This article was downloaded by: [University of California, San Diego] On: 29 December 2014, At: 21:37 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

SYNTHESIS AND CRYSTAL STRUCTURE OF 1-METHYL-3-(4-NITROPHENYL)-1,2,3 TRIAZOLIUM PERCHLORATE

B. H. Doreswamy ^a , M. Mahendra ^a , M. A. Sridhar

^a , J. Shashidhara Prasad ^a , K. Mantelingu ^b , K. Basappa ^b & S. Rangappa ^b

^a Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India

^b Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Published online: 02 Feb 2011.

To cite this article: B. H. Doreswamy , M. Mahendra , M. A. Sridhar , J. Shashidhara Prasad , K. Mantelingu , K. Basappa & S. Rangappa (2003) SYNTHESIS AND CRYSTAL STRUCTURE OF 1-METHYL-3-(4-NITROPHENYL)-1,2,3 TRIAZOLIUM PERCHLORATE, Molecular Crystals and Liquid Crystals, 403:1, 67-75

To link to this article: http://dx.doi.org/10.1080/744818946

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the

Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHESIS AND CRYSTAL STRUCTURE OF 1-METHYL-3-(4-NITROPHENYL)-1,2,3 TRIAZOLIUM PERCHLORATE

B. H. Doreswamy, M. Mahendra, M. A. Sridhar, and J. Shashidhara Prasad Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India

K. Mantelingu, K. Basappa, and S. Rangappa* Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India

The isolation of stable carbenes of the Arduengo (1a) and Wanzlick (2a) type has prompted us to look for stable nitrenium ions of the related structural type 1-methyl-3-(4-nitrophenyl)-1,2,3 triazolium perchlorate (6). The title compound ($C_9 H_{11}$ Cl N₄ O₆) was isolated and structure was investigated by X-ray crystallography. It crystallizes in the monoclinic space group $P2_1/c$ with cell parameters a = 9.704(1) Å, b = 12.580(2) Å, c = 13.684(8) Å, Z = 4. The molecules appear to be stacked.

Keywords: nitrenium ions; carbenes; triazolium perchlorates; crystal structure

INTRODUCTION

Nitrenium ions are involved as highly reactive intermediates in a wide variety of organic reaction [1]. For example, aromatic nitrenium ion (Figure 1) with $R_1 = aryl$, $R_2 = H$ or C(O), CH₃, or SO₃ are considered as ultimate carcinogens in carcenogenesis initiated by aromatic amines [2]. Nitrenium ions are isoelectronic with carbenes R_2C containing a cationic [3] divalent nitrogen atom R_2N^+ . Recent time-resolved studies allowed the UV and IR spectra of some short-lived aryl nitrenium ions to be measured and

Received 10 February 2003; accepted 26 May 2003.

The authors would like to express their thanks to DST and AICTE, Government of India for financial assistance under the projects SP/12/FOO/93 and 8017/RD/MON-Sw/653/R&D/98-99/2000.

^{*}Corresponding author. E-mail: rangappaks@yahoo.com

FIGURE 1 Stable carbene of the Arduengo (1a) and Wanzlick (2a) type.

provided important results on their structure and reactivity [4]. Although electronically deficient molecules of the types mentioned above are extremely short-lived, Arduengo [5(a)] and Wanzlick [5(b)] et al. recently isolated and structurally characterized stable crystalline carbenes (Figure 1) concomitantly. Stable crystals of nitrenium ions more precisely, ion pair of nitrenium ions were synthesized and their crystal structures were determined [6]. From experimental data and theoretical calculations it emerged that these molecules are stabilized by electronic delocalization [7]. Intramolecular rearrangement reaction of nitrenium ions have been reported and established as useful intermediates in wide variety of biological applications [8].

In our previous work, we described the synthesis of some stable nitrenium ions [6] and their comparison study with structurally related carbenes and found that stable nitrenium ions (as their carbene analogues) are electronically different from nonstable ones. To get further insight into their exact nature and role of nitrenium ions, the title compound $\mathbf{6}$ was synthesised as per Scheme 1 and characterized by X-ray diffraction method.

EXPERIMENTAL

Synthesis and Characterization

3-(2-hydroxyethyl)-3-methyl-1-(4-nitrophenyl)triazene (5)

The preparation of **5** was by diazotization of 4-nitroaniline (10 gm, 0.0724 mol). First, 4-nitroaniline was dissolved in 23 ml of concentrated

SCHEME 1

hydrochloric acid and 23 ml of water and cooled to $0-5^{\circ}$ C in an ice bath. Then we added sodium nitrite (7.4 gm, 0.0724 mol) in 16 ml of water to this cold solution. The diazonium salt solution **4** was mixed with a cold solution of 2-(methylamino)ethanol (5.42 gm, 0.0724 mol) in 25 ml of Na₂CO₃ solution (25%). The mixture was stirred for half an hour at $0-5^{\circ}$ C, and triazene **5** was extracted with ether and dried with anhydrous sodium sulphate and evaporated the solvent. The product was obtained as red oil to yield (54.4%).

¹H NMR (CDCl₃, 400 MHz); δ (ppm): 3.38 (s, 4H, N–CH₃ and OH), 3.86– 3.93 (m, 4H, CH₂–CH₂), 7.74 (d, 2H, Ar–H), 7.92 (d, 2H, Ar–H); ¹³C NMR (CDCl₃, 100 MHz); δ (ppm): 49.9, 55.8, 62.8, 128.9, 130.8, 136.2, 145.8; IR (Nujol); v_{max} (cm⁻¹): 3429 (OH), 1548 (C–N). 1619 (C=C), Ana. Calcd. for C₉H₁₂N₄O₃: C, 48.21; H, 5.35; N, 25.01. Found: C, 48.32, H. 5.39, N, 25.22.

1-methyl-3-(4-nitrophenyl)-1,2,3 triazolium perchlorate (6)

Triazene **5**(1 gm, 4.46 mmol) was dissolved in dry dichloromethane and cooled to -15 to -10° C. Triethylamine (0.450 gm, 4.46 mmol) was mixed with triazene cold solution. Methyl-sulfonyl chloride (0.364 gm, 4.46 mmol) in 0.9 ml of dry dichloromethane was added to a cold triazene solution without raising the temperature above 5°C. The reaction mixture was stirred for 40–50 min at the same temperature. We distilled out the solvent under reduced pressure up to residueness. The residue was washed with benzene and dissolved in ethanol. To the ethanolic solution aqueous solution of NaClO₄ (2 gm of NaClO₄ in 30 ml of water) was added. The product

was filtered off and followed by recrystallization with aqueous ethanol(1:1) to yield as yellow crystalline solid (72%). The melting point (mp) of **6** was found to be 159° C.

¹H NMR (DMSO-d₆, 400 MHz); δ (ppm): 3.88 (s, 3H, N–CH₃), 4.61 (t, 2H, CH₂–CH₂), 4.83 (t, 2H, CH₂–CH₂), 7.59 (d, 2H, Ar–H), 7.89 (d, 2H, Ar–H); ¹³C NMR (DMSO-d₆, 100 MHz); δ (ppm): 45.2, 51.5, 56.3, 119.7, 120.9, 132.9, 135.8; IR (KBr); v_{max} (cm⁻¹): 1489, 1506 (C–N), 1099 (N–N–N). Ana. Calcd. for C₉H₁₁N₄O₆Cl: C, 35.24; H, 3.60; N, 18.27. Found: C, 35.62; H, 3.79; N, 18.76.

CRYSTAL STRUCTURE DETERMINATION

Single crystal of dimensions $0.25 \times 0.2 \times 0.25$ mm was chosen for X-ray diffraction studies. The measurements were made on a DIPLabo Imaging

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Cell dimensions	$\begin{array}{c} C_9 \ H_{11} \ Cl \ N_4 \ O_6 \\ 306.67 \\ 293(2) \ K \\ 0.71073 \ \AA \\ Monoclinc \\ P2_1/c \\ a = 9.704(1) \ \AA \\ b = 12.580(2) \ \AA \end{array}$
	c = 13.684(8) Å $\beta = 129.393(8)^{\circ}$
Volume	1291.0(3) A ³
L Dengity (calculated)	$4 1 579 \mathrm{Me}/\mathrm{m}^3$
Absorption coefficient	$0.320 \mathrm{mm}^{-1}$
$F_{}$	632
Crystal color	brown
Crystal size	$0.25 \times 0.2 \times 0.25 \mathrm{mm}$
Theta range for data collection	2.52° to 24.40°
Index ranges	-11 < h < 11
	$-14 \le k \le 14$
	$-15 \le l \le 15$
Reflections collected	3676
Independent reflections	2043 [R(int) = 0.0251]
Refinement method	Full-matrix least-squares on F^2
Data/parameters	2043/182
Goodness-of-fit on F^2	1.100
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0854
R indices (all data)	R1 = 0.0989
Extinction coefficient	0.003(4)
Largest diff. peak and hole	$0.968 \text{ and } -0.924 \text{ e.} \text{\AA}^{-3}$

TABLE 1 Crystal Data and Experimental Crystallographic Details of 6

Atom	x	У	z	$U_{ m eq}$
Cl1	0.176(2)	0.2183(1)	0.1880(2)	0.0565(6)
N14	0.8103(5)	0.1273(3)	0.2184(3)	0.0402(10)
C10	0.6008(7)	0.2692(4)	0.0904(5)	0.0498(13)
C11	0.7170(6)	0.2189(4)	0.2066(4)	0.397(11)
N15	0.7553(5)	0.0723(3)	0.1190(4)	0.0441(10)
N7	0.4195(6)	0.4786(4)	0.1727(5)	0.557(12)
N16	0.8568(6)	-0.0065(3)	0.1515(4)	0.0482(11)
C8	0.5296(6)	0.3915(4)	0.1853(5)	0.0448(12)
C13	0.6500(7)	0.3428(4)	0.3021(5)	0.0494(13)
C9	0.5053(7)	0.3567(4)	0.0800(5)	0.0513(13)
C18	0.9652(7)	0.0794(4)	0.3372(5)	0.0481(12)
O6	0.3130(6)	0.5204(3)	0.0690(4)	0.0743(13)
C12	0.7444(7)	0.2570(4)	0.3122(5)	0.0500(13)
C19	0.8317(9)	-0.0784(5)	0.0583(5)	0.0703(18)
C17	1.0107(7)	-0.0099(4)	0.2879(5)	0.0525(13)
05	0.4384(6)	0.5052(4)	0.2663(4)	0.0745(13)
01	0.1703(9)	0.2883(6)	0.1052(5)	0.134(3)
03	0.015(13)	0.185(16)	0.1251(11)	0.364(13)
04	0.211(2)	0.263(10)	0.2873(8)	0.299(9)
O2	0.288(2)	0.139(10)	0.2327(12)	0.244(7)

 $\ensuremath{\textbf{TABLE}}\xspace 2$ Atomic Coordinates and Equivalent Thermal Parameters of the Nonhydrogen Atoms

TABLE 3 Anisotropic Thermal Parameters of the Nonhydrogen Atoms

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cl1	0.060(9)	0.066(10)	0.050(9)	0.004(6)	0.0382(8)	0.0037(6)
N14	0.037(2)	0.045(2)	0.038(2)	0.0021(17)	0.0237(18)	0.0014(17)
C10	0.049(3)	0.062(3)	0.037(3)	0.010(2)	0.027(2)	0.02(2)
C11	0.035(2)	0.041(3)	0.044(3)	-0.0025(19)	0.026(2)	-0.0025(19)
N15	0.045(2)	0.046(2)	0.041(2)	0.0020(18)	0.273(19)	0.0018(17)
N7	0.042(2)	0.054(3)	0.059(3)	0.000(2)	0.026(2)	-0.009(2)
N16	0.054(2)	0.048(2)	0.042(2)	0.008(2)	0.031(2)	0.0040(18)
C8	0.037(2)	0.042(3)	0.050(3)	-0.002(2)	0.025(2)	-0.005(2)
C13	0.049(3)	0.053(3)	0.044(3)	-0.002(2)	0.029(2)	-0.008(2)
C9	0.045(3)	0.057(3)	0.039(3)	0.013(2)	0.020(2)	0.006(2)
C18	0.044(3)	0.054(3)	0.039(3)	0.005(2)	0.023(2)	0.005(2)
06	0.060(3)	0.070(3)	0.062(3)	0.023(2)	0.025(2)	0.000(2)
C12	0.053(3)	0.050(3)	0.039(3)	0.004(2)	0.025(2)	0.002(2)
C19	0.095(5)	0.056(3)	0.054(4)	0.018(3)	0.044(3)	-0.001(3)
C17	0.049(3)	0.048(3)	0.047(3)	0.005(2)	0.024(2)	0.004(2)
05	0.073(3)	0.079(3)	0.069(3)	0.013(2)	0.044(2)	-0.016(2)
01	0.108(5)	0.167(6)	0.079(4)	-0.052(4)	0.037(3)	0.0414(4)
03	0.116(7)	0.63(3)	0.195(10)	-0.139(12)	0.026(6)	0.211(14)
04	0.51(2)	0.237(12)	0.099(6)	0.204(13)	0.165(10)	0.031(6)
02	0.346(16)	0.237(11)	0.266(12)	0.220(12)	0.249(13)	0.154(10)

Atoms	Length	Atoms	Length	
Cl1-O3	1.280(8)	N15-N16	1.263(6)	
Cl1-O4	1.300(7)	N7-O5	1.220(6)	
Cl1-O2 1.306(8)		N7-O6	1.222(6)	
Cl1-O1	1.370(5)	N7-C8	1.462(7)	
N14-N15	1.301(5)	N16-C19	1.453(7)	
N14-C11	1.410(6)	N16-C17	1.475(7)	
N14-C18	1.471(6)	C8-C9	1.377(7)	
C10-C11	1.387(7)	C8-C13	1.387(7)	
C10-C9 1.387(7)		C13-C12	1.365(7)	
C11-C12	1.379(7)	C18-C17	1.513(7)	
Atoms	Angle	Atoms	Angle	
03-Cl1-O4	104.0(2)	O5-N7-O6	123.6(5)	
O3-Cl1-O2	111.4(2)	O5-N7-C8	118.0(5)	
O4-Cl1-O2	104.7(7)	O6-N7-C8	118.4(5)	
O3-Cl1-O1	104.0(5)	N15-N16-C19	121.3(4)	
O4-Cl1-O1	116.9(8)	N15-N16-C17	113.9(4)	
O2-Cl1-O1	115.4	C19-N16-C17	124.3(4)	
N15-N14-C11	120.5(4)	C9-C8-C13	121.6(5)	
N15-N14-C18	113.1(4)	C9-C8-N7	119.2(4)	
Cl1-N14-C18	126.3(4)	C13-C8-N7	119.1(5)	
Cl1-C10-C9	119.0(5)	C12-C13-C8	119.2(5)	
C12-C11-C10	121.2(5)	C8-C9-C10	119.1(5)	
C12-C11-N14	118.8(4)	N14-C18-C17	101.2(4)	
C10-C11-N14	120.0(4)	C13-C12-C11	119.9(5)	
N16-N15-N14	109.7(4)	N16-C17-C18	101.2(4)	

TABLE 4 Bond Lengths (Å) and Bond Angles (°)

FIGURE 2 ORTEP of the molecule at 50% probability.

Plate system with graphite monochromated MoK_{α} radiation. Thirty six frames of data were collected using oscillation method. Image processing and data reduction were done by using Denzo [12]. The structure was solved and refined using maXus [10–14] program. All the nonhydrogen atoms were revealed in the first map. Full-matrix least-squares refinement using SHELXL-97 [14] with isotropic temperature factors for all the atoms converged residual to R = 0.1864. Refinement of nonhydrogen atoms with anistropic thermal parameters was started at this stage. After eight cycles of refinement the residuals saturated at R = 0.0854. The hydrogen atoms were placed at calculated positions and were not refined. Table 1 gives the details of crystal data, data collection, and refinement.

RESULTS AND DISCUSSION

The final positional coordinates with equivalent isotropic temperature factors for all nonhydrogen atoms are given in Table 2. Anisotropic thermal

FIGURE 3 Packing of the molecules down *a* axis.

parameter (U_{ij}) for the nonhydrogen atoms are listed in Table 3. Table 4 gives the bond distances and angles of nonhydrogen atoms. The bond distances and bond angles are in good agreement with the standard values.

ORTEP [11] of the molecule at 50% probability is shown in Figure 2. Figure 3 represents the packing of the molecules and dashed lines represent the hydrogen bonds. It shows stacking of molecules in pairs when viewed down *a* axis. The crystal structure shows that the anion ClO_4^- is not directly connected to the positively charged part of the respective nitrenium ion. ClO_4^- holds cation by means of $C-H\cdots ClO_4^-$ hydrogen bonds [15,16] and their intermolecular interactions appear to be responsible for molecular cohesion in the unit cell. The cationic part of the niternium ion is planar, and phenyl and five-membered rings are independently planar. The intermolecular hydrogen bonds are: C18-H12B...O1 (3.336 Å, 127.65°) and C19-H15A...O4 (3.119 Å, 131.20°) with symmetry codes 1+x, 1/2-y, 1/2+z and 1-x, -1/2+y, 1/2-z, respectively.

REFERENCES

- Abramovitch, R. A., & Jeyaraman, (1984). In: Azides and Nitrenes: Reactivity and Utility (Ed.) Orlando, Academic, FL: 297–357.
- [2] Gassman, P. G. (1970). Acc. Chem. Res., 3, 26-33.
- [3] (a) Miller, A. (1970). Cancer Res., 30, 559.
 (b) Bosold, F., Boche, G., & Kleemiss, W. (1988). Tetrahedron Lett., 29, 780–1781.
 (c) Famulok, M., Bosold, F., & Boche, G. (1990). Tetrahedron Lett., 31, 1689–1692.
- [4] Anderson, G. B., Yang, L. L. N., & Falvey, D. E. (1993). J. Am. Chem. Soc., 115, 9870.
- [5] (a) Arduengo, A. J., III, Harlow, R. L., & Kline, M. (1991). J. Am. Chem. Soc., 113, 361.
 (b) Wanzlick, H. W. (1962). Angew Chem. Int. Ed. Engl., 1, 75.
- [6] (a) Boche, G., Andrews, P., Harms, K., Marsch, M., Rangappa, K. S., Schimeczek, M., & Willeke, C. (1996). J. Am. Chem. Soc., 118, 4925–4930.
 - (b) Boche, G., Rangappa, K. S., Harms, K., & Marsch, M. (1997). Z. Kristallogr., 212, 33.
 - (c) Sridhar, M. A., Lokanath, N. K., Shashidhara Prasad, J., Bhadregowda, D. G., & Rangappa, K. S. (1997). Z. Kristallogr., 212, 33.
- [7] (a) Marc, R., Andreas, N., Boche, G., Rangappa, K. S., & Andrews, P. (1998). New J. Chem., 1437–1444.
 - (b) Rangappa, K. S., Mallesha, H., Anikumar, N. V., Sridhar, M. A., & Shashidhara Prasad, J. (2000). Mol. Cryst. Liq. Cryst., 357, 291–298.
- [8] Moran, R. J., Cramer, C., & Falvey, D. E. (1997). J. Org. Chem., 62, 2742–2751.
- [9] Hansen, H., Hunig, S., & Ken-Ichikishi, (1979). Chem. Ber., 112, 445-461.
- [10] Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N., & Shankland, K. (1999). maXus Computer Program for the Solution and Refinement of Crystal Structures. The Netherlands: Bruker Nonius.
- [11] Johnson, C. K. (1976). ORTEP-II. A Fortran Thermal-Ellipsoid Plot Program. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- [12] Otwinowski, Z., & Minor, W. (1997). In: *Methods in Enzymology*, 276, C. W. Carter, Jr., & R. M. Sweet (Eds.), New York: Academic Press, 307–326.
- [13] Sheldrick, G. M. (1997). SHELXS-97. Program for Crystal Structure Solution. Germany: University of Göttingen.

- [14] Sheldrick, G. M. (1997). SHELXS-97. Program for the Refinement of Crystal Structures. Germany: University of Göttingen.
- [15] (a) Berkovitch-Yellin, Z., & Leiserowitz, L. (1984). Acta Cryst., B 40, 159–165.
- (b) Jeffrey, G. A., Maluszynska, H., & Mitra, J. (1985). Int. J. Biol. Macromol, 7, 3336–348.
- [16] van der Waals radii: C170, H120, I198 pm. Bondi, A. (1964). J. Phys. Chem., 68, 441-451.