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An efficient and convenient Negishi coupling protocol was

developed for the preparation of 3-aryl-2,2-dimethylpropanoates

providing easy access to key pharmaceutical intermediates that

often require multi-step synthesis using conventional enolate

chemistry.

2,2-Dimethylpropanoic acids are common structural motifs in

small molecule drug discovery, particularly in targeting nuclear

hormone receptors.1 Their prevalence may be attributed to the

ability of the geminal methyl groups to shield or add steric

bulk to carboxylic acids. Two examples2 of 3-aryl-2,2-

dimethylpropanoates in late stage drug development are

shown in Fig. 1.

Conventional syntheses of 2,2-dimethyl-3-arylpropanoates

involve ester enolate alkylation approaches as depicted in

Fig. 2, i.e., an exhaustive alkylation approach (Method A)3

or a C2–C3 bond formation strategy (Method B).4 Each

method has inherent limitations. For instance, the exhaustive

alkylation of unsubstituted enolates (Method A) can rarely be

driven to completion and the remaining mono-alkylation

adducts are often very difficult to separate during purification.

Alkylation of tetrasubstituted enolates (Method B),

meanwhile, depends upon the accessibility of the benzylic

halides. Diverse heteroarylmethyl halides, in particular, are

not readily available from commercial sources.

Prompted by the need to develop an alternative synthesis

of 2,2-dimethyl-3-arylpropanoates that would address the

shortcomings described above, we envisioned a direct C–C

coupling5 of two commercially or readily available alkyl

halides (Method C in Fig. 3). The zinc-homoenolate 2,6 readily

derived from 1,7 is known as an air-stable white crystalline

material but few examples report the functionalization of its

hindered neopentyl position despite an abundance of known

examples using zinc-homoenolates for Negishi coupling

reactions.8 Herein we report our studies on a Negishi coupling

reaction using 2 as the key reaction intermediate for preparation

of 3-aryl-2,2-dimethylpropanoates.

To develop a viable one-step protocol, the zinc-homoenolate

2 was generated in situ by treating 1 with excess Zn–Cu couple

following Yamamoto’s procedure.9 Formation of 2 was

monitored by TLC observing the consumption of 1. 1 was

not detectable by TLC after heating at 110 1C for 3 h and the

heating was continued for an additional 3 h to ensure complete

formation of 2. The reaction mixture was then treated with

2-bromo-4-methylpyridine and 3 mol% Pd(PPh3)4 at 70 1C to

provide the desired Negishi coupling product 3 in 93%

yield (Scheme 1).z We discovered that formation of the zinc-

homoenolate intermediate is more efficient with the iodide 1

Fig. 1 Drug development candidates bearing 3-aryl-2,2-dimethyl-

propanoates.

Fig. 2 Conventional syntheses of 3-aryl-2,2-dimethylpropanoates.

Fig. 3 The envisioned direct C–C coupling method and the

zinc-homoenolate 2.
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than the bromide 6 which required two days under the same

reaction conditions.10

Encouraged by this result, we further examined the Negishi

coupling reaction with 2-halopyridines and the results are

summarized in Table 1. The Negishi coupling was efficient

for most substrates examined thus far, suggesting that their

steric or electronic nature was of minimal influence on the

outcome of the reaction. In the case of 4-amino-2-bromo-

pyridine (entry 4), despite several additions of the Pd catalyst,

the reaction stalled at 20% conversion, presumably due to

unproductive binding of amino group to the Pd catalyst.

To illustrate the efficiency of our system, we recognized the

utility of 4 to prepare a set of imidazopyridine derivatives

for the treatment of ulcers.11 This intermediate is prepared in

ca. 47% overall yield via a multi-step synthesis featuring a

Mukayama aldol reaction followed by a reductive deoxygena-

tion. Negishi coupling with 2-chloro-4-methoxypyridine and 1

afforded 4 in one step in 62% yield (Scheme 2), which

demonstrates the convenience of our coupling strategy.

Investigation of other coupling partners revealed that

this coupling method appears quite general with diverse

Scheme 1

Table 1 Preparation of 2,2-dimethyl-3-pyridinylpropionic acid
methyl esters via Negishi coupling

Entry Hetero-ArBra Product Yield (%)b

1 92

2 93

3 72

4 (20)c

a 0.74 equiv. of the aryl halides were used relative to iodide. b Yields

are isolated yields. c Not isolated. Reaction failed to proceed after

ca. 20% conversion detected by LC-MS.

Scheme 2

Table 2 Preparation of 2,2-dimethyl-3-heteroarylpropionic acid
methyl esters via Negishi coupling

Entry Hetero-ArCla Products Yield (%)b

5 98

6 73

7 78

8 61

9 49

10 73

11 75

a 0.74 equiv. of aryl halide was used with respect to the starting

iodide. b All the yields are isolated yields.
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heterocyclic electrophiles (Table 2). The coupling tolerated a

wide range of substituents including electron withdrawing

trifluoromethyl group and electron donating morpholine

group in good yields (49–98%). We observed a regioselective

(97% by 1H-NMR) alkylation on C-4 with 2,4-dichloro-

pyrimidine (entry 8). Finally, the Negishi coupling of 1 and

3-bromobenzaldehyde occurred smoothly to provide 5 in 86%

yield as shown in Scheme 3. This example attests to the utility

of the coupling protocol in synthesizing 2,2-dimethylpropano-

ates that are not readily accessible via enolate chemistry.

In summary, we have developed a convenient Negishi

coupling method using the zinc-homoenolate 2. We anticipate

that this new protocol will provide a very useful synthetic

strategy in medicinal chemistry for synthesis of 2,2-dimethyl-

3-arylpropanoates. Negishi coupling reactions with amides or

diversely substituted analogues of 1 are being investigated and

will be reported in due course.

Notes and references

z General procedure for the Negishi coupling. Preparation of 3: A
suspension of Zn–Cu couple (3.45 g) in toluene–DMA (13 : 1,
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