Aminolysis of cyclic thioxocarbonate of (R,R)-di-tert-butyl tartrate: efficient access to thio- and thiolcarbamates \dagger

PERKIN

Ludovic Faissat, Claude Chavis, Jean-Louis Montéro and Marc Lucas *

ENSCM, Laboratoire de Chimie Biomoléculaire, UMR 5032, 8 Rue de l'Ecole Normale, 34296 Montpellier Cédex 05, France. E-mail: lucas@univ-montp2.fr

Received (in Cambridge, UK) 18th February 2002, Accepted 5th April 2002 First published as an Advance Article on the web 24th April 2002

Aminolysis of cyclic thioxocarbonates derived from (R,R)-dialkyl tartrates with secondary amines is described to afford efficiently thio- and thiolcarbamates in a fast and high yielding reaction. Their stereochemistry and mechanism of formation are discussed.

Introduction

Cyclic carbonates are known to react slowly at room temperature at their carbonyl centre with amines to yield carbamates, but their reactivity can be enhanced in nucleophilic additions by using the more reactive thiocarbonyl group. For example, the cyclic thioxocarbonate of 3-O-phenylglycerol reacts with *n*-hexylamine or benzylamine at ambient temperature in dimethyl sulfoxide to afford two hydroxythiourethane isomers (88 : 12) where the secondary alcohol predominates; similarly, the regioselective ring-opening of the 4,6-O-benzylidene-α-Dglucopyranoside 2,3-thiocarbonate by liquid ammonia or piperidine produces a mixture of 2- and 3-thiocarbamates in a 3.6: 1 ratio.² Considering cyclic thioxocarbonates derived from C_2 -symmetric chiral dialkyl tartrates, the electron-withdrawing carboxylic esters will increase the electrophilic character of the carbinol carbons and consequently nucleophilic substitutions at these positions will be favoured. This possibility has been developed until recently with cyclic thioxocarbonates 3-7 which mimic the corresponding cyclic sulfites and sulfates 8-10 used as epoxide surrogates, in regio- and stereoselective functionalisations or deoxygenation reactions. Thus numerous nucleophiles, except amines, have been reported to open the cyclic thioxocarbonates of dialkyl tartrates with inversion of configuration and with the production of anti-α-substituted β-hydroxy diesters (Scheme 1) by an exclusive attack at the two chemically equivalent carbinol carbons.

In this report we focus on the peculiar reactivity of the cyclic thioxocarbonates of dialkyl tartrates as ambident substrates towards secondary amines.

Results and discussion

DOI: 10.1039/b201691e

Surprisingly, we found that when secondary amines 2 reacted with the cyclic thioxocarbonate of (R,R)-di-tert-butyl tartrate 1 in dichloromethane at room temperature, instead of the

† In this paper thioxocarbonate refers to thiocarbonate-O,O-diesters and the IUPAC name for thiolcarbamate is thiocarbamate.

expected α -amino β -hydroxy succinates *anti-3* we obtained the optically active thiocarbamate *syn-4* and/or a mixture of *syn-and anti-*thiolcarbamates 5, altogether corresponding to an exclusive primary nucleophilic attack at the thiocarbonyl centre and in a ratio dependent on the amine (Scheme 2, Table 1).

Scheme 2 Reagents and conditions: i, thioxocarbonate 1 (1 equiv.), amines 2a-i (2 equiv.) or 2j (0.5 equiv.), dichloromethane, room temp., 30 min. or 12 h.

It is noteworthy that the reactions reached completion very quickly (30 min) with amines 2a-e or 2j and much more slowly with others (2f-i, 12 h). Moreover, when the reaction proceeded rapidly, the thiocarbamates syn-4a-e or the bis(thiocarbamate) syn-syn-4j were exclusively formed with retention of configuration, whereas in the case of the reported slow reactions (amines 2f-h) a diastereomeric mixture of syn-anti-thiol-carbamates 5 was produced concomitantly with 4. Finally it

Table 1 Reactions of thioxocarbonate 1 with amines 2a-i in dichloromethane at room temp.

Run	Amine	Time/h	4:5	Yield (%) 4 + 5	syn- 4a - \mathbf{j} $\delta \mathbf{H}_2, J_{2-3}, \delta \mathbf{C}_2$	$syn-+$ $anti-$ 5a $-$ j d,e δ H $_2,$ $J_{2-3},$ δ C $_2$
 1	2a	0.5	100:0	95		
2			50 : 50 a	63 ^a	6.1, 2.3, 78.3	4.75, 2.9, 53.0
3	2b	0.5	100:0	Quant.	6.1, 2.3, 79.2	
4	2c	0.5	100:0	Quant.	6.1, 2.3, 77.6	
5	2d	0.5	100:0	Quant.	6.1, 2.4, 79.2	
6	2e	0.5	$100:0^{b}$	Quant.	5.9, 2.5, 79.4	
7	2f	12	50:50	90	6.0, 2.1, 79.2	4.8, 2.9, 52.9
8	$2g^c$	12	88:12	87		
9			$0:100^{a}$	98 a	6.1, 2.3, 79.1	4.7, 3.1, 52.4
10	2h	12	39:61	64	6.1, 2.3, 79.5	4.7, 2.8, 53.1
11	2i	12	0:100	70		4.7, 3.0, 52.0
12	2j	0.5	$100:0^{f}$	84	6.0, 2.1, 79.5	

^a DMF was used as the solvent. ^b NR₂ = NH₂. ^c See ref 23. ^d Ratio not determined. ^e $J_{2-3anti} \approx J_{2-3syn}$ (see chemical correlation of anti-5i). ^f The bis(thiocarbamate) syn–syn was exclusively formed.

appeared that thiolcarbamates 5 were the only products obtained with diisopropylamine 2i. As can be seen, the results so far obtained obviously rule out either the influence of the amine basicity or the presence of a silicon moiety on the reaction outcome, favouring thiolcarbamate versus thiocarbamate formation. In fact the silylated bis(2-hydroxyethyl)amines 2g (O-TBDMS) and 2h (O-TBDPS) yielded 12 and 61% of the thiolcarbamoyl derivatives 5g and 5h, respectively while diisopropylamine 2i gave the thiolcarbamate 5i exclusively. On the other hand, piperidine, diethylamine and diisopropylamine which exhibit essentially very similar basicities produced the thiocarbamate 4 for the first two reactions and inversely the synand anti-thiolcarbamates 5 for the last one, and conversely, piperidine and morpholine which are compounds characterised by a similar bulkiness but a substantial difference in their basic character, solely produced thiocarbamates 4c and 4d. At this stage, it is obvious that the bulkiness of the amine, associated with its nucleophilic properties take a prominent role in the mechanism of the reaction; the following order (2c, 2d < 2a <2b) < (2g < 2h < 2f < 2i) < 2e depicts schematically the increasing steric hindrance around the nitrogen atom, and it appears that the more hindered the amine is, the more favoured is the thiolcarbamate formation: the first pool of amines 2a-d afford exclusively the corresponding thiocarbamates 4a-d (100%) and the following group **2f**-i, yields together with **4f**-i, the thiolcarbamates 5f-i (12 to 100%). The case of HMDS 2e is more peculiar since it is a known silylating agent and is theoretically more crowded than diisopropylamine 2i. The results may be explained by an initial in situ desilylation of this reagent to afford ammonia which reacts with the cyclic thioxocarbonate 1; the O-TMS thiocarbamoyl derivative (NR₂=NH₂) was isolated as a stable intermediate which afforded compound 4e after

Since the cyclic thioxocarbonate $\mathbf{6}$ of (R,R)-diisopropyl tartrate was reported 4 to react normally with nucleophiles at its carbinol centres, could the steric hindrance of the ester moiety possibly be responsible for the preferred nucleophilic attack of the incoming amine at the thiocarbonyl carbon instead of the electrophilic carbinol carbons? To investigate this, we subjected 6 to a reaction with diethylamine 2a and diisopropylamine 2i using the same experimental conditions as above (Scheme 3 and

Scheme 3 Reagents and conditions: thioxocarbonate 6 (1 equiv.), amine 2a or 2i (2 equiv.), dichloromethane, room temp., 30 min or 12 h.

Table 2) and observed the exclusive formation of the thiocarbamate syn-7a with the reactive amine 2a, and that of the syn-and anti-thiolcarbamates 8i with the hindered amine 2i, suggesting that secondary amines behave similarly when faced with any cyclic thioxocarbonate derived from dialkyl tartrates.

Structural assignment of the reaction products, thiocarbamates (4a-j, 7a) and thiolcarbamates (5a-j, 8i), was easily achieved using ¹H and ¹³C NMR spectroscopies (Tables 1 and 2): thiocarbamates (UV absorbing) being characterised by upfield signals for 2-H (6.1 ppm, J_{2-3} 2.1–2.5 Hz) and 2-C (78– 79 ppm), whereas the thiolcarbamates exhibited downfield signals for 2-H (4.7-4.8 ppm) and 2-C (52-53 ppm) and a slightly larger coupling constant (J_{2-3} 2.8–3.1 Hz) (we presume that the J_{syn} and J_{anti} values are very similar as we found 3.0 Hz in the case of the pure thiolcarbamate anti-5i compared with 3.1 Hz for the mixture of syn-and anti-5i). It is worth noting that any diastereomeric mixtures of syn-and antithiolcarbamates were inseparable and appeared as single products by ¹H NMR spectroscopy, whereas ¹³C NMR showed a splitting of several signals (weak differences of ca. 40 Hz) and thus allowed us to distinguish what was assumed to be the two epimers at 2-C.

In order to ascertain both the structure and the relative configuration of all the products, we prepared unequivocally the thiocarbamate syn-4a and the thiolcarbamate anti-5i. Thiocarbamate syn-4a was easily obtained, although in very low yield, by direct reaction of (R,R)-di-tert-butyl tartrate 11 with sodium hydride in DMF and diethylthiocarbamoyl chloride (Scheme 4); it exhibited analytical data and optical rotation in good agreement with those obtained for 4a generated from the cyclic thioxocarbonate 1.

The cyclic sulfate $\mathbf{9}$ of (R,R)-di-tert-butyl tartrate was used as a starting material for the preparation of the thiolcarbamate

Scheme 4 Reagents and conditions: i, SOCl₂, Et₃N, CH₂Cl₂, 0 °C, then RuCl₃·H₂O, NaIO₄, CCl₄, CH₃CN, H₂O, 0 °C, 82%; ii, a) MeC(=O)SK, acetone, room temp., b) conc. H₂SO₄ (cat.), H₂O (0.5-1.0 equiv.), THF, quant.; iii, a) NH₂NH₂·AcOH, DMF, room temp., b) (Prⁱ)₂NC(=O)Cl, Et₃N, CH₂Cl₂, room temp., 27%; iv, NaH, Et₂NC(=S)Cl, DMF, 90 °C,

Table 2 Reactions of thioxocarbonate 6 with amine 2a or 2i in dichloromethane at room temp.

Amine	Time/h	7:8	Yield (%) 7 + 8	syn-7 \mathbf{a} $\delta \mathrm{H}_2,J_{2-3},\delta \mathrm{C}_2$	syn- + anti-8i $\delta H_2, J_{2-3}, \delta C_2$
2a 2i	0.5 12	100 : 0 0 : 100	93 58	6.1, 2.4, 78.6	4.8, 3.3, 51.8

anti-5i. Ring-opening⁸ of 9 with inversion of configuration by potassium thioacetate in acetone gave the corresponding thioacetate S-ester anti-10 (quant.). Treatment of 10 with hydrazinium acetate followed by the in situ regioselective reaction of the resulting thiol with diisopropylcarbamyl chloride afforded the expected thiolcarbamate anti-5i (27%, two steps from 10). All attempts to synthesise the pure syn-5i epimer failed; furthermore the ring opening of 9 with tetrabutylammonium bromide gave the corresponding bromohydrin with a net inversion of configuration, but any nucleophilic substitution (i.e. potassium thioacetate) on the O-protected bromohydrin in order to carry out the second inversion proceeded non stereospecifically and afforded a mixture of syn- and anti-isomers; an observation in accordance with some non pure S_N2 processes reported on related tartrate 12,13 and malate 14 structures. Nevertheless, compounds syn-4a and anti-5i thus obtained by unequivocal syntheses enabled us to ascertain the chemical structures proposed for the thio- and thiolcarbamates obtained by reaction of cyclic thioxocarbonates 1 and 6 with secondary amines. From the known 13C NMR spectrum of anti-5i and a careful examination of the corresponding spectra of all mixtures of syn- and antithiolcarbamates 5a-i, we were able to conclude that the synisomer predominated in all cases (ca. 70-80% as tentatively estimated by integration of signals on the ¹³C NMR spectra).

In order to find a reasonable mechanism of formation for thio- and thiolcarbamates, we checked that when the pure thiocarbamate syn-4f was reacted with diisobutylamine 2f using the standard experimental conditions the corresponding thiolcarbamates **5f** were not produced (syn + anti), and conversely the thiocarbamate syn-4f was not formed from the thiolcarbamates 5f(syn + anti) and diisobutylamine 2f. Furthermore, we observed (13C NMR monitoring) that the thiolcarbamate anti-5i isomerised into a mixture of syn- and anti-5i (anti-5i > syn-5i) when one equivalent of diisopropylamine in dichloromethane was added during a 12 h reaction. This valuable information allows us access to a better understanding of the reaction mechanism. Castro et al. 15-19 have investigated kinetic studies on the aminolysis of alicyclic thioxocarbonates and proposed the formation of a zwitterionic tetrahedral intermediate which undergoes a deprotonation step with amine R₂NH to afford the anionic tetrahedral intermediate A (Scheme 5).

At this stage, three conceivable competitive pathways can occur according to the nature of the amine reagent. In the case of reactive amines, the thiolate anion normally expels the

But OOC COOBUT But OOC SCONR2

R2N O S But OOC SCONR2

R2N O S But OOC SCONR2

But OOC SCONR2

HNR2

$$A$$
 Scheme 5

alcoholate (better leaving group than amide) from the unstable anionic intermediate A (path a) in a fast reaction to provide the thiocarbamate syn-4. In contrast to this path a remains disfavoured with hindered amines for reasons unclear to us: so we firstly envisioned the nucleophilic attack of the thiolate ion on one carbinol carbon bearing the carboxylate ester to afford thiolcarbamates, but this disfavoured 4-endo-tet process 20 was dismissed.²¹ Since a breaking of the acetalic C-O bond is necessary to explain the thiolcarbamate formation, we hypothesise the formation of the unstrained opened intermediate **B** from the reaction of a second molecule of amine on A with inversion of configuration (path b), followed by the ring closure (second inversion) with the more nucleophilic thiolate ion to give the intermediate C (path c); the latter is able to afford the thiolcarbamate 5-syn (major isomer formed) which isomerises into the anti-isomer by an equilibrating process probably via a transient enolate intermediate at the 2-C centre. The double inversion mechanism leading to C is closely related to the proposed pathway invoked for the rearrangement of cyclic thioxocarbonates into corresponding cyclic thiolcarbonates with bromine ions.4,22

Path c of this mechanism could be strengthened by the very marked solvent effect we found in substituting dichloromethane for the polar aprotic solvent, DMF: thus in the case of the reactive diethylamine 2a, the ratio of 4a:5a changed from 100:0 (run 1) to 1:1 (run 2, DMF), whereas the silylated amine 2g (O-TBDMS) gave the thiolcarbamate 5g [0:100 (run 9, DMF) vs. 88:12 (run 8)] exclusively. These results firstly exemplified the well known anion nucleophilicity enhancer properties of DMF applied in our case to a thiolate ion, and secondly they may be used to take advantage of this solvent effect in order to partially direct the synthesis towards thiolcarbamate formation in the case of very reactive amines.

In conclusion, we have shown that secondary amines react initially exclusively at the thiocarbonyl centre of the cyclic thioxocarbonates derived from (R,R)-dialkyl tartrates to afford either the *syn*-thiocarbamates with retention of configuration and/or the diastereomeric mixture of *syn*-and *anti*-thiol-carbamates. The efficient and high yielding formation of both thio- and thiolcarbamates by this method obviates their cumbersome and non straightforward synthesis. Our findings should be of value in further synthetic work in this area.

Experimental

Elemental analyses were performed by the 'Service de Microanalyse de l'Ecole Supérieure de Chimie de Montpellier'. ¹H NMR spectra were determined on a Bruker 200 spectrometer (200 MHz frequency) and ¹³C NMR spectra on a Bruker AC 400 spectrometer (100.6 MHz frequency). Mass spectra were obtained with a JEOL JMS-DX-300 instrument by the FAB ionisation method (positive mode) with *p*-nitrobenzyl alcohol (NBA) as the matrix; specific optical rotations were measured in a 0.1 dm cell on a Perkin-Elmer 241 polarimeter in units of 10^{-1} deg cm² g⁻¹. Petroleum ether refers to the fraction boiling in the range 40–65 °C.

(4R,5R)-2-Thioxo-4,5-bis-(tert-butyloxycarbonyl)-1,3-dioxolane

To a stirred solution of (R,R)-di-tert-butyl tartrate¹¹ (5 g, 19 mmol) in THF (80 cm³) was added dropwise at 0 °C thiocarbonyl-diimidazole (9.4 g, 47.5 mmol) in THF (150 cm³). After 12 h at

room temp. diethyl ether was added and the organic phase was successively washed with an aqueous solution of citric acid (5%), a saturated solution of NaHCO₃, a saturated solution of NaCl and dried over Na₂SO₄ and the solvents evaporated under reduced pressure. Chromatography on silica gel and elution with petroleum ether-ethyl acetate (6:1) afforded the title compound as a solid (3.5 g, 60%); mp 124–127 °C; R_f 0.57 [petroleum ether-ethyl acetate (6 : 2)]; $[a]_{\rm D}^{20}$ - 57.4 ± 0.1 (c 1.0, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.54 (18 H, s, 2 × Bu′) and 5.14 (2 H, s, 2 × CH); $\delta_{\rm C}$ (100 MHz; CDCl₃) 28.2 (6 C, $2 \times CMe_3$), 80.2 (2 C, $2 \times CMe_3$), 85.9 (2 C, $2 \times CH$) 164.6 (2 C, 2 × CO), and 189.1 (1 C, CS); m/z (NBA) 305 $[M + H]^+$ (Found: C, 51.1; H, 6.4. $C_{13}H_{20}O_6S$ requires C, 51.3; H, 6.6%).

N,N-Bis(tert-butyldiphenylsilyloxyethyl)amine 2h

To a stirred mixture of tert-butylchlorodiphenylsilane (17.8) cm³, 68.5 mmol) and imidazole (9.7 g, 142.6 mmol) dissolved in anhydrous dimethylformamide (DMF) (55 cm³) was added dropwise bis(hydroxyethyl)amine (diethanolamine) (2 g, 19 mmol). After 30 min at room temp. and addition of dichloromethane, the organic phase was washed with brine, dried over Na₂SO₄ and evaporated under reduced pressure. Chromatography on silica gel with methanol (0 to 2%) in dichloromethane afforded quantitatively the title compound as a white solid (11 g); R_f 0.84 [dichloromethane–methanol (95 : 5)]; mp 64–66 °C; $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.40 (18 H, s, 2 × Bu¹), 2.79 (4 H, t, J_{CH2CH2} 5.4 Hz, 2 × CH₂N), 3.60 (4 H, t, J_{CH2CH2} 5.4 Hz, $2 \times \text{CH}_2\text{O}$) and 7.35 (20 H, m, aromatics); δ_C (100 MHz; CDCl₃) 27.3 (3 C, CMe₃), 52.1 (1 C, CH₂N), 63.9 (1 C, CH₂O), 78.1 (1 C, CMe_3), 128.1 (4 C, C_m aromatics), 130.0 (2 C, C_p aromatics); 134.1 (2 C, C_q aromatics) and 136.0 (4 C, C_q aromatics); m/z (NBA) 582 [M + H]⁺ (Found: C, 74.5; H, 8.2. $C_{36}H_{47}NO_2Si_2$ requires C, 74.3; H, 8.1%).

General procedure for the ring opening of thioxocarbonates 1 or 6 by amines 2

To a solution of thioxocarbonate 1 or 6 (0.2 mmol) in anhydrous dichloromethane (or DMF in two cases specified in the text) (2 cm³) was added under nitrogen at room temp. amine 2a-i (0.4 mmol) and the solution stirred for 30 min for amines 2a-e,i and 12 h for amines 2f-i. After concentration under vacuum the crude residue was chromatographed on silica gel with ethyl acetate (0 to 4%) in petroleum ether to afford the expected thiocarbamates 4a-j, 7a (UV absorbing at 254 nm) and thiolcarbamates 5a-j, 8i.

(2R,3R)-Di-tert-butyl 2-diethylthiocarbamoyloxy-3-hydroxysuccinate syn-4a. Method A via the thioxocarbonate 1. The title compound was obtained as a colourless oil according to the aforementioned procedure (95% yield).

Method B via direct thiocarbamoylation of (R,R)-di-tertbutyl tartrate. To the di-tert-butyl tartrate (100 mg, 0.38 mmol) dissolved in DMF (2 cm³) was added at 0 °C sodium hydride (19 mg, 0.76 mmol) and the solution stirred for 1.5 h at room temp.. Diethylthiocarbamoyl chloride (91 mg, 0.57 mmol) was then added and the reaction maintained at room temp. for 5 h and warmed to 90 °C for 1 h. After concentration under reduced pressure and chromatography on silica gel (see general procedure) the title compound was obtained as a colourless oil (10 mg, 7%); R_f 0.44 [petroleum ether–ethyl acetate (8 : 2)]; $[a]_D^{20}$ - 73.5 \pm 0.9 (c 1.2, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.21 (6 H, t, J 7.3 Hz, 2 × CH₂CH₃), 1.45 (9 H, s, Bu^t), 1.49 (9 H, s, Bu'), 3.16 (1 H, d, J_{OH-3} 6.9 Hz, OH), 3.49 (2 H, q, J 7.3 Hz, CH₂Me), 3.68 (1 H, m, CH_aMe), 3.90 (1 H, m, CH_bMe), 4.65 (1 H, dd, J_{3-OH} 6.9, J_{3-2} 2.3 Hz, 3-H) and 6.10 (1 H, d, J_{2-3} 2.3 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 12.1 (1 C, CH₂Me), 13.5 (1 C, CH₂Me), 28.2 (3 C, CMe₃), 28.4 (3 C, CMe₃), 44.2 (1 C, CH₂N), 48.5 (1 C, CH₂N), 71.6 (1 C, 3-C), 78.3 (1 C, 2-C), 83.2 (1 C, CMe₃), 84.3 (1 C, CMe₃), 166.4 (1 C, CO₂), 170.9 (1 C, CO_2) and 186.0 (1 C, OC=S); m/z (NBA) 378 [M + H]⁺, 400 [M + Na]⁺ (Found: C, 54.4; H, 8.5. C₁₇H₃₁NO₆S requires C, 54.1; H, 8.3%).

(3S)-Di-tert-butyl 2-diethylcarbamoylsulfanyl-3-hydroxysuccinates syn- and anti-5a. The title compounds were obtained as an oil according to the aforementioned procedure in DMF (63% overall yield) together with the thiocarbamate isomer 4a in a 1:1 ratio; R_{ℓ} 0.15 [petroleum ether-ethyl acetate (85:15)]; $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.25 (6 H, m, 2 × CH₃CH₂), 1.45 (9 H, s, Bu'), 1.50 (9 H, s, Bu'), 3.39 (4 H, m, $2 \times CH_2Me$), 3.50 (1 H, d, $J_{\text{OH-3}}$ 6.8 Hz, OH), 4.40 (1 H, dd, $J_{3\text{-OH}}$ 6.8, $J_{3\text{--}2}$ 2.9 Hz, 3-H) and 4.75 (1 H, d, J_{2-3} 2.9 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 12.2 (1 C, CH₂Me), 13.5 (1 C, CH₂Me), 28.2 (3 C, CMe₃), 28.5 (3 C, CMe₃), 44.3 (1 C, CH₂Me), 48.6 (1 C, CH₂Me), 52.9 (1 C, 2-C_{syn}), 53.1 (1 C, 2-C_{anti}), 71.9 (1 C, 3-C_{anti}), 72.8 (1 C, 3-C_{syn}), 83.3 (1 C, CMe₃), 84.6 (1 C, CMe₃), 166.1 (1 C, CO_{2anti}), 166.2 (1 C, CO_{2syn}), 168.7 (1 C, SC=O_{syn}), 169.0 (1 C, SC=O_{anti}), 170.8 $(1 \text{ C}, \text{CO}_{2anti})$ and 171.1 $(1 \text{ C}, \text{CO}_{2syn})$; m/z (NBA) 378 $[M + H]^+$, $400 \,[M + Na]^+$ (Found: C, 54.0; H, 8.1. $C_{17}H_{31}NO_6S$ requires C, 54.1; H, 8.3%).

(2R,3R)-Di-tert-butyl 2-[bis(2-hydroxyethyl)]thiocarbamoyloxy-3-hydroxysuccinate syn-4b. The title compound was obtained quantitatively as an oil according to the aforementioned procedure; R_f 0.62 [ethyl acetate-methanol (98 : 2)]; $[a]_{\rm D}^{20} - 65.6 \pm 0.4$ (c 2.6, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃, D₂O) 1.48 (9 H, s, Bu'), 1.53 (9 H, s, Bu'), 3.43-4.25 (8 H, m, $2 \times \text{CH}_2\text{N}$ and $2 \times \text{CH}_2\text{OH}$), 4.65 (1 H, d, J_{3-2} 2.3 Hz, 3-H) and 6.10 (1 H, d, J_{2-3} 2.3 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 28.2 (3 C, CMe₃), 28.4 (3 C, CMe₃), 54.4 (1 C, CH₂N), 58.5 (1 C, CH₂N), 60.7 (1 C, CH₂O), 61.0 (1 C, CH₂O), 71.4 (1 C, 3-C), 79.2 (1 C, 2-C), 84.2 (1 C, CMe₃), 84.6 (1 C, CMe₃), 166.9 (1 C, CO₂), 170.7 (1 C, CO₂) and 188.1 (1 C, OC=S); m/z (NBA) 410 [M + H]⁺ (Found: C, 50.3; H, 7.8. C₁₇H₃₁NO₈S requires C, 49.9; H,

2-(piperidinothiocarbonyloxy)-3-(2R,3R)-Di-tert-butyl hydroxysuccinate syn-4c. The title compound was obtained quantitatively according to the aforementioned general procedure as a colourless oil; $R_{\rm f}$ 0.73 [petroleum ether–ethyl acetate (97 : 3)]; $[a]_{\rm D}^{20}$ -42.3 ± 0.5 (c 1.8, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃, D₂O) 1.47 (9 H, s, Bu'), 1.52 (9 H, s, Bu'), 1.70 (6 H, m, $3 \times \text{CH}_2$), 3.48–4.18 (4 H, m, 2 × CH₂N), 4.65 (1 H, d, J_{3-2} 2.3 Hz, 3-H) and 6.10 (1 H, d, J_{2-3} 2.3 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 23.2–24.8 (3 C, 3 × CH₂), 27.0 (6 C, 2 × CMe₃), 45.7– 50.6 (2 C, 2 × CH₂N), 70.1 (1 C, 3-C), 77.6 (1 C, 2-C), 81.8 (1 C, CMe₃), 82.9 (1 C, CMe₃), 164.9 (1 C, CO₂), 169.4 (1 C, CO₂) and 184.2 (1 C, OC=S); m/z (NBA) 390 [M + H]⁺, 412 [M + Na]⁺ (Found: C, 55.8; H, 8.3. C₁₈H₃₁NO₆S requires C, 55.5; H,

(2R,3R)-Di-tert-butyl 2-(morpholinothiocarbonyloxy)-3hydroxysuccinate syn-4d. The title compound was obtained quantitatively according to the aforementioned general procedure as a colourless oil; $R_{\rm f}$ 0.48 [petroleum ether–ethyl acetate (7 : 3)]; $[a]_{\rm D}^{20}$ -36.5 ± 0.9 (c 1.0, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.47 (9 H, s, Bu'), 1.51 (9 H, s, Bu'), 3.53-4.10 (8 H, m, $4 \times \text{CH}_2$), 3.22 (1 H, d, $J_{\text{OH-3}}$ 6.5 Hz, OH), 4.66 (1 H, dd, J_{3-OH} 6.5, J_{3-2} 2.4 Hz, 3-H) and 6.06 (1 H, d, J_{2-3} 2.4 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 28.4 (6 C, 2 × CMe₃), 46.6 (1 C, CH₂N), 50.5 (1 C, CH₂N), 66.5 (1 C, CH₂O), 66.7 (1 C, CH₂O), 71.4 (1 C, 3-C), 79.2 (1 C, 2-C), 83.5 (1 C, CMe₃), 84.4 (1 C, CMe₃), 166.0 (1 C, CO₂), 170.7 (1 C, CO₂) and 186.7 (1 C, OC=S); m/z (NBA) 392 $[M + H]^+$ (Found: C, 51.9; H, 7.3. $C_{17}H_{29}NO_7S$ requires C, 52.2; H, 7.5%).

(2R,3R)-Di-tert-butyl 2-thiocarbamoyloxy-3-hydroxysuccinate syn-4e. The O-TMS-derivative was obtained

according to the aforementioned general procedure, followed by an acidic treatment THF–HCl 0.5 M (1.2 cm³) for 30 min to afford after neutralisation, extraction with THF, drying of organic phases and concentration under vacuum then chromatography on silica gel as described in the general procedure, the title compound as a colourless oil (quant.); R_f 0.51 [petroleum ether–ethyl acetate (7 : 3)]; $[a]_D^{20}$ – 37.9 \pm 0.7 (c 1.4, chloroform); δ_H (200 MHz; CDCl₃) 1.47 (9 H, s, Bu'), 1.50 (9 H, s, Bu'), 3.79 (1 H, br s, OH), 4.67 (1 H, d, J_{3-2} 2.5 Hz, 3-H), 5.92 (1 H, d, J_{2-3} 2.5 Hz, 2-H), 6.60 (1 H, br s, NH) and 6.73 (1 H, br s, NH); δ_C (100 MHz; CDCl₃) 28.2 (3 C, CMe_3), 28.4 (3 C, CMe_3), 71.5 (1 C, 3-C), 79.4 (1 C, 2-C), 83.9 (1 C, CMe_3), 84.8 (1 C, CMe_3), 166.6 (1 C, CO_2), 170.7 (1 C, CO_2) and 191.5 (1 C, SC=O); m/z (NBA) 322 [M + H]⁺ (Found: C, 48.9; H, 7.4. $C_{13}H_{23}NO_6S$ requires C, 48.6; H, 7.2%).

Di-tert-butyl (2R)-[4-(1R,2R)-bis-(tert-butoxycarbonyl-2hydroxyethoxythiocarbonyl)piperazinothiocarbonyloxy]-(3R)hydroxysuccinate syn-syn-4j. The title compound was obtained according to the aforementioned general procedure [piperazine 2j (1 equiv.), thioxocarbonate 1 (2 equiv.)] as a colourless oil (84%); R_f 0.29 [petroleum ether–ethyl acetate (8 : 2)]; $[a]_D^{20}$ –36.4 \pm 0.5 (c 0.2, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.42 (18 H, s, $2 \times Bu'$), 1.48 (18 H, s, $2 \times Bu'$), 3.20 (2 H, d, J_{CHOH} 6 Hz, 2 × OH), 3.47–4.26 (8 H, m, 4 × CH₂N), 4.63 (2 H, dd, J_{3-2} 2.1, J_{CHOH} 6 Hz, 2 × CHOH) and 6.01 (2 H, d, J_{2-3} 2.1 Hz, 2 × CHOCS); $\delta_{\rm C}$ (100 MHz; CDCl₃) 28.2–28.8 (12 C, $4 \times CMe_3$), 45.0 (1 C, CH₂N), 45.1 (1 C, CH₂N), 49.1 (1 C, CH₂N), 49.2 (1 C, CH₂N), 71.2 (1 C, CHOH), 71.3 (1 C, CHOH), 79.5 (2 C, CHOCS), 83.6 (1 C, CMe₃), 83.7 (1 C, CMe₃), 84.3 (1 C, CMe₃), 84.5 (1 C, CMe₃), 166.0 (2 C, 2 × CO₂), 170.5 (1 C, CO₂), 170.6 (1 C, CO₂) and 187.0 $(2 \text{ C}, 2 \times \text{OC=S}); m/z \text{ (NBA) } 695 \text{ [M + H]}^+, 717 \text{ [M + Na]}^-$ (Found: C, 51.6; H, 7.0. C₃₀H₅₀N₂O₁₂S₂ requires C, 51.9; H, 7.2%).

(2R,3R)-Di-tert-butyl 2-diisobutylthiocarbamoyloxy-3-hydroxysuccinate syn-4f and (3S)-di-tert-butyl 2-diisobutyl-carbamoylsulfanyl-3-hydroxysuccinates syn- and anti-5f. The title compounds were obtained as colourless oils according to the aforementioned procedure in 90% overall yield in a 1:1 ratio.

Thiocarbamate syn-4f. $R_{\rm f}$ 0.74 [petroleum ether–ethyl acetate (85 : 15)]; [a]₀²⁰ −38.6 ± 0.9 (c 1.1, chloroform); δ_H (200 MHz; CDCl₃) 0.92 (12 H, m, 4 × Me), 1.48 (9 H, s, Bu'), 1.51 (9 H, s, Bu'), 2.21 (2 H, m, 2 × CHMe₂), 3.09 (1 H, d, J_{OH-3} 6.7 Hz, OH), 3.50 (4 H, m, 2 × CH₂N), 4.65 (1 H, dd, J_{3-OH} 6.7, J₃₋₂ 2.1 Hz, 3-H) and 6.04 (1 H, d, J₂₋₃ 2.1 Hz, 2-H); δ_C (100 MHz; CDCl₃) 20.56 (1 C, Me), 20.58 (1 C, Me), 20.84 (1 C, Me), 20.88 (1 C, CHMe₂), 27.8 (1 C, CHMe₂), 28.3 (6 C, 2 × CMe₃), 58.7 (1 C, CH₂N), 62.2 (1 C, CH₂N), 71.6 (1 C, 3-C), 79.2 (1 C, 2-C), 83.1 (1 C, CMe₃), 84.2 (1 C, CMe₃), 166.4 (1 C, CO₂), 171.1 (1 C, CO₂) and 187.4 (1 C, OC=S); m/z (NBA) 434 [M + H]⁺, 456 [M + Na]⁺ (Found: C, 58.0; H, 9.3. C₂₁H₃₉NO₆S requires C, 58.2; H, 9.1%).

Thiolcarbamates syn- and anti-5f. $R_{\rm f}$ 0.57 [petroleum etherethyl acetate (85 : 15)]; $\delta_{\rm H}$ (200 MHz; CDCl₃) 0.9 (12 H, m, 4 × Me), 1.46 (9 H, s, Bu'), 1.52 (9 H, s, Bu'), 2.0 (2 H, m, 2 × CHMe₂), 3.33 (4 H, m, 2 × CH₂N), 3.50 (1 H, d, $J_{\rm OH-3}$ 7.0 Hz, OH), 4.39 (1 H, dd, $J_{\rm 3-OH}$ 7.0, $J_{\rm 3-2}$ 2.9 Hz, 3-H) and 4.79 (1 H, d, $J_{\rm 2-3}$ 2.9, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 20.5 (4 C, 4 × Me), 27.1 (1 C, CHMe₂), 27.9 (1 C, CHMe₂), 28.3 (6 C, 2 × CMe₃), 52.5 (1 C, 2-C_{syn}), 52.9 (1 C, 2-C_{anti}), 55.7 (1 C, CH₂N), 56.0 (1 C, CH₂N), 71.9 (1 C, 3-C_{anti}), 72.8 (1 C, 3-C_{syn}), 83.1 (2 C, 2 × CMe₃), 166.4 (1 C, 1-CO_{2anti}), 166.7 (1 C, 1-CO_{2syn}), 168.8 (1 C, SC=O_{syn}), 169.2 (1 C, SC=O_{anti}), 171.3 (1 C, CO_{2anti}) and 171.4 (1 C, CO_{2syn}); m/z (NBA) 434 [M + H]⁺, 456 [M + Na]⁺ (Found: C, 58.3; H, 9.4. C₂₁H₃₉NO₆S requires C, 58.2; H, 9.1%).

(2*R*,3*R*)-Di-tert-butyl 2-[bis(tert-butyldimethylsilyloxyethyl)-thiocarbamoyloxy]-3-hydroxysuccinate syn-4g and (3*S*)-di-tert-butyl 2-[bis(tert-butyldimethylsilyloxyethyl)carbamoylsulfanyl]-3-hydroxysuccinates syn- and anti-5g. The title compounds were obtained (87% overall yield) according to the aforementioned procedure in a 88: 12 ratio.

Thiocarbamate syn-4g. $R_{\rm f}$ 0.87 [petroleum ether–ethyl acetate (8 : 2)]; mp 89–90 °C; $[a]_{\rm D}^{20}$ −34.3 ± 0.7 (c 1.3, chloroform); $δ_{\rm H}$ (200 MHz; CDCl₃) 0.06 (3 H, s, SiMe), 0.07 (3 H, s, SiMe), 0.08 (6 H, s, 2 × SiMe), 0.89 (9 H, s, SiBu'), 0.90 (9 H, s, SiBu'), 1.47 (9 H, s, Bu'), 1.51 (9 H, s, Bu'), 3.14 (1 H, d, $J_{\rm OH-3}$ 6.8 Hz, OH), 3.95 (8 H, m, 2 × CH₂N and 2 × CH₂O), 4.65 (1 H, dd, $J_{\rm 3-OH}$ 6.8, $J_{\rm 3-2}$ 2.3 Hz, 3-H) and 6.12 (1 H, d, $J_{\rm 2-3}$ 2.3 Hz, 2-H); $δ_{\rm C}$ (100 MHz; CDCl₃) −5.0 (2 C, 2 × SiMe), −4.9 (2 C, 2 × SiMe), 26.3 (6 C, 2 × C $Me_{\rm 3}$), 28.3 (3 C, OC $Me_{\rm 3}$), 28.4 (3 C, OC $Me_{\rm 3}$), 53.9 (1 C, CH₂N), 57.6 (1 C, CH₂N), 60.8 (1 C, CH₂O), 61.6 (1 C, CH₂O), 71.5 (1 C, 3-C), 79.1 (1 C, 2-C), 83.2 (2 C, 2 × CMe₃), 84.3 (2 C, 2 × CMe₃), 166.2 (1 C, CO₂), 170.9 (1 C, CO₂) and 187.4 (1 C, OC=S); m/z (NBA) 638 [M + H]⁺, 660 [M + Na]⁺ (Found: C, 54.4; H, 9.1. C₂₉H₅₉NO₈SSi₂ requires C, 54.6; H, 9.3%).

Thiolcarbamates syn- and anti-5g. colourless oil; $R_{\rm f}$ 0.59 [petroleum ether–ethyl acetate (85 : 15)]; $\delta_{\rm H}$ (200 MHz; CDCl₃) 0.06 (3 H, s, SiMe), 0.07 (3 H, s, SiMe), 0.08 (6 H, s, 2 × SiMe), 0.86 (18 H, s, 2 × SiBu'), 1.49 (9 H, s, Bu'), 1.50 (9 H, s, Bu'), 3.45 (1 H, d, $J_{\rm OH-3}$ 7.0 Hz, OH), 3.48–3.82 (8 H, m, 2 × NCH₂-CH₂O), 4.36 (1 H, dd, $J_{\rm 3-2}$ 3.1, $J_{\rm 3-OH}$ 7.0 Hz, 3-H) and 4.72 (1 H, d, $J_{\rm 2-3}$ 3.1 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) −5.02 (1 C, SiMe), −4.99 (1 C, SiMe), −4.96 (2 C, 2 × SiMe), 26.1 (6 C, 2 × SiC Me_3), 28.3 (6 C, 2 × OC Me_3), 52.2 (2 C, 2 × CH₂N), 52.4 (1 C, 2-C_{syn}), 53.1 (1 C, 2-C_{conti}), 61.7 (2 C, 2 × CH₂O), 72.0 (1 C, 3-C_{conti}), 72.7 (1 C, 3-C_{syn}), 83.2 (4 C, 4 × CMe₃), 166.1 (1 C, CO_{2onti}), 166.4 (1 C, CO_{2syn}), 168.4 (1 C, SC=O_{syn}), 168.8 (1 C, SC=O_{anti}), 171.2 (1 C, CO_{2syn}) and 171.3 (1 C, CO_{2onti}); m/z (NBA) 638 [M + H]⁺; 660 [M + Na]⁺ (Found: C, 54.3; H, 9.0. C₂₉H₅₉NO₈SSi₂ requires C, 54.6; H, 9.3%).

(2R,3R)-Di-tert-butyl 2-[bis(tert-butyldiphenylsilyloxyethyl)-thiocarbamoyloxy]-3-hydroxysuccinate syn-4h and (3S)-di-tert-butyl 2-[bis-(tert-butyldiphenylsilyloxyethyl)carbamoylsulfanyl]-3-hydroxysuccinates syn- and anti-5h. The title compounds were obtained as colourless oils according to the aforementioned procedure (64% overall yield) in a 39:61 ratio.

Thiocarbamate syn-4h. R_f 0.65 [petroleum ether–ethyl acetate (9 : 1)]; [a]_D²⁰ −33.6 ± 1.0 (*c* 1.1, chloroform); δ_H (200 MHz; CDCl₃) 1.08 (18 H, s, 2 × SiBu'), 1.39 (9 H, s, Bu'), 1.48 (9 H, s, Bu'), 3.05 (1 H, d, $J_{\text{OH-3}}$ 7.0 Hz, OH), 4.05 (8 H, m, 2 × CH₂N and 2 × CH₂OSi), 4.61 (1 H, dd, $J_{\text{3-OH}}$ 7.0, $J_{\text{3-2}}$ 2.3 Hz, 3-H), 6.08 (1 H, d, $J_{\text{2-3}}$ 2.3 Hz, 2-H) and 7.55 (20 H, m, aromatics); δ_C (100 MHz; CDCl₃) 27.2 (6 C, 2 × C*Me*₃), 28.3 (6 C, 2 × C*Me*₃), 53.5 (1 C, CH₂N), 57.3 (1 C, CH₂N), 61.9 (1 C, CH₂O), 62.6 (1 C, CH₂O), 71.5 (1 C, 3-C), 79.2 (1 C, 2-C), 83.1 (1 C, CMe₃), 84.2 (2 C, 2 × CMe₃), 85.6 (1 C, CMe₃), 128.2 (8 C, C_m aromatics), 130.1 (4 C, C_p aromatics), 133.7 (4 C, C_q aromatics), 136 (8 C, C_o aromatics), 166.1 (1 C, CO₂), 170.9 (1 C, CO₂) and 187.4 (1 C, OC=S); *mlz* (NBA) 886 [M + H]⁺, 908 [M + Na]⁺ (Found: C, 66.1; H, 7.4. C₄₉H₆₇NO₈SSi₂ requires C, 66.4; H, 7.6%).

Thiolcarbamates syn- and anti-5h. $R_{\rm f}$ 0.51 [petroleum ether–ethyl acetate (9:1)]; $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.08 (18 H, s, 2 × SiBu'), 1.39 (9 H, s, Bu'), 1.48 (9 H, s, Bu'), 3.50 (1 H, d, $J_{\rm OH-3}$ 7.0 Hz, OH), 3.74 (8 H, m, 2 × CH₂N and 2 × CH₂OSi), 4.33 (1 H, dd, $J_{\rm 3-OH}$ 7.0, $J_{\rm 3-2}$ 2.8 Hz, 3-H), 4.73 (1 H, d, $J_{\rm 2-3}$ 2.8, 2-H) and 7.55 (20 H, m, aromatics); $\delta_{\rm C}$ (100 MHz; CDCl₃) 28.3 (6 C, 2 × CMe_3), 30.1 (6 C, 2 × CMe_3), 51.5 (2 C, 2 × CH_2 N), 52.8 (1 C, 2-C_{syn}), 53.1 (1 C, 2-C_{anti}), 62.6 (2 C, 2 × CH_2 O), 72.7 (1 C, 3-C_{anti}), 72.8 (1 C, 3-C_{syn}), 83.3 (2 C, 2 × CMe_3), 83.6 (1 C, CMe_3), 83.7 (1 C, CMe_3), 128.2 (8 C, C_m aromatics), 130.2 (4 C, C_p aromatics), 133.5 (4 C, C_q aromatics), 135.9 (8 C, C_o aromatics), 166.50 (1 C, CO_{2anti}), 166.55 (1 C, CO_{2syn}), 168.34 (1 C,

SC=O_{syn}), 168.39 (1 C, SC=O_{anti}), 171.2 (1 C, CO_{2anti}) and 171.3 (1 C, CO_{2syn}); m/z (NBA) 886 [M + H]⁺, 908 [M + Na]⁺ (Found: C, 66.2; H, 7.3. C₄₉H₆₇NO₈SSi₂ requires C, 66.4; H, 7.6%).

(3S)-Di-tert-butyl 2-diisopropylcarbamoylsulfanyl-3hydroxysuccinates syn- and anti-5i. The title compounds were obtained in 70% overall yield according to the aforementioned general procedure as a colourless oil; R_f 0.56 [petroleum etherethyl acetate (8 : 2)]; $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.47 (9 H, s, Bu'), 1.52 (9 H, s, Bu'), 1.53 (12 H, m, 4 × Me), 3.54 (1 H, m, $CHMe_2$), 3.57 (1 H, d, J_{OH-3} 7.1 Hz, OH), 4.17 (1 H, m, $CHMe_2$), 4.41 (1 H, d, J_{3-2} 3.0, J_{3-OH} 7.1 Hz, 3-H) and 4.71 (1 H, d, J_{2-3} 3.0 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 20.9 (2 C, CH Me_2), 21.0 (2 C, CH Me_2), 28.3–28.5 (6 C, 2 × C Me_3), 46.7 (1 C, CHMe₃), 49.7 (1 C, CHMe₃), 52.0 (1 C, 2-C_{syn}), 52.5 (1 C, 2-C_{anti}), 72.0 (1 C, 3-C_{anti}), 72.6 (1 C, 3-C_{syn}), 83.0 (1 C, CMe₃), 83.6 (1 C, CMe₃), 163.3 (1 C, CO_{2anti}), 163.6 (1 C, CO_{2syn}), 168.9 (1 C, SC=O_{syn}), 169.3 (1 C, SC=O_{anti}), 171.47 (1 C, CO_{2anti}) and 171.50 (1 C, CO_{2syn}); m/z (NBA) 406 [M + H]⁺, 428 [M + Na]⁺ (Found: C, 56.5; H, 8.9. C₁₉H₃₅NO₆S requires C, 56.3; H, 8.7%).

(2*R*,3*R*)-Diisopropyl 2-diethylthiocarbamoyloxy-3-hydroxy-succinate *syn*-7a. The title compound was obtained in 93% yield according to the aforementioned general procedure as a colourless oil; $R_{\rm f}$ 0.26 [petroleum ether–ethyl acetate (85 : 15)]; $[a]_{\rm D}^{20}$ –69.1 ± 0.4 (*c* 2.7, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃) 1.16–1.30 (18 H, m, 6 × Me), 3.12 (1 H, d, $J_{\rm OH-3}$ 7.3 Hz, OH), 3.49 (2 H, q, $J_{\rm CH_2-Me}$ 7.0 Hz, C H_2 Me), 3.77 (2 H, m, C H_2 Me), 4.70 (1 H, dd, $J_{\rm 3-OH}$ 7.3, $J_{\rm 3-2}$ 2.4 Hz, 3-H), 5.11 (2 H, m, 2 × CO₂CH) and 6.14 (1 H, d, $J_{\rm 2-3}$ 2.4 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 12.1 (1 C, CH₂Me), 13.4 (1 C, CH₂Me), 21.9 (1 C, Me), 22.1 (1 C, Me), 22.2 (1 C, Me), 44.3 (1 C, CH₂Me), 48.6 (1 C, CH₂Me), 70.0 (1 C, CO₂CH), 70.2 (1 C, CO₂CH), 71.5 (1 C, 3-C), 78.6 (1 C, 2-C), 166.9 (1 C, CO₂), 171.2 (1 C, CO₂) and 186.0 (1 C, OC=S); m/z (NBA) 350 [M + H]⁺ (Found: C, 51.7; H, 7.6. C₁₅H₂₇NO₆S requires C, 51.6; H, 7.8%).

(3S)-Diisopropyl 2-diisopropylcarbamoylsulfanyl-3-hydroxy-succinates *syn*- and *anti*-8i. The title compounds were obtained in 58% overall yield according to the aforementioned general procedure as a colourless oil; $R_{\rm f}$ 0.28 [petroleum ether–ethyl acetate (85 : 15)]; $\delta_{\rm H}$ (200 MHz; CDCl₃, D₂O) 1.16–1.31 (24 H, m, 8 × Me), 4.48 (1 H, d, J_{3-2} 3.3 Hz, 3-H), 4.76 (1 H, d, J_{2-3} 3.3 Hz, 2-H), 4.82 (2 H, m, 2 × NC*H*Prⁱ) and 5.16 (2 H, m, 2 × CO₂C*H*Prⁱ); $\delta_{\rm C}$ (100 MHz; CDCl₃) 20.9–22.3 (4 C, 4 × Me), 46.3 (1 C, NCH), 50.3 (1 C, NCH), 51.4 (1 C, 2-C_{syn}), 51.8 (1 C, 2-C_{anti}), 69.8 (1 C, CO₂CH), 70.2 (1 C, CO₂CH), 71.7 (1 C, 3-C_{anti}), 72.4 (1 C, 3-C_{syn}), 163.1 (1 C, CO_{2anti}), 163.4 (1 C, CO_{2syn}), 169.1 (1 C, SC=O_{syn}), 169.5 (1 C, SC=O_{anti}), 171.7 (1 C, CO_{2syn}) and 171.9 (1 C, CO_{2anti}); m/z (NBA) 378 [M + H]⁺ (Found: C, 54.3; H, 8.4. C₁₇H₃₁NO₆S requires C, 54.1; H, 8.3%).

(4*R*,5*R*)-Di-*tert*-butyl 2,2-dioxo-1,3,2-dioxathiolane-4,5-dicarboxylate 2,2-dioxide 9

To a stirred solution of (*R*,*R*)-di-*tert*-butyl tartrate (5 g, 19.1 mmol) and triethylamine (10.6 cm³, 76.2 mmol) dissolved in dichloromethane (60 cm³) was added dropwise under nitrogen at 0 °C thionyl chloride (2.1 cm³, 28.5 mmol) in dichloromethane (5 cm³). After 1.5 h at room temp. cold diethyl ether (200 cm³) was added and the organic phase was washed with cold water and a cold saturated solution of NaCl and the solvent evaporated under reduced pressure to afford the intermediate cyclic sulfite as a brown oil. To the crude sulfite dissolved in a cold mixture of carbon tetrachloride–acetonitrile–water [200 cm³, (1.2:1.2:1.7)] were added at 0 °C RuCl₃·H₂O (20 mg, 0.1 mmol, 0.5%) and NaIO₄ (8.15 g, 38 mmol). The mixture was vigorously stirred for 30 min at room temp. and filtered on a celite pad; the filtrates were extracted with diethyl ether, washed

with a saturated solution of NaCl and the organic phases dried over Na₂SO₄. The solvent was evaporated under reduced pressure. Chromatography on silica gel and elution with dichloromethane afforded the title compound as a white solid (5 g, 82%); mp 52–54 °C; R_f 0.74 (dichloromethane); $[a]_D^{20}$ –67.1 \pm 0.6 (c 1.7, chloroform); δ_H (200 MHz; CDCl₃) 1.56 (18 H, s, 2 × Bu^t) and 5.29 (2 H, s, 2 × CH); δ_C (100 MHz; CDCl₃) 28.2 (6 C, 2 × CMe₃), 78.1 (2 C, 2 × CMe₃), 86.4 (2 C, 2 × CH) and 163.7 (2 C, 2 × CO); m/z (NBA) 325 [M + H]⁺, 347 [M + Na]⁺, 269 [M + H – Bu^t]⁺, 210 [M + H – 2 Bu^t]⁺ (Found: C, 44.7; H, 6.3. $C_{12}H_{20}O_8$ S requires C, 44.4; H, 6.2%).

(S,S)-Di-tert-butyl 2-acetylsulfanyl-3-hydroxysuccinate anti-10

To the cyclic sulfate 9 (300 mg, 0.9 mmol) dissolved in acetone (5 cm³) was added at room temp. potassium thioacetate (127 mg, 1.1 mmol) and the solution stirred at room temp. for 30 min followed by the addition at 0 °C of conc.H₂SO₄ (cat.) and water (17 µl, 0.9 mmol). The reaction was stirred for 3 h at room temp, and concentrated under vacuum, dissolved in dichloromethane (10 cm³), neutralised with a 5% solution of NaHCO₃ and the organic phase was dried, concentrated to give quantitatively the pure title compound (295 mg) as a white solid; mp 52-54 °C; R_f 0.40 [petroleum ether-ethyl acetate (85 : 15)]; $[a]_{\rm D}^{20}$ -66.1 ± 0.6 (c 1.6, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃, D₂O) 1.43 (9 H, s, Bu^t), 1.49 (9 H, s, Bu^t), 2.46 (3 H, s, Ac), 4.29 (1 H, d, J_{3-2} 3.1 Hz, 3-H) and 4.69 (1 H, d, J_{2-3} 3.1 Hz, 2-H); $\delta_{\rm C}$ (100 MHz; CDCl₃) 28.3 (3 C, CMe₃), 28.4 (3 C, CMe₃), 30.6 (1 C, MeCO), 51.3 (1 C, 2-C), 72.2 (1 C, 3-C), 83.7 (1 C, CMe₃), 84.1 (1 C, CMe₃), 167.7 (1 C, CO₂), 171.1 (1 C, CO₂) and 193.9 (1 C, SC=O); m/z (NBA) 321 [M + H]+, 343 [M + Na]⁺ (Found: C, 52.3; H, 7.7. C₁₄H₂₄O₆S requires C, 52.5; H, 7.5%).

(S,S)-Di-tert-butyl 2-diisopropylcarbamoylsulfanyl-3-hydroxysuccinate anti-5i from 10

To the thioacetate 10 (250 mg, 0.8 mmol) in DMF (1 cm³) was added hydrazine acetate (93 mg, 1 mmol) and the solution stirred at room temp. for 15 min. Then triethylamine (652 µl, 4.7 mmol) and diisopropylcarbamyl chloride (638 mg, 3.9 mmol) in dichloromethane (2 cm³) were added and the reaction maintained at room temp. for 12 h. The solution was extracted with dichloromethane and the organic phase was washed with brine, dried and evaporated under reduced pressure. After a chromatography on silica gel with ethyl acetate (0 to 6%) in petroleum ether, the title compound (86 mg, 27%) was obtained as a colourless oil; R_f 0.56 [petroleum ether–ethyl acetate (8 : 2)]; $[a]_{\rm D}^{20}$ -34.5 ± 0.9 (c 1.1, chloroform); $\delta_{\rm H}$ (200 MHz; CDCl₃, D₂O) 1.45 (9 H, s, Bu'), 1.52 (9 H, s, Bu'), 1.53 (12 H, m, 4 × Me), 3.57 (1 H, m, CHMe₂), 4.16 (1 H, m, CHMe₂), 4.38 (1 H, d, J_{3-2} 3.1 Hz, 3-H) and 4.71 (1 H, d, J_{2-3} 3.1 Hz, 2-H); δ_C (100 MHz; CDCl₃) 20.5 (2 C, CHMe₂), 20.7 (2 C, CHMe₂), 27.8 (3 C, CMe₃), 28.0 (3 C, CMe₃), 46.7 (1 C, NCH), 49.7 (1 C, NCH), 52.0 (1 C, 2-C), 72.1 (1 C, 3-C), 83.1 (1 C, CMe₃), 83.2 (1 C, CMe₃), 163.0 (1 C, CO₂), 168.9 (1 C, SC=O) and 171.0 (1 C, CO_2) ; m/z (NBA) 406 [M + H]⁺, 428 [M + Na]⁺ (Found: C, 56.2; H, 8.5. C₁₉H₃₅NO₆S requires C, 56.3; H, 8.7%).

Acknowledgements

We are grateful to the Ministère de la Recherche et de la Technologie and C.N.R.S for their financial support of this research. L. F. is pleased to acknowledge the Mayoly Spindler Company and 'la Région Languedoc Roussillon' for providing a grant.

References

- 1 H. Tomita, F. Sanda and T. Endo, Macromolecules, 2001, 34, 727.
- 2 W. M. Doane, B. S. Shasha, E. I. Stout, C. R. Russel and C. E. Rist, Carbohydr. Res., 1969, 11, 321.

- 3 M. Alpegiani and S. Hanessian, J. Org. Chem., 1987, 52, 278.
- 4 S. Y. Ko, J. Org. Chem., 1995, 60, 6250.
- 5 H.-S. Rho, Synth. Commun., 1998, 28, 843.
- 6 G. Y. Cho and S. Y. Ko, *J. Org. Chem.*, 1999, **64**, 8745. 7 D. O. Jang and S. H. Song, *Tetrahedron Lett.*, 2000, **41**, 247.
- 8 Y. Gao and K. B. Sharpless, J. Am. Chem. Soc., 1988, 110, 7538. 9 H. C. Kolb, M. S. Van Nieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.
- 10 H.-S. Byun, L. He and R. Bittman, Tetrahedron, 2000, 56, 7051.
- 11 G. Uray and W. Lindner, *Tetrahedron*, 1988, 44, 4357.
 12 S. Saito, H. Yokoyama, T. Ishikawa, N. Niwa and T. Moriwake, *Tetrahedron Lett.*, 1991, 32, 663.
- 13 F. Burgat Charvillon and R. Amouroux, Synth. Commun., 1997, 27,
- 14 M. Seki, T. Yamanaka and K. Kondo, J. Org. Chem., 2000, 65, 517.

- 15 E. A. Castro, M. Cubillos and J. G. Santos, J. Org. Chem., 1996, 61,
- 16 E. A. Castro, M. Cubillos, J. G. Santos and J. Téllez, J. Org. Chem., 1997, **62**, 2512.
- 17 E. A. Castro, J. G. Santos, J. Téllez and M. I. Umana, J. Org. Chem., 1997, **62**, 6568.
- 18 E. A. Castro, P. Garcia, L. Leandro, N. Quesieh, A. Rebolledo and J. G. Santos, J. Org. Chem., 2000, 65, 9047.
- 19 E. A. Castro, L. Leandro, N. Quesieh and J. G. Santos, J. Org. Chem., 2001, 66, 6130.
- 20 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
- 21 We thank one of the referees for his judicious comments on this unlikely process.
- 22 K. Singh Jandu and D. L. Selwood, J. Org. Chem., 1995, 60, 5170.
- 23 M. H. B. Grote Gansey, Synthesis, 1997, 643.