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ABSTRACT

Arene-, arylmethane, and alk-2-ene-1-sulfonyl chlorides undergo Suzuki−Miyaura cross-coupling with arene-, heteroarene-, and alkeneboronic
acids in THF at reflux. The reactivity order is ArI > ArSO2Cl > ArBr . ArCl.

The palladium-catalyzed Suzuki-Miyaura reaction has
emerged as an extremely powerful method for the cross-
coupling of aryl bromides, iodides, and triflates with boronic
acids.1 Coupling between electron-rich or electron-neutral
aryl chlorides and arene boronic acids is also possible by
using palladium complexes with sterically hindered, electron-
rich, or carbene ligands such as those developed by Buch-
wald,2 Fu,3 and Herrmann,4 respectively. Aryl arenesulfonates
can cross-couple with arylboronic acids.5 Vinylation,6 car-
bonylation7 and homocoupling8 of arenesulfonyl chlorides
have already been described. Recently, we have disclosed

the palladium-catalyzed Stille cross-coupling of sulfonyl
chlorides and organostannanes.9 We are reporting here that
arene-, phenylmethane-, and 2-methylprop-2-enesulfonyl
chlorides can be condensed with arene-, heteroarene-, and
alkeneboronic acids in the presence of a palladium catalyst
(Scheme 1).

In our first search for optimal reaction conditions, we
explored the condensation ofp-toluenesulfonyl chloride
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Scheme 1. Cross-Coupling of Sulfonyl Chlorides with
Boronic Acids
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(TsCl) with 3-nitrobenzeneboronic acid in the presence of
various catalysts such as Pd(PPh3)4, PdCl2(PhCN)2, Pd2(dba)3
+ P(t-Bu)3, Pd2(dba)3 + tri-2-furylphosphine, and Pd2(dba)3
+ 2-(di-tert-butylphosphino)biphenyl in boiling DME, DMF,
THF, or dioxane.10 Cross-coupling occurred only in the
presence of a base such as K2CO3, Cs2CO3, K3PO4, or Et3N.
The best yield (60%) was obtained using 8 mol % Pd(PPh3)4

and 2.0-3.0 equiv of K2CO3.
Then, we searched to optimize the proportion of palladium

employed, screening different sterically hindered, electron-
rich, or carbene ligands,11 as well as bases and solvents
(Table 1 and Figure 1) for 1-naphthalenesulfonyl chloride
reacting with 4-methylbenzeneboronic acid.

We found that Na2CO3 is a better activator for the boronic
acid (without destroying the sulfonyl chloride) compared to
other bases such as Et3N, Cs2CO3, NaOAc, K3PO4, K2CO3,
or Li2CO3. When using Cs2CO3 as a base, the formation of
the cross-coupling product was not observed, but all the
starting sulfonyl chloride was consumed. When NaOAc was
used as a base, the cross-coupling product was isolated in
low yield (6%). Under these conditions, starting sulfonyl
chloride was consumed in ca. 5 h. This is explained by the
fact that the sulfonyl chloride is converted into the corre-
sponding sulfonate, which retards the reaction.

A small library of ligands was tested, and it was found
that the carbene derived by HClR-elimination from 7
generates, with palladium, the best catalyst (Figure 1).

A wide range of electronically and structurally diverse
sulfonyl chlorides and boronic acids can be cross-coupled
efficiently under these conditions.12 Thus, with respect to
the electron-rich, electron-neutral, and electron-poor arene-
sulfonyl chlorides, they react with the boronic acids to
provide the corresponding biaryl products in good yields in
most cases (Table 2). Self-coupling of boronic acids was

observed in some cases as a concurrent reaction.13 The
proportion of the latter was lower in boiling THF than in
boiling dioxane, acetonitrile, 1,2-dimethoxyethane, orp-
xylene. When Pd(PPh3)4 was used as a catalyst, traces of
diarylsulfide were frequently observed. For instance, treat-
ment of p-toluenesulfonyl chloride with 4-methoxyben-
zeneboronic acid in the presence of Pd(PPh3)4 and K2CO3

(3 equiv) led to Tol-S-Ar (Ar) 4-methoxyphenyl) that was
isolated in 8% yield. This byproduct results probably from
the reduction of the sulfonyl chloride into the corresponding
sulfenyl chloride,9,14 which is then coupled with the boronic
acid following the Suzuki-Miyaura catalytic cycle (Figure
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again with ether (three times). The combined organic phases were dried
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Table 1. Screening of Bases for Suzuki-Miyaura
Cross-Coupling of Sulfonyl Chloride and Boronic Acid

entry base yielda

1 Et3N 10
2 NaOAc 5
3 Cs2CO3 0
4 K3PO4 19
5 K2CO3 41
6 Na2CO3 60
7 Li2CO3 28

a Yields of cross-coupling products determined after flash chromatog-
raphy.

Figure 1. Screening of ligands for Suzuki-Miyaura cross-coupling
of sulfonyl chloride and boronic acid.
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2). In contrast, when using carbene, sterically hindered, or
electron-rich ligands, the arylpalladium chloride intermediates
can give the corresponding homocoupled product15 (Figure
2).

After screening the different ligands (1-9) (Figure 1), we
have found that catalyst B (although not tested for all the

reactions described here) was more efficient than the classical
catalyst A (Table 2).

Under nonbasic conditions, the cross-coupling reaction was
more efficient in the presence of CuCl (3 equiv) than with
CuBr‚Me2S. With 3 equiv of CuI, no reaction was observed.10

With p-halogenobenzenesulfonyl chlorides10, 13, and17,
we have observed that the sulfonyl chloride group is more
reactive than the bromo- and chloroarene moieties (Scheme
2).16 However, iodoarenes are more reactive than arenesulfo-
nyl chlorides.

Recently, Leadbeater and Marco have reported transition-
metal-free Suzuki-type coupling reactions using tetrabutyl-
ammonium bromide (TBAB) as a phase transfer reagent.17

We have applied these conditions to our sulfonyl chlorides,
but without success.18 When the reaction is performed in
the presence of a palladium catalyst and TBAB, the corre-
sponding cross-coupling product is obtained in a lower yield
than in the absence of TBAB (Table 2, entry 15).

When TsCl was mixed with 1 equiv of PdCl2(PhCN)2 in
THF-d8, a signal (δc 145.2 ppm) typical of the C-Pd bond19

Table 2. Palladium-Catalyzed Suzuki-Miyaura
Cross-Couplings of Sulfonyl Chlorides and Boronic Acids

yield*

entry R R1 cat. Aa/cat. Bb

1 4-methylphenyl phenyl 55
2 4-methylphenyl 4-methylphenyl 70 92
3 4-methylphenyl 3-nitrophenyl 60
4 4-methylphenyl 3-formylphenyl 55
5 4-methylphenyl 4-methoxyphenyl 50 65
6 4-methylphenyl fur-2-yl 40
7 4-methylphenyl (E)-2-phenylvinyl 35 48
8 4-methylphenyl 4-chlorophenyl 60 78
9 4-methylphenyl 1-naphthyl 64 76
10 4-chlorophenyl 3-nitrophenyl 65
11 4-chlorophenyl 4-methylphenyl 62 80
12 1-naphthyl 3-formylphenyl 55 72
13 1-naphthyl 3-nitrophenyl 61
14 1-naphthyl 4-methylphenyl 55 82
15 1-naphthyl 4-methylphenyl 58c 14d

16 1-naphthyl 4-methylphenyl tracee

17 1-naphthyl 4-methylphenyl 42f

18 3-nitrophenyl 3-nitrophenyl 78
19 3-nitrophenyl 4-methylphenyl 70
20 4-nitrophenyl 4-methylphenyl 64
21 benzyl 4-methylphenyl 30
22 benzyl 3-nitrophenyl 35 52
23 methallyl 3-nitrophenyl 35 50

* Catalyst A: 8-10 mol % Pd(PPh3)4 and 2-3 equiv of K2CO3. Catalyst
B: 1.5 mol % Pd2dba3, 6 mol % ligand7, and 3 equiv of Na2CO3. a R-
S-R was isolated as a side product.b R-R was isolated as a side product.
c Catalyst A and activated charcoal.d Catalyst B with 1.0 equiv of TBAB.
e Performed with 1.5 mol % Pd(OH)2/C and Na2CO3 as a base.f Performed
with 5 mol % Pd(OAc)2, 10 mol % PPh3, and K2CO3 as a base.

Scheme 2. Reactivity Order for Suzuki-Miyaura Cross-Coupling Is ArI> ArSO2Cl > ArBr . ArCl

Figure 2. Probable catalytic cycle for Suzuki-Miyaura cross-
coupling of sulfonyl chlorides and boronic acids.
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appeared in the13C NMR spectra after 10 min at 45°C. At
least two mechanisms can be envisaged for this observa-
tion: (1) the metal inserts into the SO2-Cl bond first with
rapid subsequent elimination of SO2 (Figure 2), or (2) the
oxidative addition of the palladium occurs first onto the C-S
bond, with subsequent elimination of SO2.

We also examined nickel-catalyzed Suzuki-Miyaura
cross-coupling reactions between various sulfonyl chlorides
and areneboronic acids in the presence of a base, but none
of our assays have been met with success.20

In summary, a palladium-catalyzed cross-coupling reaction
between arene-, phenylmethane-, 2-methylprop-2-enesufonyl

chlorides, and arene-, heteroarene-, and alkeneboronic acids
is possible. The reaction provides a useful complement to
our recently described work of Stille cross-couplings of
sulfonyl chlorides and organostannanes9 and should open new
possibilities for medicinal chemistry and material science.
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