128.0 (+, Ph-C), 
129.4 (+, Ph-C), 138.6 (Cquat, Ph-C), 172.2 (Cquat, C=O). MS 
(EI, 70 eV): m/z (%) = 351(6) [M+], 294(6), 260(5), 250(14), 

236(8), 204(100), 186(3), 158(6), 131(4), 106(6), 91(81). 
Anal. Calcd for C23H29NO2: C, 78.60; H, 8.32; N, 3.99. 
Found: C, 78.81; H, 8.10; N, 3.96.

(18) Diastereomerically pure (E)-1-(2-chloroethyl)-2-ethyl-
cyclopropanols can be obtained from �-chloropropionates 
and unsubstituted butylmagnesium bromide. Cf.: Sylvestre, 
I.; Ollivier, J.; Salaün, J. Tetrahedron Lett. 2001, 42, 4991.
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