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Abstract: The Et3B-initiated reaction of γ-unsubstituted
propargyl alcohols with dibutylchlorostannane (Bu2SnClH)
at low temperature gave (Z)-vinylstannanes with high regio-
and stereoselectivity. The corresponding alkyl propargyl
ethers also underwent regio- and stereoselective homolytic
hydrostannylation with Bu2SnClH; however, the regioselec-
tivity was not so high as that with the propargyl alcohols.

The addition of hydrostannanes to alkynes provides a
straightforward and efficient route to vinylstannanes,
which are important reagents working as vinyl anion
equivalents for carbon-carbon bond formation.1 The
hydrostannylation is induced by a radical initiator,2 a
transition metal catalyst,3 or a Lewis acid.4 The radical
chain process is considerably valuable for the preparation
of functionalized vinylstannanes (eq 1); however, it often
exhibits low stereoselectivity due to the stannyl radical-
induced isomerization of the products.5

Previously, we have reported that dibutylchlorostan-
nane (Bu2SnClH)6 exhibits high chemoselectivity toward

homolytic hydrostannylation of allyl and homoallyl al-
cohols.7 The chemoselectivity is attributable to the coor-
dination of the hydroxy group to the Lewis acidic tin
center in the â-stannylalkyl radical intermediate. This
deduction prompted us to utilize such an intramolecular
interaction for regio- and stereoselective hydrostannyla-
tion of alkynes bearing a polar functional group. In this
context, Davies and his co-workers have shown that the
reaction of 2-methyl-3-butyn-2-ol with Bu2SnClH affords
a 2:1 mixture of terminal and internal adducts, and the
terminal addition proceeds with high Z-selectivity.8 In
addition, Mitchell et al. have recently reported highly
regio- and stereoselective hydrostannylation of γ-unsub-
stituted propargyl ethers with Bu2SnXH (X ) Cl, Br).9
We herein provide some new and important information
on homolytic hydrostannylation of propargyl alcohols and
ethers with Bu2SnClH.10

Initially, the reaction of 1-undecyn-3-ol (1a, R1 )
n-C8H17, R2 ) H) with Bu2SnClH was examined under
various reaction conditions (eq 2 and Table 1). In all

cases, the hydrostannylation gave (Z)-vinylstannane 2a
as the major product along with its regioisomer 3a. As
expected from the previous report,8,9 Bu2SnClH sponta-
neously added to 1a in the absence of a radical initiator.
The isomeric ratio was dependent on the solvent used
(entries 2-4). Lowering the reaction temperature to 0
°C did not improve the regioselectivity (entry 5). Interest-
ingly, addition of Et3B as a radical initiator2b not only
accelerated the hydrostannylation but also raised the
ratio of (Z)-2a to 3a (entry 6). The Et3B-initiated reaction
at lower temperature achieved higher selectivity (entries
7-8). However, the reproducibility of the reaction ef-
ficiency at -78 °C was invariably poor, which may be
due to poor solubility of 1a at this temperature.

To isolate the hydrostannylation product by column
chromatography, the reaction mixture obtained from 1a
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and Bu2SnClH was treated with BuLi. The Et3B-initiated
hydrostannylation (-60 °C, 6 h, then 0 °C, 30 min) and
the subsequent butylation (0 °C, 30 min) afforded a 98:2
mixture of (Z)-5a and 6a in 81% yield. Bisstannylated
product 7a also was isolated in a small quantity (5%).
The results with several propargyl alcohols 1a-f are
summarized in Table 2. In all entries, (Z)-vinylstannanes
5 were obtained with high regio- and stereoselectivity.
In the reaction of 2-methyl-3-butyn-2-ol (1d), the present
method achieved high regioselectivity unlike the result
reported by Davies et al. (entry 4 of Table 2).8

The Et3B-initiated addition of Bu3SnH to 1a in toluene,
which was much slower than that of Bu2SnClH, showed
low Z-selectivity (rt, 6 h, 49% conversion, (Z)-5a:(E)-5a:
6a ) 66:26:8). The hydrostannylation of 1-dodecyne with
Bu2SnClH (0 °C, 6 h) and the subsequent butylation
provided 1-tributylstannyl-1-dodecene with E-selectivity
(95%, Z:E ) 13:87). These observations suggest that the
coordination of the hydroxy oxygen to the Lewis acidic
tin center is operative for the Z-selective addition of Bu2-
SnClH to 1 (vide infra).

Homolytic hydrostannylation of 2-butyn-1-ol (1g) with
Bu3SnH has been reported to give (Z)-6g with high regio-

and stereoselectivity.11 The Et3B-initiated reaction of 1g
with Bu2SnClH at -78 °C also gave 6g predominantly,
but with lower stereoselectivity (70%, (Z)-5g:(Z)-6g:(E)-
6g ) 2:51:47, eq 3). The use of the Lewis acidic hy-
drostannane did not affect the sense of regioselectivity.

To examine the applicability of the present method,
methyl propargyl ether 8a was selected as a substrate.
The Et3B-initiated reaction with Bu2SnClH (1.1 equiv)
at -60 °C for 6 h led to a mixture of adduct 9a, its
regioisomer 10a, and bisstannylated product 11a (eq 4,

87% conversion, (Z)-9a:(E)-9a:10a:11a ) 80:1:10:9). In-
creasing the reaction temperature to 0 °C gave a similar
regioselectivity (6 h, 100% conversion, (Z)-9a:(E)-
9a:10a:11a ) 85:<1:11:4). Interestingly, the AIBN-
initiated reaction with Bu2SnClH (1.05 equiv) at 60 °C
showed higher regioselectivity (0.5 h, 100% conversion,
(Z)-9a:(E)-9a:10a:11a ) 91:<1:7:2).12 Mitchell et al. have
reported that the spontaneous reaction of γ-unsubstituted
propargyl ethers with Bu2SnClH at room temperature
forms only (Z)-vinylstannanes.9 However, the hydrostan-
nylation of 8a under the same conditions resulted in only
modest regioselectivity (12 h, 98% conversion, (Z)-9a:(E)-
9a:10a:11a ) 87:<1:12:1).

The AIBN-initiated hydrostannylation of 8a (R ) Me,
R1 ) n-C8H17) at 60 °C for 30 min (method A) and the
subsequent butylation gave (Z)-12a in a good yield with
high stereo- and regioselectivity (eq 4 and entry 1 in
Table 3). The reactions of benzyl and methoxymethyl
ethers, 8b and 8c, showed lower Z-selectivity (entries 2
and 4). The stereoselectivity could be improved by the
Et3B-initiated reaction at 0 °C (method B), in which the
regioselectivity slightly decreased (entries 3 and 5). In
contrast to the results with 8a-c, the use of TBDMS
ether 8d afforded (E)-12d predominantly (entry 6). The
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(12) Without AIBN, the hydrostannylation of 8a at 60 °C showed
slightly lower regioselectivity (0.5 h, 89% conversion, (Z)-9a:(E)-9a:
10a:11a ) 89:1:9:1).

TABLE 1. Hydrostannylation of Propargyl Alcohol 1a
with Bu2SnClHa

entry initiator solvent
time/

h
temp/

°C
conv/

% (Z)-2a:3ab

1 none none 3 rt 100 91:9
2 none PhMe 3 rt 91 91:9
3 none Et2O 3 rt 97 81:19
4 none MeOH 3 rt 100 91:9
5 none PhMe 3 0 75 91:9
6 Et3B-O2

c PhMe 3 0 100 93:7
7 Et3B-O2

c PhMe 6 -60 97 98:2
8 Et3B-O2

c PhMe 6 -78 50-100d >99:1
a All reactions were performed with Bu2SnClH (1.10 mmol) and

1a (1.00 mmol) in solvent (2.5 mL) or without solvent (entry 1).
In entries 2-8, the resultant mixture was treated with galvinoxyl
(0.05 mmol), evaporated, and subjected to 1H NMR analysis.
b Determined by 270-MHz 1H NMR analysis. c 1 M Et3B in hexane
(0.10 mmol) and dry air (10 mL) were introduced. d The reproduc-
ibility of the conversion was poor.

TABLE 2. Et3B-Initiated Hydrostannylation of
Propargyl Alcohols 1 with Bu2SnClH Followed by
Butylationa

substrate
entry R1 R2 no. temp/°C

yield
((Z)-5+6)/% (Z)-5:6b

1 n-C8H17 H 1a -60 81c 98:2
2 c-C6H11 H 1b -78 85c 99:1
3 Ph H 1c -78 72c 99:1
4 Me Me 1d -78 96d 96:4
5 (CH2)5 1e -78 92d 97:3
6 H H 1f -78 71c (81)e >99:1
a All reactions were performed with Bu2SnClH (1.10 mmol), 1

(1.00 mmol), Et3B (0.10 mmol), and dry air (10 mL) in toluene
(2.5 mL). The mixture was stirred at -78 or -60 °C for 6 h and 0
°C for 30 min. The resultant mixture was diluted with Et2O (4
mL) and treated with BuLi (2.5 mmol) at 0 °C for 30 min. Before
an aqueous workup, CCl4 (1 mL) was added to the reaction mixture
to suppress the stannyl radical-induced isomerization. b The iso-
meric ratio was determined by 270-MHz 1H NMR analysis (entries
1-3 and 6) or isolated yields of (Z)-5 and 6 (entries 4 and 5).
c Bisstannylated product 7 was isolated in 1-5% yield. d (Z)-5d,e
were isolated in 93% and 89% yields, respectively. e Instead of
BuLi, BuMgBr was used.
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inverse selectivity is probably because the silyl group
hinders the coordination of the ether oxygen by its
bulkiness and π-electron-withdrawing ability.13

We further examined the reactions of homo- and
bishomo-propargyl alcohols, 15a and 15b, with Bu2-
SnClH. The hydrostannylation followed by butylation
gave only terminal addition products 16; however, the
stereoselectivity is rather low (eq 5). Interestingly, the
Z-selectivity decreased as the methylene tether elon-
gated.

In homolytic hydrostannylation of alkynes (eq 1), it has
been reported that the Z-adducts are kinetically favored
over the E-adducts because hydrogen abstraction of the
â-stannylvinyl radical intermediates from hydrostan-
nanes occurs exclusively in the less congested side
opposite to the stannyl group. However, the hydrostan-
nylation usually shows low stereoselectivity because of
isomerization of the initially formed Z-adducts by addi-
tion-elimination of the stannyl radicals.5 The origin of
the present Z-selectivity would be that the isomerization
is inhibited by the Sn-O coordinate bond in the Z-adduct
(Scheme 1). In addition, the conformational fixation of

the vinyl radical intermediates by the Sn-O coordinate
bond may also take part in the stereocontrol.

In conclusion, we have demonstrated that propargyl
alcohols as well as their alkyl ethers undergo regio- and
stereoselective hydrostannylation with Bu2SnClH. The
present results disclose that the coordination of the
oxygen functionality to the Lewis acidic tin center plays
a crucial role for the stereocontrol.

Experimental Section

Et3B-Initiated Hydrostannylation Followed by Butyla-
tion (Typical Procedure). Bu2SnH2 (129 mg, 0.55 mmol) was
added to a solution of Bu2SnCl2 (167 mg, 0.55 mmol) in toluene
(1 mL) at 0 °C. After being stirred for 10 min, the mixture was
cooled to -60 °C. A toluene (1 mL) solution of propargyl alcohol
1a (168 mg, 1.00 mmol) was added to the mixture. After 10 min
Et3B (1.0 M in hexane, 0.10 mL, 0.10 mmol) and dry air (10 mL)
were added. The mixture was stirred at -60 °C for 6 h, then at
0 °C for 30 min. After addition of Et2O (4 mL), the resultant
mixture was treated with BuLi (1.65 M in hexane, 1.5 mL, 2.5
mmol) and stirred for 30 min. After addition of CCl4 (1 mL), the
mixture was poured into aqueous NH4Cl (10 mL). The extract
with t-BuOMe was dried over Na2SO4 and evaporated. Purifica-
tion of the crude product by silica gel column chromatography
gave a mixture of (Z)-1-tributylstannyl-1-undecen-3-ol ((Z)-5a)
and 2-tributylstannyl-1-undecen-3-ol (6a) (395 mg, (Z)-5a:6a )
98:2) in 81% yield. (Z)-5a: bp 125 °C (0.5 Torr, bath tempera-
ture). IR (neat) 3419 (br s, OH), 2956, 2925, 2854, 1601 (CdC),
1464 cm-1; 1H NMR (CDCl3) δ 0.78-1.03 (m, 18H), 1.12-1.64
(m, 27H), 3.85-3.94 (m, 1H), 5.99 (dd, J ) 12.7, 0.8 Hz, 2JSnH
(coupling constant between 119Sn and 1H nuclei) ) 65.7 Hz, 1H),
6.49 (dd, J ) 12.7, 7.5 Hz, 3JSnH ) 136.4 Hz, 1H); 13C NMR
(CDCl3) δ 10.82 (3 × CH2), 13.66 (3 × CH3), 14.08 (CH3), 22.66
(CH2), 25.54 (CH2), 27.32 (3 × CH2), 29.18 (3 × CH2), 29.25
(CH2), 29.55 (CH2), 29.70 (CH2), 31.87 (CH2), 37.35 (CH2), 75.73
(CH), 130.73 (CH), 150.43 (CH). Anal. Calcd for C23H48OSn: C,
60.14; H, 10.53. Found: C, 60.09; H, 10.79.
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TABLE 3. Hydrostannylation of Propargyl Ethers 8
with Bu2SnClH Followed by Butylationa

substrate
entry R no. methoda

yield
(12)/% (Z:E)b

yield (13+14)/%
(13:14)b

1 Me 8a A 86 (>99:1)c 9 (90:10)
2 Bn 8b A 75 (89:11)c 8 (>99:1)
3 Bn 8b B 72 (95:5)c 12 (>99:1)
4 MOM 8c A 87 (88:12)d 6 (>97:3)
5 MOM 8c B 75 (96:4)d 8 (88:12)
6 TBDMS 8d A 74 (7:93)d 12 (>99:1)
a All reactions were performed with Bu2SnClH (1.05 mmol) and

8 (1.00 mmol) in toluene (2.0 mL). Method A: AIBN (0.05 mmol),
60 °C, 30 min. Method B: Et3B (1 M in hexane, 0.10 mmol), dry
air (10 mL), 0 °C, 6 h. The reaction mixture was diluted with Et2O
(5 mL) and treated with BuLi (1.20 mmol) at -78 °C for 1 h. b The
Z:E ratio and the ratio of 13 to 14 were determined by 1H NMR
analysis. c Isolated yield. d The yield was determined by 1H NMR
analysis of a mixture of 12-14.
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