

Subscriber access provided by UNIV OF SCIENCES PHILADELPHIA

Formal Total Synthesis of Actinoranone: Synthetic Approaches and Cytotoxic Studies.

Luiz Fernando Toneto Novaes, Kaliandra de Almeida Gonçalves, Daniela B B Trivella, and Julio Cezar Pastre J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00514 • Publication Date (Web): 12 Apr 2018 Downloaded from http://pubs.acs.org on April 12, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

ABSTRACT: This full account describes our efforts towards the total synthesis of actinoranone. Our synthetic strategies rely on a convergent route to connect the terpenoid and polyketide fragments, employing catalysis and powerful classical reactions for the assembly of these key fragments. A new transformation was disclosed during this work, a domino ring-opening and esterification. Initial cytotoxic studies for selected synthetic intermediates are also presented.

■ INTRODUCTION

Synthetic chemistry plays a crucial role in our world. In particular, medicine has benefited from the creation of new drugs or the supply of scarce natural products *via* total synthesis. Even with clear benefits for humankind, the scientific community has struggled with funding constraints, and the current situation urges chemists to develop shorter and more efficient synthetic routes. A few strategies have been employed with these aims, which include redox economy,¹ avoidance of protecting groups² and application of catalytic methods.

Compounds isolated from natural sources present a seemingly limitless chemical diversity, and are thus considered privileged scaffolds for drug discovery. In the review of Newman and Cragg,³ which covers data from 1981 to 2014, natural products and compounds inspired by their architectures comprise more than 50% of all approved small-molecule drugs, showing the importance of their investigation.

In this scenario, we have been working on the development of total syntheses of natural products and analogues, which could be applied in our medicinal chemistry program.⁴ We have recently developed a concise formal total synthesis of actinoranone (1),^{4a} and a full account of our efforts is provided in this manuscript, including failed approaches and preliminary cytotoxic evaluation.

Actinoranone. The meroterpene actinoranone (**1**, Scheme **1**) was first isolated by Fenical and coworkers in 2013 from the CNQ-027 strain of marine actinomycetes, and presented *in vitro* cytotoxicity against the human colon carcinoma cell line HCT-1116 ($IC_{50} = 4.0 \ \mu M$).⁵ Interestingly, the connection between the diterpene labdane and the tetralone fragments has never been observed in other natural products, making this a unique structural feature of this natural product.

Structural elucidation of actinoranone was performed *via* uni and bidimensional NMR analyses. The relative configuration of the octalin fragment was established as (5S,9S,10S) or (5R,9R,10R). The absolute configuration at C15 was ascribed as (R) after analysis of respective Mosher esters, thereafter, C8' was assigned as (R) using NOESY experiments.

During our efforts towards actinoranone, its first synthesis was reported independently by Xu, Ye and coworkers.⁶ Their work detailed the preparation of four diastereoisomers, varying the stereogenic centers at C15 and C8', and after comparison of spectroscopical data of the natural and synthetic samples, the assignment was revised at C8', and the correct absolute configuration was determined as (5*S*,9*S*,10*S*,15*R*,8'*S*). Spectroscopical methods have evolved astonishingly over the last decades, however unequivocal structural elucidation of natural products remain a challenge nowadays, as observed in the case of actinoranone, for synthetic organic chemistry still plays an important role in this field.⁷

The Xu and Ye synthesis was accomplished in a long sequence, a total of 29 steps, being 19 steps for the longest linear sequence. We therefore sought to establish a shorter synthesis of this natural product, allowing a quicker way to obtain analogues with this new backbone, following cytotoxic studies of selected intermediates.

Our retrosynthetic plan (**Scheme 1**) focused on the disconnection of the C14-C15 bond, which would be constructed with an aldol reaction (path A) or a sequence of metalhalogen exchange followed by the addition to a carbonyl compound (path B). The ketone group from the tetralone bicycle would be masked as a ketal, thioketal or methylene group.

Scheme 1. Originally Proposed (Left) and Revised (Right) Structures for Actinoranone, and Retrosynthetic Disconnection

RESULTS AND DISCUSSION

Terpenoid Fragment Synthesis. The terpenoid fragment (compounds 2 or 3) synthesis required the installment of a trisubstituted *endo*-olefin as an initial challenge. This task was first approached with a sequence developed by de la Torre and co-workers.⁸ conversion of (+)-sclareolide (4) to its Weinreb amide and tertiary alcohol elimination mediated by SOCl₂ in pyridine, as outlined in **Scheme 2**. Unfortunately, the desired *endo*-olefin was obtained in only 21% yield, and multiple chromatographic purifications were necessary to obtain pure **6**. An acid-catalyzed isomerization of the major *exo*-olefin into the desired *endo*-olefin **6** was reported by de la Torre,⁸ however, this protocol produced poor results in our hands.

The desired *endo*-olefin **6** can be formed from alcohol **5** only by an E1 mechanism, since the hydrogens marked in red do not have the required alignment with the hydroxyl group to enable an E2 elimination. After this observation, an exchange of the hydroxyl group from an equatorial position in compound **5** to an axial position in compound **8** was hypothesized to be beneficial to the elimination step, as an E2 mechanism could take

place with the hydrogen marked in blue. This strategy began with (+)-sclareolide (**4**) epimerization at C8,⁹ followed by the Weinreb amide **8** synthesis with Me₂AlCl,¹⁰ where the axial position of the hydroxyl group was confirmed by X-ray diffraction analysis.¹¹ Pleasingly, the desired *endo*-olefin **6** was obtained as the major product from the elimination of alcohol **8**, applying the same conditions as before, and a small amount of *exo*-olefin (<5%) was detected.

This challenge was also addressed by Samadi and co-workers during their coscinosulfate synthesis,¹² and a sequence of seven steps, including several redox reactions, were necessary to install the trisubstituted *endo*-olefin from the tertiary alcohol **9** (Scheme 2).

Scheme 2. Amide 6 Synthesis

Thereafter, the methylketone (**2**) synthesis was evaluated. The first approach employed a three-step sequence from Weinreb amide **6**: reduction with LiAlH₄, van Leusen reaction,¹³ and Grignard addition to nitrile **12** (**Scheme 3**).

A second approach to methylketone **2** was also developed, applying two one-carbon homologations: a Wittig reaction from aldehyde **11** and a reaction of aldehyde **13** with the anion of TMSCHN₂, followed by a gold(I)-catalyzed alkyne hydration¹⁴ (**Scheme 4**).

The vinyl iodide (**3**) synthesis was then studied, as outlined in **Scheme 4**. As first attempt, the use of a carbozirconation reaction of alkyne **14** and consecutive treatment with $l_2^{[15]}$ led to poor results, as only trace formation of **3** was observed by GC/MS analysis. Next, a Takai olefination¹⁶ of ketone **2** was evaluated, generating CrCl₂ *in situ*,¹⁷ however, no product was observed and starting material was recovered. The third approach was conducted with a sequential Horner-Wadsworth-Emmons olefination and basic hydrolysis yielding carboxylic acid **16**, which was successfully employed in a decarboxylative iodination with *N*-iodosuccinimide (NIS) in the presence of cetyltrimethylammonium bromide (CTAB).¹⁸

The vinyl iodide (**3**) synthesis developed by Xu and Ye employed as key step a carbozirconation of alkyne **18**, which contained a free hydroxyl group, followed by treatment with iodine, after which the *endo*-olefin was installed. Their sequence required sixteen steps from (+)-sclareolide (**4**), with use of protecting groups and several redox reactions. Our approach to vinyl iodide **3** was concluded in only nine steps, as no protecting groups were required and the use of redox reactions was minimized.

Polyketide Fragment Synthesis. The initial approach to the polyketide fragment started with the regioselective methoxylation of 6-methoxy-1-tetralone (**20**) (**Scheme 5**). This transformation began with the insertion of methyl-oxime as a directing group, followed by a C-H activation using catalytic Pd(OAc)₂ and oxone as re-oxidant,²⁰ which afforded methyl-oxime **22** and a small amount of the desired tetralone **23**. Thus, acidic hydrolysis of the oxime completed the synthesis of **23**, .

In order to functionalize the benzylic position of **23** towards **26**, the ketone would be protected as a ketal group. Unexpectedly, a common protocol, heating ketone with *p*TSA in ethylene glycol as solvent, led to a ring-opening reaction, which was further investigated. The desired ketal was obtained with a weaker acid (pyridinium *p*-toluenesulfonate) using a Dean-Stark apparatus²¹ in 50% yield, however this protecting group presented lability upon storage and during benzylic functionalization attempts (**Scheme 6A**).

At this point, our attention was turned to the ring-opening reaction. Two mechanisms were proposed, as outlined in **Scheme 6B**. For path A, intermediate **27** would be generated *via* a protonation of the aromatic ring of **23**, followed by a retro Friedel-Crafts acylation and esterification with ethylene glycol. For path B, ketal **24** would be formed initially, following protonation of the aromatic ring, ring-opening and hydrolysis of oxonium

.

Scheme 6. A) Unexpected Ring Opening Reaction, B) Proposed Mechanisms

The ring-opening reaction was next evaluated with different substrates. Thus, 1-tetralone (**31**), 6-methoxy-1-tetralone (**32**) and 8-methoxy-1-tetralone (**20**) were subjected to a standard condition, but the starting materials were recovered with no signal of ring-opening nor ketalization reaction (**Scheme 7**). Similar tests with these compounds were performed at 180 °C, but the same results were observed.

On the other hand, 6,7,8-trimethoxy-1-tetralone (**33**) underwent the domino reaction. Notably, compound **33** also produced the demethylated tetralone **34**, which did not suffer ring-opening nor ketalization, even with longer periods of heating using the standard condition, probably due a high stability provided by an intramolecular hydrogen bonding, evidenced by a downfield shift of the phenolic proton (δ 12.69 ppm).²² The presence of both methoxy groups at the positions 6 and 8 of the aromatic ring seems to be necessary to the success of the reaction, which agrees with the proposed mechanism shown in **Scheme 6B**.

Next, the size of the ring fused to the aromatic system was evaluated, and the bicycles containing 5, 6 or 7 membered-ring were able to participate in the domino reaction in high yields (**Scheme 7**).

After these experiments, we intended to explore other nucleophiles in order to expand the scope of the reaction, but unfortunately the reaction was not successful when replacing ethylene glycol with other alcohols as solvent. Moreover, these results suggest that path B must be operating under these conditions. In view of the limited application of this reaction, these studies were concluded at this point, and we turned our attention back to the polyketide fragment synthesis.

After this initial approach, a series of asymmetric methods to achieve the second ring with a stereogenic benzylic position was investigated. A route aiming the connection of a nitrile group at the benzylic position began with the Krische allylation²³ of alcohol **40**, obtaining homoallylic alcohol **41** with high enantioselectivity (ee 92%) (**Scheme 8**). Unfortunately, both attempts to synthesize nitrile **42** *via* a Mitsunobu reaction²⁴ from alcohol **37** or a nucleophilic substitution from bromide **43** were unsuccessfull.

Scheme 8. Attempt to Construct Polyketide Fragment Protected with Dithiane

In face of this difficulty, our strategy was slightly modified, by first generating the stereogenic center with the three carbons attached to it already in place, followed by the formation of the second ring.

The formation of the tertiary benzylic stereocenter was accomplished by a diastereoselective alkylation of the acyloxazolidinone **47** with allyl bromide (**Scheme 9**).²⁵ Next, the benzyloxazolidinone was replaced by a protected primary alcohol in two steps, and the terminal alkene was oxidized to a carboxylic acid in two more steps. The second ring was forged by an intramolecular Friedel-Crafts acylation mediated by SnCl₄.

The next step would be the protection of the ketone group. As 1,3-dioxolane showed to be a labile protecting group, this time we chose 1,3-dithiane as a protecting group, and its formation under standard conditions ($BF_3 \cdot Et_2O$ and 1,3-dithiol) was successfully achieved.

The primary alcohol was then deprotected and oxidized under Parikh-Doering conditions,²⁶ and the freshly purified aldehyde was employed in an aldol reaction with the lithium enolate derived from ketone **2**, but unfortunately the desired product **56** was obtained as a mixture of four diastereoisomers, probably due to racemization of aldehyde

44 under basic conditions and poor diastereoselectivity during the C-C bond formation step.

Scheme 9. Synthesis of Polyketide Fragment Protected with Dithiane and Attempt

The protecting group for the benzylic ketone became again an issue that needed to be addressed, as the dithiane group was not compatible with other oxidizing conditions to convert the primary alcohol to an aldehyde (Dess-Martin periodinane and NaHCO₃, PCC, PDC), in order to avoid racemization. A new approach was disclosed after the first actinoranone total synthesis was reported by Xu, Ye and co-workers,⁶ where a benzylic methylene group was employed as a masked ketone.

This route began with the synthesis of allylic acetate **58** from benzaldehyde **57** in two steps. The formation of the tertiary benzylic stereocenter was conducted with a newly developed enantioselective hydroxymethylation catalyzed by an iridium complex, which was developed by the Krische group.²⁷ Next, alcohol **60** was protected with a silyl group and the alkene of **61** was subjected to a cross-metathesis reaction with (*E*)-

crotonaldehyde.²⁸ Afterwards, alkene **62** was hydrogenated and the second ring was produced by a domino Friedel-Crafts reaction and dehydration. Polyketide fragment **65** was obtained after a second hydrogenation step and a O-deprotection (**Scheme 10**).

Scheme 10. Polyketide Fragment Synthesis

A protecting-group-free synthesis of fragment **65** was explored from alcohol **60** (**Scheme 11**). Initially the alcohol group was converted to an acrylate, following a ringclosing-metathesis reaction and a hydrogenation step. The reduction of lactone **68** with DIBAL-H cleanly afforded the corresponding lactol, which was employed in a domino reaction involving a Friedel-Crafts reaction and a dehydration. This sequence afforded the desired product, but the avoidance of protecting groups caused a low yield to this cyclization step. The fragment synthesis was finished with a hydrogenation of alkene **69**.

Scheme 11. Protecting-Group-Free Synthesis of Polyketide Fragment

As the protecting-group-free approach would need further development, the route outlined in **Scheme 10** was chosen to finish the synthesis of actinoranone, as it presented a higher overall yield and the same number of steps as the latter route.

Fragments Coupling. The actinoranone carbon backbone was forged by a metalhalogen exchange of vinyl iodide **3** with *n*-BuLi, followed by the addition to the freshly prepared aldehyde **70**, where alcohol **71** was obtained as the major product and could be completely separated by flash column chromatography on silica (**Scheme 12**). Pleasingly, no racemization of aldehyde **70** was observed during the oxidation with Dess-Martin periodinane buffered with NaHCO₃ or the addition of the vinyl-lithium reagent.

At this point, the formal synthesis of actinoranone was achieved. As Xu and Ye reported,⁶ alcohol **71** could be converted to actinoranone in three more steps: a Mitsunobu esterification, a C-H oxidation of the benzylic position and a hydrolysis of the ester introduced during the Mitsunobu step.

Cell assays. The cytotoxic activity of selected intermediates, compounds **17**, **65** and **71**, was evaluated in four human cell lines, using cell imaging assays. These three compounds were chosen because they present the terpenoid and polyketide fragments, isolated and joined, and the results from these cell assays could contribute to a better understanding of the actinoranone pharmacophoric profile. The concentration of compound responsible for a 50% reduction of the cell population was assigned as the EC₅₀ value to each compound, as shown in **Table 1**.

Table 1. Cytotoxicity of componds **17**, **65** and **71** measured in human cell assays. Values are reported as average \pm SEM of at least three independent experiments (n).

compound/ cell line	17		65		71		Tacrine		
	EC ₅₀ average ± SEM (µM)	n							
HaCat ^a	12.9 ± 2.6	4	> 200	3	39.3 ± 10.8	4	25.0 ± 2.6	3	
U2-OS ^b	7.6 ± 1.6	3	> 200	4	25.8 ± 5.8	4	34.6 ± 4.4	3	
SCC-9 ^c	13.9 ± 1.7	5	> 200	5	115.3 ± 24.2	3	53.7 ± 3.7	3	
HSC-3 ^d	20.5 ± 8.2	5	> 200	5	20.9 ± 2.7	5	38.9 ± 5.8	3	

^aHaCat: immortalized, but not transformed epithelial cell line.

^bU2-OS: human bone osteosarcoma epithelial cells.

^c SCC9: squamous cell carcinoma, a tumor cell line originated from a human tongue squamous cell carcinoma.

^d HSC3: human tongue squamous cell carcinoma cell line.

> 200 μ M: concentration-response curves in which 50% cell population reduction was not reached at the highest compound concentration used (200 μ M).

Compound **17** was the most cytotoxic, displaying EC₅₀ values ranging from 7.6 to 20.5 μ M in the 4 cell lines tested. Compound **71** presented moderated cytotoxicity in HaCat, U2-OS and HSC-3 cell lines (EC₅₀ values ranging from 20.9 to 39.3 μ M), and was barely active in the SCC-9 cell line (EC₅₀ of 115. 3 μ M). Compound **65** was inactive in all the cell lines evaluated.

Compound **71** carries both the diterpene and polyketide portions of the actinoranone skeleton and was less active than compound **17**, which carries only the diterpenoid portion. Further, polyketide **65** was inactive in the biological assays. These results suggest that the diterpene fragment (compound **17**) is *per se* important for conferring the cytotoxic activity of the actinoranone scaffold. Gademann and co-workers have reviewed similar findings, which include the use of natural product derived fragments achievable in reduced synthetic routes, where the fragments display similar or even improved biological activities, as compared to the parent natural products.²⁹

CONCLUSIONS

This work demonstrates that the combination of classical and new reactions can afford shortened routes to complex natural products. Here we described the construction of the actinoranone carbon backbone in eleven steps for the longest linear sequence, which was previously accomplished in seventeen steps. This was possible due to the minimization of redox reactions and avoidance of protecting groups, when feasible.

In the present work, we have shown that the bicyclic diterpenoid fragment of actinoranone (compound **17**) displayed higher cell cytotoxicity in comparison to its carbon

backbone (compound **71**), the former being obtained in 8 steps instead of 20, as for the full backbone (**71**).

EXPERIMENTAL SECTION

General Information. Starting materials and reagents were obtained from commercial sources and used as received unless otherwise specified. Dichloromethane, triethylamine, diisopropylethylamine (DIPEA) and pyridine were treated with calcium hydride and distilled before use. Tetrahydrofuran (THF) and diethylether were treated with metallic sodium and benzophenone and distilled before use. Anhydrous N.N-dimethylformamide (DMF), dimethylsulfoxide (DMSO) and diglyme were obtained from Aldrich. Anhydrous methanol, ethanol, isopropyl alcohol, acetonitrile, toluene and benzene were dried over molecular sieves 3A (10% w/v) for more than one week before use. Anhydrous reactions were carried out with continuous stirring under atmosphere of dry nitrogen or argon. Progress of the reactions was monitored by thin-layer chromatography (TLC) analysis (Merck, silica gel 60 F254 on aluminum plates), unless otherwise stated. Flash chromatography purifications were performed with silica gel 60, 220-440 mesh, Sigma-Aldrich. ¹H NMR and ¹³C NMR were recorded on Bruker 250, the chemical shifts (δ) were reported in parts per million (ppm) relative to deuterated solvent as the internal standard (CDCl₃: 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR), coupling constants (J) are in hertz (Hz). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = doublet, t = triplet, t = tripletquartet, quint = quintet, m = multiplet, br. = broad signal. NMR spectra were processed using ACD/NMR Processor Academic Edition version 12.01. High resolution mass spectra (HRMS) were recorded on a Waters Xevo Q-Tof apparatus operating in electrospray mode (ES). Infrared spectra with Fourier transform (FTIR) were recorded on a Therm Scientific Nicolet iS5, the principal absorptions are listed in cm⁻¹. Optical rotation were measured at 25 °C in a Perkin-Elmer 341 polarimeter, with sodium lamp, the measure is described as follow $\left[\alpha\right]_{D}^{T}$ (c (g/100 mL), solvent). GC/MS analyses were carried out on an Agilent 9870A gas chromatography with guadrupole mass analyzer (GC-MS) equipped with a split/splitless injector: the column set for all runs consisted of a 30 m × 0.250 mm HP-5MS column; the oven temperature was increased from 60 to 180 °C at the rate of 20 °C/min and was then further increased to 280 °C at 30 °C/min; the injector and MS transfer lines were at 280 and 230 °C, respectively, and the MS ionization source was maintained at 230 °C using 70 eV; the spectrometer was operated with a mass scan range of 30-400 m/z, resulting in an acquisition rate of 25 spectra/s; the data acquisitions were processed via the GC-MS 5975C data analysis. IUPAC names of the compounds were generated using ChemBioDraw Ultra 13.0.

2-((1R,2R,4aS,8aS)-2-Hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)-N-methoxy-N-

methylacetamide (**5**). Me₃Al (1 M in heptane, 8.0 mL, 8.0 mmol, 2 equiv) was added to a suspension of MeONHMe+HCl (756 mg, 7.7 mmol, 1 equiv) in dry CH₂Cl₂ (20 mL) at 0 °C (*CAUTION! gas evolution*). After addition, the cooling bath was removed and the mixture was kept under magnetic stirring at room temperature for 2 h. Next, a solution of (+)-sclareolide (**4**, 97%, 1.00 g, 3.88 mmol, 1 equiv) in dry CH₂Cl₂ (10 mL) was added to the reaction, and the stirring continued for 18 h at room temperature. After cooling to 0 °C, an aqueous solution of HCl (1 M, 30 mL) was slowly added (*CAUTION! gas evolution*). The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 25 mL). The organic phases were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 50:50 to 30:70) to furnish amide **5** (908 mg, 2.9 mmol) as a white solid in 75% yield. TLC (SiO₂): R_f = 0.30 (hexanes/EtOAc 50:50); M.p.: 102-106 °C; [α]_D²⁵ = +37 (*c* 1.0, CHCl₃), [α]_{D,iit} = +39.3 (*c* 0.98, CHCl₃),^{30 1}H NMR (250 MHz, CDCl₃): δ 0.78 (s, 3H), 0.81 (s, 3H), 0.86 (s, 3H), 1.14 (s, 3H), 0.89-1.73 (m, 10H), 1.86-2.03 (m, 2H), 2.37-2.63 (m, 3H), 3.17 (s, 3H), 3.71 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃): δ 15.7 (CH₃), 18.4 (CH₂), 20.5 (CH₂), 21.3 (CH₃), 23.2 (CH₃), 26.8 (CH₂), 33.1 (C), 33.2 (2CH₃), 38.5 (C), 39.2 (CH₂), 41.7 (CH₂), 44.4 (CH₂), 55.8 (CH), 56.1 (CH), 61.1 (CH₃), 72.7 (C), 176.0 (C).

(3aS,5aS,9aS,9bR)-3a,6,6,9a-tetramethyldecahydronaphtho[2,1-b]furan-2(3aH)-one (7). Solid (+)sclareolide (4, 97%, 2.58 g, 10.0 mmol, 1 equiv) was added to a solution of sulfuric acid (95%, 1.68 mL, 30.0 mmol, 3 equiv) in formic acid (98%, 42 mL) at room temperature. After 4 h, the mixture was diluted with cold H₂O (100 mL) and extracted with Et₂O (2 x 100 mL). The combined organic phases were washed with saturated aqueous solution of NaHCO₃ (30 mL), brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 85:15) to furnish lactone **7** (2.25 g, 9.0 mmol) as a white solid in 90% yield. Note: The high purity of formic acid (>97%) was essential for full conversion. The use of formic acid of 85% purity led to incomplete conversion even with prolonged reaction time. TLC (SiO₂): R_f = 0.70 (hexanes/EtOAc 50:50); M.p.: 87-89 °C; $[\alpha]_D^{25} = -27$ (*c* 1.0, CHCl₃), $[\alpha]_{D,lit} = -31.7$ (*c* 0.4, CHCl₃),⁹ ¹H NMR (250 MHz, CDCl₃): δ 0.78 (s, 3H), 0.82 (s, 6H), 0.75-0.87 (m, 2H), 1.01-1.15 (m, 1H), 1.23 (s, 3H), 1.26-1.61 (m, 7H), 1.69 (d, *J*

The Journal of Organic Chemistry

= 7.7 Hz, 1H), 2.14-2.26 (m, 1H), 2.27 (d, J = 18.0 Hz, 1H), 2.64 (dd, J = 17.9, 7.9 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 14.3 (CH₃), 17.8 (CH₂), 18.0 (CH₂), 21.9 (CH₃), 29.7 (CH₃), 32.1 (CH₂), 32.6 (C), 33.3 (CH₃), 34.8 (CH₂), 35.7 (C), 40.5 (CH₂), 41.4 (CH₂), 51.2 (CH), 54.4 (CH), 85.3 (C), 177.4 (C).

2-((1R,2S,4aS,8aS)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)-N-methoxy-N-

methylacetamide (8). Me₂AICI (0.9 M in heptane, 8.0 mL, 7.2 mmol, 3 equiv) was added to a suspension of MeONHMe+HCI (702 mg, 7.2 mmol, 1 equiv) in dry CH₂Cl₂ (20 mL) at 0 °C (CAUTION! gas evolution). After addition, the cooling bath was removed and the mixture was kept under magnetic stirring at room temperature for 2 h. Next, a solution of isosclareolide (7, 619 mg, 2.4 mmol, 1 equiv) in dry CH₂Cl₂ (20 mL) was added to the reaction, and the stirring continued at room temperature for 18 h. After cooling to 0 °C, an aqueous solution of HCI (1 M, 50 mL) was slowly added (CAUTION! gas evolution). The organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (2 x 50 mL). The organic phases were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 85:15 to 30:70) to furnish amide 8 (375 mg, 1.2 mmol) as a white solid in 50% yield (85% yield based on the recovery of starting material), along recovered isosclareolide (7, 254 mg, 1.0 mmol) as a white solid in 41% yield. Note: Use of Me₃Al led to little conversion (<5%) and the use of Me₂AICI for prolonged reaction time at rt or use of refluxing conditions did not improve the yield. TLC (SiO₂): $R_f = 0.30$ (hexanes/EtOAc 50:50); M.p.: 140-144 °C; $[\alpha]_D^{25} = +24$ (c 1.0, CHCl₃); IR (ATR, cm⁻¹): 3450, 2919, 2850, 1644, 1459, 1418, 1387, 1172, 1125, 1001, 915, 899; ¹H NMR (250 MHz, CDCl₃): δ 0.78 (s, 3H), 0.83 (s, 3H), 0.93 (s, 3H), 1.00 (s, 3H), 0.87-1.07 (m, 2H), 1.08-1.76 (m, 10H), 1.81-1.89 (m, 1H), 2.28 (dd, J = 18.0, 2.7 Hz, 1H), 2.70 (dd, J = 18.0, 5.8 Hz, 1H), 3.13 (s, 3H), 3.67 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃): δ 15.6 (CH₃), 18.1 (CH₂), 18.2 (CH₂), 21.5 (CH₃), 26.8 (CH₂), 30.4 (CH₃), 32.7 (CH₃), 33.1 (C), 33.3 (CH₃), 38.0 (C), 38.7 (CH₂), 41.7 (CH₂), 42.3 (CH₂), 52.2 (CH), 55.3 (CH), 61.1 (CH₃), 72.7 (C), 175.3 (C); HRMS (ESI +): *m/z* calculated for C₁₈H₃₃O₃NNa⁺ [M+Na]⁺ 334.2353, found 334.2367.

N-methoxy-N-methyl-2-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)acetamide (6) and *N-methoxy-N-methyl-2-((1S,4aS,8aS)-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)acetamide*. SOCl₂ (1.16 mL, 16 mmol, 10 equiv) was added to dry pyridine (7.5 mL) at 0 °C (*CAUTION! exothermic process*), this solution was stirred for 5 min, then was transferred to a solution of alcohol **5** (498 mg, 1.60 mmol, 1 equiv) in dry pyridine (7.5 mL) at 0 °C. After 30 min, H₂O (30 mL) was slowly added. The mixture was extracted with CH₂Cl₂ (2 x 30 mL), the organic

phases were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 85:15) to furnish endo-olefin 6 (100 mg, 0.34 mmol) as a colorless oil in 21% yield, along exo-olefin (330 mg, 1.12 mmol) as a white solid in 70% yield. Note: Attempts to isomerize the exo-olefin into the endo-olefin 6 as described by de la Torre and coworkers⁸ led to poor results, obtaining at the best run 20% of the desired product as an inseparable mixture with isosclareolide (7). The experimental procedure was conducted with 8 as reported for its epimer (see above) to furnish the endo-olefin 6 (319 mg, 1.09 mmol) as a colorless oil in 68% yield, and trace amounts (less than 5% yield) of the exo-olefin. Data for endo-olefin 6: TLC (SiO₂): $R_f = 0.26$ (hexanes/EtOAc 85:15); $[\alpha]_{D}^{25} = +21$ (c 1.0, CHCl₃), $[\alpha]_{D \ lit} = +15.2$ (c 0.25, CHCl₃); ⁸ ¹H NMR (250 MHz, CDCl₃): δ 0.79 (s, 3H), 0.85 (s, 3H), 0.87 (s, 3H), 1.52 (s, 3H), 1.00-2.06 (m, 9H), 2.28 (dd, J = 16.7, 2.5 Hz, 1H), 2.46 (dd, J = 16.7, 9.2 Hz, 1H), 2.61-2.72 (m, 1H), 3.17 (s, 3H), 3.68 (s, 3H), 5.40 (br. s, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 14.0 (CH₃), 18.5 (CH₂), 21.1 (CH₃), 21.6 (CH₃), 23.5 (CH₂), 28.9 (CH₂), 32.6 (CH₃), 32.7 (C), 32.9 (CH₃), 35.7 (C), 38.7 (CH₂), 41.9 (CH₂), 48.8 (CH), 49.5 (CH), 60.9 (CH₃), 121.9 (CH), 134.0 (C), 175.2 (C). Data for exo-olefin: TLC (SiO₂): R_f = 0.19 (hexanes/EtOAc 85:15); M.p.: 82-85 °C (lit.: 84-86 °C); $[\alpha]_{D}^{25} = -29$ (c 1.0, CHCl₃), $[\alpha]_{D,lit} = -30.9$ (c 0.99, CHCl₃);^{30 1}H NMR (250 MHz, CDCl₃): δ 0.64 (s, 3H), 0.72 (s, 3H), 0.79 (s, 3H), 0.98-1.70 (m, 9H), 1.93-2.11 (m, 1H), 2.21-2.34 (m, 2H), 2.39 (d, J = 10.3 Hz, 1H), 2.59 (dd, J = 15.5, 9.8 Hz, 1H), 3.05 (s, 3H), 3.62 (s, 3H), 4.34 (s, 1H), 4.62 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 14.4 (CH₃), 18.9 (CH₂), 21.4 (CH₃), 23.7 (CH₂), 26.8 (CH₂), 32.1 (CH₃), 33.1 (C), 33.2 (CH₃), 37.2 (CH₂), 38.47 (CH₂), 38.53 (C), 41.7 (CH₂), 51.2 (CH), 54.7 (CH), 60.9 (CH₃), 105.5 (CH₂), 149.2 (C), 174.2 (C).

2-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)acetaldehyde (**11**). Solid LiAlH₄ (361 mg, 9.5 mmol, 5 equiv) was added to a solution of amide **6** (558 mg, 1.90 mmol, 1 equiv) in dry THF (38 mL) at 0 °C. After 2 h at the same temperature, an aqueous solution of HCI (1 M, 40 mL) was slowly added (*CAUTION! gas evolution*). The mixture was extracted with EtOAc (80 mL), the organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 95:5) to furnish aldehyde **11** (388 mg, 1.65 mmol) as a colorless oil in 87% yield. TLC (SiO₂): $R_f = 0.32$ (hexanes/EtOAc 95:5); $[\alpha]_D^{25} = -15$ (*c* 1.0, CHCl₃), $[\alpha]_{D,lit} = -29.2$ (*c* 0.161, CHCl₃);^{31 1}H NMR (250 MHz, CDCl₃): δ 0.77 (s, 3H), 0.87 (s, 3H), 0.88 (s, 3H), 1.51 (s, 3H), 1.00-2.06 (m, 9H), 2.37-2.59 (m, 3H), 5.46 (br. s, 1H), 9.84 (t, *J* = 1.6 Hz, 1H); ¹³C NMR (62.9 MHz,

CDCl₃): δ 14.2 (CH₃), 18.7 (CH₂), 21.8 (CH₃), 22.5 (CH₃), 23.6 (CH₂), 32.9 (C), 33.1 (CH₃), 36.0 (C), 39.5 (CH₂), 42.0 (CH₂), 42.3 (CH₂), 48.5 (CH), 49.8 (CH), 123.4 (CH), 132.9 (C), 203.5 (CH).

3-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)propanenitrile (12). TosMIC (83.7 mg, 0.42 mmol, 2 equiv) in dry diglyme (2 mL) was added dropwise to a mixture of t-BuOK (74.4 mg, 0.63 mmol, 3 equiv) in diglyme (1 mL) at -60 °C, and the resulting mixture was stirred for 10 min. A solution of aldehyde 11 (49.2 mg, 0.21 mmol, 1 equiv) in diglyme (2 mL) was added dropwise to the reaction at -60 °C, the medium was stirred at this temperature for 1 h, and for 30 min at room temperature. Next, dry MeOH (2.5 mL) was added, and the reaction was stirred at 60 °C for 1 h. After that, the volatiles were removed under reduced pressure, and the residue was diluted with a saturated solution of NH₄Cl and the mixture was extracted with EtOAc (2 x 15 mL). The organic layers were combined, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 95:5 to 90:10) to give the nitrile **12** (26.5 mg, 0.108 mmol) as a colorless oil in 51% yield. TLC (SiO₂): $R_f = 0.31$ (hexanes/EtOAc 95:5); $[\alpha]_D^{25} = -1$ (c 1.0, CHCl₃); IR (ATR, cm⁻¹): 2923, 2848, 2245, 1457, 1388, 1168, 1051, 805; ¹H NMR (250 MHz, CDCl₃): δ 0.76 (s, 3H), 0.86 (s, 3H), 0.88 (s, 3H), 0.80-1.30 (m, 3H), 1.67 (s, 3H), 1.36-2.08 (m, 9H), 2.25-2.43 (m, 1H), 2.44-2.60 (m, 1H), 5.46 (br. s, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 13.6 (CH₃), 18.6 (CH₂), 18.9 (CH₂), 21.8 (CH₃), 22.0 (CH₃), 23.1 (CH₂), 23.7 (CH₂), 32.9 (C), 33.1 (CH₃), 36.6 (C), 39.0 (CH₂), 42.0 (CH₂), 49.8 (CH), 53.8 (CH), 119.9 (C), 123.9 (CH), 132.9 (C); HRMS (ESI +): m/z calculated for $C_{17}H_{27}NNa^+$ [M+Na]⁺ 268.2036, found 268.2031.

3-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)propanal (13). To a suspension of (methoxymethyl)triphenylphosphonium chloride (163 mg, 0.46 mmol, 2 equiv) in dry THF (2 mL) was added a solution of LiHMDS (1 M in THF, 345 µL, 0.345 mmol, 1.5 equiv) at 0 °C and the reaction was stirred at this temperature for 30 min. After this period, the brownish mixture was transferred *via* cannula to a flask containing a solution of aldehyde **11** (53.9 mg, 0.230 mmol, 1 equiv) in dry THF (2 mL) at 0 °C, and the resulting mixture was stirred for 30 min at 0 °C and 4 h at room temperature. Next, the reaction was quenched by addition of saturated aqueous solution of NH₄Cl (10 mL), and was extracted with EtOAc (10 mL). The organic phase was washed with brine (5 mL), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue obtained was subjected to flash chromatography (SiO₂, hexanes/EtOAc 95:5) to afford a mixture of (*E*) and (*Z*)-enol ethers, which were immediately used in the next reaction. TLC (SiO₂): R_f = 0.45 (hexanes:EtOAc 95:5). The mixture of (*E*) and (*Z*)-enol ethers obtained

above was diluted in THF (2 mL) and a solution of HCl (6 M in H₂O, 0.4 mL, 2.4 mmol, 10 equiv) was added dropwise at 0 °C. The mixture was stirred at room temperature for 2 h, and was diluted with H₂O (8 mL), followed by an extraction with EtOAc (8 mL). The organic phase was washed with brine (5 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 95:5) to give aldehyde **13** (44.0 mg, 0.177 mmol) as a colorless oil in 77% yield. TLC (SiO₂): R_f = 0.30 (hexanes/EtOAc 95:5); $[\alpha]_D^{25} = +21$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2923, 2846, 1726, 1457, 1387, 1050, 983; ¹H NMR (250 MHz, CDCl₃): δ 0.79 (s, 3H), 0.85 (s, 3H), 0.88 (s, 3H), 0.81-1.04 (m, 1H), 1.15 (dd, *J* = 11.8, 5.0 Hz, 2H), 1.66 (s, 3H), 1.36-1.71 (m, 5H), 1.79-2.03 (m, 4H), 2.43 (dddd, *J* = 17.4, 8.8, 6.5, 1.9 Hz, 1H), 2.65 (dddd, *J* = 17.2, 9.9, 5.5, 1.6 Hz, 1H), 5.42 (br. s, 1H), 9.76 (t, *J* = 1.7 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 13.6 (CH₃), 18.7 (CH₂), 19.1 (CH₂), 21.8 (CH₃), 22.1 (CH₃), 23.7 (CH₂), 32.9 (C), 33.1 (CH₃), 36.9 (C), 39.4 (CH₂), 42.2 (CH₂), 46.0 (CH₂), 50.0 (CH), 54.3 (CH), 123.2 (CH), 134.1 (C), 202.4 (CH); HRMS (ESI +): *m/z* calculated for C₁₇H₂₈ONa⁺ [M+Na]⁺ 271.2032, found 271.2013.

(4aS,5S,8aS)-5-(but-3-yn-1-yl)-1,1,4a,6-tetramethyl-1,2,3,4,4a,5,8,8a-octahydronaphthalene (14). TMSCHN₂ solution (2 M in hexanes, 0.76 mL, 1.52 mmol, 4 equiv) was added to THF (5 mL), the resulting mixture was cooled to -78 °C, then a solution of n-BuLi (2.5 M in hexanes, 0.46 mL, 1.15 mmol, 3 equiv) was added dropwise and the reaction was stirred at the same temperature for 30 min. Next, a solution of aldehyde 13 (94.4 mg, 0.38 mmol, 1 equiv) in THF (3 mL) was added to the reaction and the resulting mixture was stirred at -78 °C for 1 h, and then at room temperature for 1 h. The reaction was quenched by addition of saturated aqueous solution of NH_4CI (10 mL), followed by the extraction with Et₂O (2 x 10 mL). The combined organic extracts were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes) to afford the alkyne 14 (74.4 mg, 0.30 mmol) as a colorless oil in 80% yield. TLC (SiO₂): $R_f = 0.72$ (hexanes); $[\alpha]_n^{25} = +12$ (c 1.0, CHCl₃); IR (ATR, cm⁻¹): 3312, 2923, 2847, 2118, 1457, 1387, 1050, 983; ¹H NMR (250 MHz, CDCl₃): δ 0.76 (s, 3H), 0.86 (s, 3H), 0.88 (s, 3H), 0.80-1.29 (m, 4H), 1.96 (t, J = 2.6 Hz, 1H), 1.35-2.06 (m, 11H), 2.10-2.27 (m, 1H), 2.37 (dddd, J = 16.8, 9.0, 5.0, 2.5 Hz, 1H), 5.40 (br, s, 1H); ¹³C NMR (62.9 MHz, CDCl₃); δ 13.6 (CH₃), 18.7 (CH₂), 20.3 (CH₂), 21.8 (CH₃), 22.1 (CH₃), 23.8 (CH₂), 26.2 (CH₂), 32.9 (C), 33.1 (CH₃), 36.6 (C), 39.1 (CH₂), 42.2 (CH₂), 50.0 (CH), 53.7 (CH), 68.3 (CH), 84.8 (C), 122.8 (CH), 134.5 (C); GC/MS (EI): m/z calculated for C₁₇H₂₅ [M-CH₃]⁺ 229, found: 229.

4-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)butan-2-one (**2**). Procedure A: MeMgBr solution (3 M in Et₂O, 1.6 mL, 4.8 mmol, 3 equiv) was added dropwise to a solution of nitrile 12 (393 mg, 1.6 mmol, 1 equiv) in dry Et₂O (15 mL) at 0 °C, the reaction was warmed to room temperature and was stirred for 16 h. The reaction was quenched by addition of saturated aqueous solution of NH₄Cl (10 mL), followed by extraction with EtOAc (2 x 20 mL). The combined organic extracts were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 90:10) to give the ketone 2 (295 mg, 1.1 mmol) as a colorless oil in 70% yield. Note: Nitrile 12 and ketone 2 presented similar R_f using TLC with SiO₂ and different eluents, the progress of reaction was monitored by GC/MS analysis. Procedure B: To a pressure tube, alkyne 14 (16.0 mg, 64 µmol, 1 equiv), methanol (2 mL) and H₂O (1 mL) were added, followed by JohnPhosAuCl (1.7 mg, 3.2 µmol, 5 mol %), the pressure tube was sealed and heated at 110 °C for 90 min. The mixture was cooled to room temperature, then methanol was removed under reduced pressure. The remaining residue was extracted with CH_2Cl_2 (2 x 5 mL), the combined organic phases were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 95:5 to 90:10) to give ketone 2 (13.1 mg, 50 µmol) as a colorless oil in 78% yield. TLC (SiO₂): $R_f = 0.40$ (hexanes/EtOAc 90:10); $[\alpha]_D^{25} = +20$ (c 1.0, CHCl₃); IR (ATR, cm⁻¹): 2924, 2851, 1717, 1662, 1463, 1365, 1331, 1162; ¹H NMR (250 MHz, CDCl₃): δ 0.77 (s, 3H), 0.85 (s, 3H), 0.88 (s, 3H), 0.81-1.24 (m, 4H), 1.66 (s, 3H), 1.33-1.71 (m, 4H), 1.72-2.05 (m, 4H), 2.14 (s, 3H), 2.41 (ddd, J = 16.1, 9.9, 6.0 Hz, 1H), 2.64 (ddd, J = 16.7, 10.7, 5.3 Hz, 1H), 5.41 (br. s, 1H); ¹³C NMR (62.9 MHz, 1) CDCl₃): δ 13.6 (CH₃), 18.7 (CH₂), 20.9 (CH₂), 21.8 (CH₃), 22.1 (CH₃), 23.7 (CH₂), 29.9 (CH₃), 32.9 (C), 33.2 (CH₃), 36.9 (C), 39.3 (CH₂), 42.2 (CH₂), 45.9 (CH₂), 50.1 (CH), 54.3 (CH), 123.0 (CH), 134.4 (C), 208.8 (C); HRMS (ESI +): m/z calculated for C₁₈H₃₀ONa⁺ [M+Na]⁺ 285.2189, found 285.2200.

(E)-ethyl 3-methyl-5-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahy-dronaphthalen-1-yl)pent-2-enoate (15). Triethyl phosphonoacetate (583 μ L, 2.85 mmol, 3 equiv) was added to a solution of ketone **2** (249 mg, 0.95 mmol, 1 equiv) in dry toluene (9.5 mL) at room temperature. Next, sodium hydride (60% w/w in mineral oil, 110 mg, 2.75 mmol, 2.9 equiv) was added to the mixture, which was then stirred for 10 min at room temperature and for 14 h at 50 °C. After cooling to room temperature, the reaction was quenched by the addition of brine (20 mL) and EtOAc (20 mL) was added to the mixture. The organic phase was separated, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 97:3) to give the ester **15** (236 mg,

0.71 mmol) as a colorless oil in 75% yield. Note: The minor (*Z*)-isomer was detected by GC/MS analysis of the crude (*ca.* 5.5% of the product) and was separated from the (*E*)-isomer during the chromatographic purification. TLC (SiO₂): $R_f = 0.48$ (hexanes/EtOAc 95:5); $[\alpha]_D^{25} = +27$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2923, 1716, 1648, 1457, 1386, 1221, 1143, 1040, 861; ¹H NMR (250 MHz, CDCl₃): δ 0.75 (s, 3H), 0.85 (s, 3H), 0.87 (s, 3H), 1.27 (t, *J* = 7.1Hz, 3H), 1.69 (s, 3H), 0.79-1.74 (m, 9H), 2.16 (d, *J* = 1.3 Hz, 3H), 1.74-2.22 (m, 4H), 2.26-2.43 (m, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 5.40 (br. s, 1H), 5.66 (q, *J* = 1.0 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 13.5 (CH₃), 14.3 (CH₃), 18.7 (CH₂), 18.9 (CH₃), 21.8 (CH₃), 22.1 (CH₃), 23.8 (CH₂), 25.3 (CH₂), 32.9 (C), 33.1 (CH₃), 36.8 (C), 39.1 (CH₂), 42.2 (CH₂), 43.4 (CH₂), 50.1 (CH), 54.4 (CH), 59.4 (CH₂), 115.5 (CH), 122.7 (CH), 134.7 (C), 160.3 (C), 166.8 (C); HRMS (ESI +): *m/z* calculated for C₂₂H₃₆O₂Na⁺ [M+Na]⁺ 355.2608, found 355.2613.

(*E*)-3-methyl-5-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydrona-phthalen-1yl)pent-2-enoic acid (**16**). Solid LiOH+H₂O (298 mg, 12.2 mmol, 20 equiv) was added to a solution of ester **15** (203 mg, 0.610 mmol, 1 equiv) in a mixture of THF, *i*-PrOH and H₂O (21 mL, 1:1:1). The reaction was stirred at 60 °C for 20 h, then the volatiles were removed under reduced pressure. To the remaining residue, EtOAc (30 mL) and HCI solution (1 M, 30 mL) were added. The organic phase was separated, washed with brine (20 mL), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 85:15) to give the carboxylic acid **16** (141 mg, 0.463 mmol) as a white solid in 76% yield. TLC (SiO₂): R_f = 0.46 (hexanes/EtOAc 75:25); $[a]_{0}^{25}$ = +34 (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 3441 (broad), 2946 (broad), 2924, 2849, 1693, 1639, 1437, 1257, 1173, 867; ¹H NMR (250 MHz, CDCl₃): δ 0.76 (s, 3H), 0.86 (s, 3H), 0.88 (s, 3H), 0.80-1.03 (m, 2H), 1.08-1.73 (m, 7H), 1.70 (s, 3H), 2.19 (d, *J* = 1.1 Hz, 3H), 1.75-2.25 (m, 4H), 2.30-2.46 (m, 1H), 5.41 (br. s, 1H), 5.70 (q, *J* = 0.8 Hz, 1H), 11.46 (br. s, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 13.5 (CH₃), 18.7 (CH₂), 19.3 (CH₃), 21.8 (CH₃), 22.1 (CH₃), 23.8 (CH₂), 25.3 (CH₂), 32.9 (C), 33.1 (CH₃), 36.8 (C), 39.2 (CH₂), 42.2 (CH₂), 43.6 (CH₂), 50.1 (CH), 54.4 (CH), 115.1 (CH), 122.8 (CH), 134.6 (C), 163.6 (C), 172.2 (C); HRMS (ESI +): *m*/z calculated for C₂₀H₃₂O₂Na⁺ [M+Na]⁺ 327.2295, found 327.2286.

(4aS,5S,8aS)-5-((E)-4-iodo-3-methylbut-3-en-1-yl)-1,1,4a,6-tetramethyl-1,2,3,4,4a,5,8,8aoctahydronaphthalene (**3**). A flask was charged with carboxylic acid **16** (93.2 mg, 0.306 mmol, 1 equiv) and CTAB (113 mg, 0.306 mmol, 1 equiv), the flask was purged with nitrogen, and dry acetonitrile (7 mL) was added followed by NIS (138 mg, 0.612 mmol, 2 equiv). The reaction mixture was heated at 80 °C for 1 h and, after cooling to room temperature, solvent was partially removed under reduced pressure to ~1 mL of

The Journal of Organic Chemistry

crude reaction mixture. This residue was subjected to flash chromatography (SiO₂, hexanes) to give the iodide **3** (56.5 mg, 0.146 mmol) as a colorless oil in 48% yield. TLC (SiO₂): $R_f = 0.90$ (hexanes); $[\alpha]_D^{25} = +5$ (*c* 1.0, CHCl₃), $[\alpha]_{D,iit}^{20} = +3$ (*c* 0.8, CHCl₃); 6 ¹H NMR (250 MHz, CDCl₃): δ 0.75 (s, 3H), 0.86 (s, 3H), 0.88 (s, 3H), 0.80-1.02 (m, 2H) 1.07-1.64 (m, 10H), 1.68 (s, 3H), 1.85 (d, *J* = 0.8 Hz, 3H), 1.75-2.06 (m, 3H), 2.16 (ddd, *J* = 14.1, 10.3, 6.3 Hz, 1H), 2.40 (ddd, *J* = 14.4, 11.4, 4.6 Hz, 1H), 5.40 (br. s, 1H), 5.90 (q, *J* = 0.8 Hz, 1H); 13 C NMR (62.9 MHz, CDCl₃): δ 13.6 (CH₃), 18.8 (CH₂), 21.8 (CH₃), 22.2 (CH₃), 23.8 (CH₂), 24.0 (CH₃), 25.6 (CH₃), 32.9 (C), 33.1 (CH₃), 36.8 (C), 39.2 (CH₂), 42.0 (CH₂), 42.3 (CH₂), 50.1 (CH), 54.3 (CH), 74.9 (CH), 122.6 (CH), 134.8 (C), 148.5 (C).

(*E*)-3-methyl-5-((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1yl)pent-2-en-1-ol (**17**). A freshly prepared solution of DIBAL-H (1.0 M in CH₂Cl₂, 215 µL, 215 µmol, 5 equiv) was added to a solution of ester **15** (14.3 mg, 43 µmol, 1 equiv) in dry CH₂Cl₂ (2 mL) at 0 °C. After stirring the reaction for 1 h at 0 °C, Et₂O (10 mL) and saturated aqueous solution of Rochelle's salt were added, and the reaction was vigorously stirred for 30 min at 0 °C and 1 h at room temperature. After separation of phases, the aqueous layer was extracted with Et₂O (10 mL). The organic phases were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 97:3 to 90:10) to afford the alcohol **17** (10 mg, 34 µmol) as a colorless oil in 80% yield. TLC (SiO₂): R_f = 0.27 (hexanes/EtOAc 90:10); $[\alpha]_D^{25}$ = +5 (*c* 0.5, CHCl₃), $[\alpha]_{D,lit}^{25}$ = +12 (*c* 0.690, CHCl₃);¹⁹ ¹H NMR (250 MHz, CDCl₃): δ 0.76 (s, 3H), 0.86 (s, 3H), 0.88 (s, 3H), 0.80-1.04 (m, 2H), 1.56 (s, 3H), 1.69 (s, 3H), 1.05-2.09 (m, 12H), 2.13-2.31 (m, 1H), 4.09-4.20 (m, 2H), 5.33-5.47 (m, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 13.5 (CH₃), 16.4 (CH₃), 18.8 (CH₂), 21.8 (CH₃), 22.2 (CH₃), 23.8 (CH₂), 25.6 (CH₂), 32.9 (C), 33.1 (CH₃), 36.8 (C), 39.1 (CH₂), 42.0 (CH₂), 42.3 (CH₂), 50.1 (CH), 54.4 (CH), 59.4 (CH₂), 122.3 (CH), 123.3 (CH), 135.2 (C), 140.4 (C).

(*E*)-6-*methoxy*-3,4-*dihydronaphthalen*-1(2*H*)-*one* O-*methyl* oxime (21). MeONH₂•HCI (690 mg, 8.1 mmol, 2.7 equiv) and NaOAc (1.09 g, 13.2 mmol, 4.4 equiv) were added to a solution of tetralone 20 (534 mg, 3.0 mmol, 1 equiv) in a mixture of ethanol/H₂O (15 mL, 4:1 v/v), then the mixture was stirred for 2 h at 70 °C. Next, the mixture was diluted with brine (25 mL), and was extracted with EtOAc (3 x 25 mL), the organic phases were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to furnish the methyl oxime 21 (616 mg, 3.0 mmol) as a colorless oil in quantitative yield, which was used in the next step without further purification. TLC (SiO₂): R_f = 0.64 (hexanes/EtOAc 75:25); ¹H NMR (250 MHz, CDCl₃): δ 1.83 (quint., *J* = 6.2 Hz, 2H), 2.71 (t, *J* = 6.5 Hz, 4H), 3.80 (s, 3H), 3.97 (s, 3H), 6.63 (d, *J* = 2.4

Hz, 1H), 6.75 (dd, *J* = 8.8, 2.7 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 21.5 (CH₂), 24.1 (CH₂), 30.0 (CH₂), 55.1 (CH₃), 61.7 (CH₃), 112.7 (CH), 112.8 (CH), 123.4 (C), 125.7 (CH), 141.2 (C), 153.8 (C), 160.1 (C).

(E)-6,8-dimethoxy-3,4-dihydronaphthalen-1(2H)-one O-methyl oxime (22) and 6,8-dimethoxy-3,4dihydronaphthalen-1(2H)-one (23). First step: Oxone (2.46 g, 4.0 mmol, 2.0 equiv) and Pd(OAc)₂ (22.5 mg, 0.1 mmol, 5 mol %) were added to a solution of methyl oxime 21 (411 mg, 2.0 mmol, 1 equiv) in dry MeOH (12 mL) at room temperature, and this mixture was stirred at this temperature for 24 h. Next, the reaction mixture was diluted with EtOAc (50 mL) and washed with H₂O (40 mL), saturated aqueous solution of NaHCO₃ (20 mL) and brine (20 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 75:25 to 50:50) to furnish methyl oxime 22 (193 mg, 0.82 mmol) as a vellow oil in 41% vield and tetralone 23 (25 mg, 0.12 mmol) as an off-white solid in 6% yield. Second step: A solution of HCI (6 M in H₂O, 1.0 mL, 6.0 mmol, 22 equiv) was added to a solution of oxime 22 (64.0 mg, 0.27 mmol, 1 equiv) in 1,4-dioxane (4.5 mL). After addition, the mixture was heated to 80 °C under magnetic stirring for 2 h. Next, the mixture was diluted with EtOAc (20 mL), washed with brine (2 x 10 mL), the organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 50:50) to furnish tetralone 23 (46.2 mg, 0.22 mmol) as an off-white solid in 82% yield. Data for methyl oxime 22: TLC (SiO₂): R_f = 0.30 (hexanes/EtOAc 75:25); ¹H NMR (250 MHz, CDCl₃): δ 1.69 (quint., J = 6.3 Hz, 2H), 2.58 (t, J = 6.0 Hz, 2H), 2.74 (t, J = 6.8 Hz, 2H), 3.77 (s, 3H), 3.82 (s, 3H), 3.96 (s, 3H), 6.29 (d, J = 2.4 Hz, 2H), 6.36 (d, J = 2.4 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃); δ 21.1 (CH₂), 25.4 (CH₂), 31.4 (CH₂), 55.1 (CH₃), 56.0 (CH₃), 61.5 (CH₃), 97.8 (CH), 104.6 (CH), 112.8 (C), 144.4 (C), 153.7 (C), 159.1 (C), 160.2 (C). Data for tetralone 23: TLC (SiO₂): R_f = 0.36 (hexanes/EtOAc 50:50); M.p.: 62-64 °C; ¹H NMR (250 MHz, CDCI₃): δ 1.98 (quint., J = 6.2 Hz, 2H), 2.55 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 6.1 Hz, 2H), 3.81 (s, 3H), 3.85 (s, 3H), 6.26-6.34 (m, 2H); ¹³C NMR (62.9 MHz, CDCl₃): \bar{o} 22.7 (CH₂), 31.5 (CH₂), 40.7 (CH₂), 55.3 (CH₃), 55.8 (CH₃), 97.1 (CH), 104.5 (CH), 116.3 (C), 149.2 (C), 162.5 (C), 163.7 (C), 196.0 (C).

2-hydroxyethyl 4-(3,5-dimethoxyphenyl)butanoate (25). $pTSA \cdot H_2O$ (1.9 mg, 10 µmol, 10 mol %), tetralone 23 (20.6 mg, 0.1 mmol, 1 equiv) and ethylene glycol (1 mL) were placed in an open flask, which was heated at 140 °C for 24 h. Then, the reaction contents were diluted with EtOAc (20 mL) and saturated solution of NaHCO₃ (10 mL), the organic phase was separated, washed with H₂O (10 mL) and brine (10

The Journal of Organic Chemistry

mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes:EtOAc 60:40) to afford ester **25** (26.3 mg, 98 µmol) in 98% yield as a colorless oil. TLC (SiO₂): $R_f = 0.52$ (hexanes/EtOAc 50:50); IR (ATR, cm⁻¹): 3432 (broad), 2940, 2841, 1731, 1596, 1461, 1205, 1150, 1070, 832; ¹H NMR (250 MHz, CDCl₃): δ 1.95 (quint., *J* = 7.5 Hz, 2H), 2.09 (br. s, 1H), 2.36 (t, *J* = 7.5 Hz, 2H), 2.59 (t, *J* = 7.5 Hz, 2H), 3.77 (s, 6H), 3.74-3.85 (m, 2H), 4.16-4.23 (m, 2H), 6.27-6.35 (m, 3H); ¹³C NMR (62.9 MHz, CDCl₃): δ 26.0 (CH₂), 33.2 (CH₂), 35.1 (CH₂), 55.0 (2CH₃), 60.7 (CH₂), 65.7 (CH₂), 97.9 (CH), 106.4 (2CH), 143.5 (C), 160.6 (2C), 173.7 (C); HRMS (ESI +): *m/z* calculated for C₁₄H₂₁O₅⁺ [M+H]⁺ 269.1383, found 269.1380.

6',8'-dimethoxy-3',4'-dihydro-2'H-spiro[[1,3]dioxolane-2,1'-naphthalene] (24). PPTS (8.7 mg, 34 μmol, 10 mol %) and ethylene glycol (57 μL, 1 mmol, 3 equiv) were added to a solution of tetralone 23 (70.1 mg, 0.34 mmol, 1 equiv) in dry benzene (8 mL) in a Dean-Stark apparatus, the reaction was stirred under vigorous reflux for 14 h. After cooling to room temperature, solid K₂CO₃ (33 mg) was added and the volatiles were removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc/Et₃N 75:25:1) to furnish ketal 24 (42.6 mg, 0.17 mmol) as a colorless oil in 50% yield. Note: Ketal 24 started decomposing back to tetralone 23 in a few hours of storing. TLC (SiO₂): R_f = 0.40 (hexanes/EtOAc 75:25); ¹H NMR (250 MHz, CDCl₃): δ 1.75-2.07 (m, 4H), 2.66-2.82 (m, 2H), 3.75 (s, 3H), 3.80 (s, 3H), 4.00-4.30 (m, 4H), 6.20 (d, *J* = 2.0 Hz, 1H), 6.32 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 21.0 (CH₂), 31.0 (CH₂), 36.7 (CH₂), 55.1 (CH₃), 55.7 (CH₃), 65.3 (2CH₂), 97.8 (CH), 104.1 (CH), 108.0 (C), 117.6 (C), 142.2 (C), 159.9 (C), 160.1 (C).

2-hydroxyethyl 4-(3,4,5-trimethoxyphenyl)butanoate (**35**) and 8-hydroxy-6,7-dimethoxy-3,4dihydronaphthalen-1(2H)-one (**34**). pTSA•H₂O (1.9 mg, 10 µmol, 10 mol %), tetralone **33** (23.6 mg, 0.1 mmol, 1 equiv) and ethylene glycol (1 mL) were placed in a flask, which was heated at 140 °C for 24 h. Then, the reaction contents were diluted with EtOAc (20 mL) and saturated solution of NaHCO₃ (10 mL), the organic phase was separated, washed with H₂O (10 mL) and brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes:EtOAc 60:40 to 30:70) to afford ester **35** (18.0 mg, 60 µmol) in 60% yield and tetralone **34** (7.1 mg, 32 µmol) in 32% yield. Data for compound **35**: TLC (SiO₂): R_f = 0.36 (hexanes/EtOAc 30:70); IR (ATR, cm⁻¹): 3448 (broad), 2941, 2841, 1730, 1590, 1508, 1458, 1238, 1125, 1006, 826; ¹H NMR (250 MHz, CDCl₃): δ 1.90 (br. s, 1H), 1.95 (quint., *J* = 7.4 Hz, 2H), 2.38 (t, *J* = 7.4 Hz, 2H), 2.60 (t, *J* = 7.5 Hz, 2H), 3.81 (s, 3H), 3.84 (s, 6H), 3.79-3.86 (m, 2H), 4.16-4.24 (m, 2H), 6.39 (s, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 26.5 (CH₂), 33.4 (CH₂), 35.5 (CH₂), 56.1 (2CH₃), 60.8 (CH₃), 61.2 (CH₂), 65.9 (CH₂), 105.4 (2CH), 136.2 (C), 137.0 (C), 153.1 (2C), 173.8 (C); HRMS (ESI +): *m/z* calculated for C₁₅H₂₂O₆Na ⁺ [M+Na]⁺ 321.1309, found 321.1308. Data for compound **34**: TLC (SiO₂): R_f = 0.44 (hexanes/EtOAc 60:40); IR (ATR, cm⁻¹): 2923, 2844, 1634, 1574, 1422, 1289, 1104, 1012, 789; ¹H NMR (400 MHz, CDCl₃): δ 2.07 (quint., *J* = 6.2 Hz, 2H), 2.62 (t, *J* = 6.4 Hz, 2H), 2.86 (t, *J* = 6.1 Hz, 2H), 3.86 (s, 3H), 3.91 (s, 3H), 6.29 (s, 1H), 12.69 (s, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 23.0 (CH₂), 30.0 (CH₂), 38.4 (CH₂), 56.0 (CH₃), 60.7 (CH₃), 102.6 (CH), 112.5 (C), 134.4 (C), 141.9 (C), 157.1 (C), 158.3 (C), 203.6 (C); HRMS (ESI +): *m/z* calculated for C₁₂H₁₅O₄⁺ [M+H]⁺ 223.0965, found 223.0967.

2-hydroxyethyl 3-(3,5-*dimethoxyphenyl*)*propanoate* (**37**). *p*TSA•H₂O (1.9 mg, 10 μmol, 10 mol %), bicycle **36** (19.2 mg, 0.1 mmol, 1 equiv) and ethylene glycol (1 mL) were placed in a flask, which was heated at 140 °C for 24 h. Then, the reaction contents were diluted with EtOAc (20 mL) and saturated solution of NaHCO₃ (10 mL), the organic phase was separated, washed with H₂O (10 mL) and brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash chromatography (SiO₂, hexanes:EtOAc 50:50) furnished ester **37** (24.3 mg, 96 μmol) in 93% yield. TLC (SiO₂): R_f = 0.48 (hexanes/EtOAc 50:50); IR (ATR, cm⁻¹): 3413 (broad), 2965, 2925, 2841, 1732, 1596, 1462, 1205, 1151, 1068, 835; ¹H NMR (250 MHz, CDCl₃): δ 1.60-1.74 (m, 4H), 2.01 (br. s, 1H), 2.37 (t, *J* = 7.0 Hz, 2H), 2.57 (t, *J* = 6.8 Hz, 2H), 3.77 (s, 6H), 3.77-3.85 (m, 2H), 4.16-4.23 (m, 2H), 6.30 (t, *J* = 2.0 Hz, 1H), 6.33 (d, *J* = 2.0 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 24.5 (CH₂), 30.5 (CH₂), 34.0 (CH₂), 35.8 (CH₂), 55.2 (2CH₃), 61.2 (CH₂), 65.9 (CH₂), 97.7 (CH), 106.5 (2CH), 144.4 (C), 160.7 (2C), 173.9 (C); HRMS (ESI +): *m/z* calculated for C₁₃H₁₈O₅Na⁺ [M+Na]⁺ 277.1046, found 277.1046.

2-hydroxyethyl 5-(3,5-dimethoxyphenyl)pentanoate (**39**). pTSA•H₂O (1.9 mg, 10 µmol, 10 mol %), bicycle **38** (22.0 mg, 0.1 mmol, 1 equiv) and ethylene glycol (1 mL) were placed in a flask, which was heated at 140 °C for 24 h. Then, the reaction contents were diluted with EtOAc (20 mL) and saturated solution of NaHCO₃ (10 mL), the organic phase was separated, washed with H₂O (10 mL) and brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash chromatography (SiO₂, hexanes:EtOAc 50:50) furnished ester **39** (25.2 mg, 89 µmol) in 89% yield. TLC (SiO₂): R_f = 0.50 (hexanes/EtOAc 50:50); IR (ATR, cm⁻¹): 3418 (broad), 2940, 2855, 2833, 1732, 1596, 1461, 1205, 1150, 1056, 831; ¹H NMR (250 MHz, CDCl₃): δ 1.88 (br. s, 1H), 2.67 (t, *J* = 7.5 Hz, 2H), 2.91 (t, *J* = 7.6 Hz, 2H), 3.77 (s, 6H), 3.77-3.84 (m, 2H), 4.17-4.25 (m, 2H), 6.32 (t, *J* = 2.2 Hz, 1H), 6.36 (d, *J* = 2.2 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 31.2 (CH₂), 35.5 (CH₂), 55.2 (2CH₃), 61.1 (CH₂), 66.1 (CH₂), 98.2 (CH), 106.3

 (2CH), 142.7 (C), 160.8 (2C), 173.1 (C); HRMS (ESI +): m/z calculated for $C_{15}H_{23}O_5^+$ [M+H]⁺ 283.1540, found 283.1538.

(*R*)-*1*-(*3*,5-*dimethoxyphenyl)but-3-en-1-ol* (*41*). A pressure tube was charged with [Ir(cod)Cl₂] (31 mg, 45 μmol, 2.5 mol %), Cs₂CO₃ (117 mg, 0.36 mmol, 20 mol %), 4-chloro-3-nitrobenzoic acid (37 mg, 0.18 mmol, 10 mol %), (*R*)-BINAP (57 mg, 90 μmol, 5 mol %) and alcohol **40** (303 mg, 1.8 mmol, 1 equiv). The tube was purged with argon, and dry THF (6 mL) was added followed by allyl acetate (392 μL, 3.6 mmol, 2 equiv), the pressure tube was sealed and heated at 100 °C for 40 h. The solvent was removed under reduced pressure, and the brown residue was subjected to flash chromatography (SiO₂, hexanes:EtOAc, 75:25) to give the alcohol **41** (280 mg, 1.3 mmol) as a colorless oil in 75% yield. TLC (SiO₂): R_f = 0.40 (hexanes:EtOAc 75:25); ee = 92% (determined by ¹H NMR of Mosher ester derivatives); [α]_D²⁵ = +39 (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 2.19 (br. s, 1H), 2.44-2.53 (m, 2H), 3.78 (s, 6H), 4.65 (t, *J* = 6.4 Hz, 1H), 5.09-5.21 (m, 2H), 5.80 (ddt, *J* = 17.2, 10.1, 7.1 Hz, 1H), 6.37 (t, *J* = 2.3 Hz, 1H), 6.52 (d, *J* = 2.2 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 43.7 (CH₂), 55.3 (2CH₃), 73.3 (CH), 99.4 (CH), 103.7 (2CH), 118.3 (CH₂), 134.4 (CH), 146.5 (C), 160.8 (2C); IR (ATR, cm⁻¹): 3404 (broad), 2937, 2840, 1596, 1460, 1430, 1296, 1205, 1151, 1054, 920, 838, 698; HRMS (ESI +): *m/z* calculated for C₁₂H₁₆O₃Na⁺ [M+Na]⁺ 231.0992, found 231.0985.

(S)-1-(1-bromobut-3-en-1-yl)-3,5-dimethoxybenzene (**43**). CBr₄ (1.61 g, 4.8 mmol, 2 equiv) and PPh₃ (1.26 g, 4.8 mmol, 2 equiv) were added to a solution of alcohol **41** (500 mg, 2.4 mmol, 1 equiv) in CH₂Cl₂ (20 mL) at 0 °C. After stirring the reaction for 1 h at 0 °C, ice-cold H₂O (20 mL) was added. The mixture was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 95:5) to give the bromide **43** (530 mg, 1.95 mmol) as a colorless oil in 81% yield. TLC (SiO₂): R_f = 0.28 (hexanes:EtOAc 95:5); $[\alpha]_D^{25} = -78$ (*c* 0.5, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 2.87-3.05 (m, 2H), 3.80 (s, 6H), 4.87 (t, *J* = 7.4 Hz, 1H), 5.06-5.21 (m, 2H), 5.76 (ddt, *J* = 17.1, 10.3, 6.6 Hz, 1H), 6.39 (t, *J* = 2.3 Hz, 1H), 6.55 (d, *J* = 2.4 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 43.9 (CH₂), 54.0 (CH), 55.4 (2CH₃), 100.3 (CH), 105.5 (2CH), 118.1 (CH₂), 134.7 (CH), 143.7 (C), 160.8 (2C); IR (ATR, cm⁻¹): 3004, 2939, 2840, 1599, 1462, 1432, 1208, 1158, 1067, 927, 838, 724; HRMS (ESI +): *m*/z calculated for C₁₂H₁₆O₂Br⁺ [M+H]⁺ 271.0328, found 271.0329.

(*R*)-4-benzyl-3-(2-(3,5-dimethoxyphenyl)acetyl)oxazolidin-2-one (**47**). Et₃N (418 μ L, 3 mmol, 3 equiv) was added to a mixture of (*R*)-4-benzyl-2-oxazolidinone (**45**, 181 mg, 1 mmol, 1 equiv), carboxylic acid **46**

(226 mg, 1.15 mmol, 1.15 equiv) in dry toluene (1.8 mL) at room temperature. The reaction was stirred at 80 °C to obtain a solution, next pivaloyl chloride (149 µL, 1.2 mmol, 1.2 equiv) was added and the reaction was stirred for 2 h at 110 °C. Finally, a second portion of pivaloyl chloride (75 µL, 0.6 mmol, 1.2 equiv) was added and the reaction was stirred for 3 h at 110 °C. Then, this mixture was cooled to r.t., and was diluted with EtOAc (30 mL) and HCl aqueous solution (1 M, 10 mL), the organic phase was then washed with saturated NaHCO₃ solution (10 mL), and brine (10 mL). The organic phase was dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 85:15 to 67:33) to furnish imide **47** (191 mg, 0.54 mmol) as a dark oil in 54% yield. TLC (SiO₂): R_f = 0.33 (hexanes:EtOAc 67:33); $[a]_D^{25} = -58$ (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 2.78 (dt, *J* = 13.4, 9.2 Hz, 1H), 3.23 (dd, *J* = 13.4, 3.0 Hz, 1H), 3.77 (s, 6H), 4.10-4.35 (m, 4H), 4.58-4.73 (m, 1H), 6.41 (t, *J* = 2.0 Hz, 1H), 6.52 (d, *J* = 2.0 Hz, 2H), 7.07-7.17 (m, 2H), 7.20-7.34 (m, 3H); ¹³C NMR (62.9 MHz, CDCl₃): δ 37.4 (CH₂), 41.4 (CH₂), 54.96 (CH), 55.03 (2CH₃), 65.8 (CH₂), 99.1 (CH), 107.6 (2CH), 127.0 (CH), 128.6 (2CH), 129.2 (2CH), 134.9 (C), 135.5 (C), 153.1 (C), 160.6 (2C), 170.6 (C); IR (ATR, cm⁻¹): 2927, 2838, 1778, 1698, 1596, 1456, 1206, 1153, 1065, 734; HRMS (ESI +): *m*/z calculated for C₂₀H₂₁, NO₅Na⁺ [M+Na]⁺ 378.1312, found 378.1305.

(*R*)-4-benzyl-3-((*R*)-2-(3,5-dimethoxyphenyl)pent-4-enoyl)oxazolidin-2-one (**48**). NaHMDS solution (2.0 M in THF, 4.06 mL, 8.12 mmol, 1.4 equiv) was added dropwise to a solution of imide **47** (2.06 g, 5.8 mmol, 1 equiv) in THF (58 mL) at -78 °C, the resulting mixture was stirred for 1 h at the same temperature. Next, allyl bromide (2.0 mL, 22.4 mmol, 3.9 equiv) was added dropwise to the sodium enolate solution, the reaction was stirred for 15 min at -78 °C, and 3 h at -45 °C (cryostat bath). The reaction was quenched by addition of NH₄Cl saturated solution (50 mL), and was extracted with EtOAc (2 x 50 mL). The combined organic phases were dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 75:25) to furnish imide **48** (1.40 g, 3.55 mmol) as a colorless oil in 61% yield. Note: A single diastereoisomer was observed by NMR analysis, and the diatereomeric ratio was considered to be higher than 95:5. TLC (SiO₂): R_f = 0.42 (hexanes:EtOAc 67:33); [α]_D²⁵ = -92 (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 2.55 (dt, *J* = 14.2, 6.2 Hz, 1H), 2.78 (dd, *J* = 13.3, 9.6 Hz, 1H), 2.94 (dt, *J* = 14.1, 7.9 Hz, 1H), 3.32 (dd, *J* = 13.3, 3.2 Hz, 1H), 3.78 (s, 6H), 3.98-4.18 (m, 2H), 4.54-4.67 (m, 1H), 5.01-5.20 (m, 3H), 5.81 (ddt, *J* = 16.9, 10.3, 6.9 Hz, 1H), 6.37 (t, *J* = 2.2 Hz, 1H), 6.58 (d, *J* = 2.4 Hz, 2H), 7.18-7.38 (m, 5H); ¹³C NMR (62.9 MHz, CDCl₃): δ 37.9 (CH₂), 38.1 (CH₂), 48.2 (CH), 55.3 (2CH₃), 55.7 (CH), 65.7 (CH₂), 99.5 (CH), 106.5 (2CH), 117.2 (CH₂), 127.3 (CH), 128.9

(2CH), 129.4 (2CH), 135.2 (CH), 135.3 (C), 140.4 (C), 152.9 (C), 160.7 (2C), 173.0 (C); IR (ATR, cm⁻¹):
2934, 2838, 1779, 1697, 1595, 1456, 1206, 1157, 1065, 700; HRMS (ESI +): *m/z* calculated for
C₂₃H₂₅NO₅Na [M+Na]⁺ 418.1625, found 418.1619.

(*R*)-2-(3,5-dimethoxyphenyl)pent-4-en-1-ol (**49**). Dry EtOH (996 µL, 17.1 mmol, 5 equiv) was added to a solution of imide **48** (1.35 g, 3.4 mmol, 1 equiv) in Et₂O (34 mL) at 0 °C. Next, solid LiBH₄ (391 mg, 17.1 mmol, 5 equiv) was added to the reaction, the resulting mixture was stirred for 4 h at 0 °C. After that, aqueous solution of NaOH (1 M, 30 mL) was carefully added and the resulting mixture was stirred for 1 h, and was extracted with EtOAc (2 x 40 mL). The combined organic phases were washed with brine (15 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 67:33) to furnish alcohol **49** (660 mg, 2.97 mmol) as a colorless oil in 87% yield. TLC (SiO₂): R_f = 0.40 (hexanes:EtOAc 60:40); $[\alpha]_D^{25}$ = -14 (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 0.54 (br. s, 1H), 2.28-2.50 (m, 2H), 2.81 (quint., *J* = 6.8 Hz, 1H), 3.65-3.81 (m, 2H), 3.78 (s, 6H), 4.92-5.10 (m, 2H), 5.72 (ddt, *J* = 17.1, 10.1, 7.0 Hz, 1H), 6.34 (t, *J* = 2.1 Hz, 1H), 6.37 (d, *J* = 2.2 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 36.5 (CH₂), 48.5 (CH), 55.2 (2CH₃), 66.8 (CH₂), 98.4 (CH), 106.1 (2CH), 116.4 (CH₂), 136.2 (CH), 144.4 (C), 160.9 (2C); IR (ATR, cm⁻¹): 3380 (broad), 2923, 1595, 1461, 1204, 1151, 1063, 918, 833; HRMS (ESI +): *m/z* calculated for C₁₃H₁₈O₃Na⁺ [M+Na]⁺ 245.1148, found 245.1152.

(*R*)-*tert-butyl((2-(3,5-dimethoxyphenyl)pent-4-en-1-yl)oxy)diphenylsilane (50). Imidazole (366 mg, 5.35 mmol, 1.8 equiv) and TBDPSCI (1.02 mL, 3.86 mmol, 1.3 equiv) were added to a solution of alcohol 49 (660 mg, 2.97 mmol, 1 equiv) in CH₂Cl₂ (50 mL) at room temperature. After stirring the reaction for 12 h, H₂O (50 mL) was added, and the mixture was extracted with CH₂Cl₂ (50 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 90:10) to give the silyl ether 50 (1.23 g, 2.67 mmol) as a colorless oil in 90% yield. TLC (SiO₂): R_f = 0.32 (hexanes:EtOAc 90:10); [\alpha]_D^{25} = -8 (<i>c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.06 (s, 9H), 2.42 (dt, *J* = 14.1, 7.7 Hz, 1H), 2.68 (dt, *J* = 14.2, 7.1 Hz, 1H), 2.77-2.91 (m, 1H), 3.77 (s, 6H), 3.72-3.82 (m, 2H), 4.90-5.11 (m, 2H), 5.72 (ddt, *J* = 16.9, 9.9, 7.1 Hz, 1H), 6.33-6.39 (m, 3H), 7.31-7.48 (m, 6H), 7.54-7.64 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.2 (C), 26.8 (3CH₃), 35.8 (CH₂), 48.5 (CH), 55.2 (2CH₃), 67.9 (CH₂), 98.3 (CH), 106.3 (2CH), 116.0 (CH₂), 127.5 (4CH), 129.5 (2CH), 133.6 (C), 133.7 (C), 135.5 (2CH), 135.6 (2CH), 136.8 (CH), 145.0 (C), 160.5 (2C); IR

(ATR, cm⁻¹): 2931, 2857, 1596, 1462, 1428, 1204, 1152, 1111, 824, 700; HRMS (ESI +): *m/z* calculated for C₂₉H₃₆O₃SiNa⁺ [M+Na]⁺ 483.2326, found 483.2321.

(R)-5-((tert-butyldiphenylsilyl)oxy)-4-(3,5-dimethoxyphenyl)pentan-1-ol (51). 9-BBN solution (0.5 M in THF, 8.0 mL, 4.0 mmol, 1.5 equiv) was added to a solution of alkene 50 (1.22 g, 2.66 mmol, 1 equiv) in THF (50 mL) at 0 °C, after 5 min the ice bath was removed. The reaction was stirred for 2 h at r.t., then, the mixture was cooled to 0 °C and H₂O (50 mL) and solid NaBO₃•4H₂O (2.11 g) were added, after 10 min the ice bath was removed, and the mixture was stirred vigorously for 2 h at r.t. Next, the reaction was extracted with EtOAc (2 x 50 mL). The combined organic phases were washed with brine (20 mL), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 85:15 to 75:25) to give alcohol 51 (1.15 g, 2.40 mmol) as a colorless oil in 90% yield. TLC (SiO₂): $R_f = 0.25$ (hexanes:EtOAc 75:25); $[\alpha]_D^{25} = -6$ (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃); δ 1.03 (s, 9H), 1.41-1.70 (m, 4H), 1.84-2.01 (m, 1H), 2.64-2.78 (m, 1H), 3.59 (t, J = 6.4 Hz, 2H), 3.75 (s, 6H), 3.70-3.80 (m, 2H), 6.27-6.38 (m, 3H), 7.30-7.47 (m, 6H), 7.52-7.63 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.2 (C), 26.8 (3CH₃), 27.6 (CH₂), 30.6 (CH₂), 48.6 (CH), 55.2 (2CH₃), 62.9 (CH₂), 68.5 (CH₂), 98.2 (CH), 106.2 (2CH), 127.5 (4CH), 129.5 (2CH), 133.6 (C), 133.7 (C), 135.5 (2CH), 135.6 (2CH), 145.3 (C), 160.6 (2C); IR (ATR, cm⁻¹): 3389 (broad), 2932, 2858, 1596, 1462, 1428, 1204, 1152, 1112, 1060, 824, 701; HRMS (ESI +): m/z calculated for $C_{29}H_{38}O_4SiNa^+$ [M+Na]⁺ 501.2432, found 501.2439.

(*R*)-*5*-((*tert-butyldiphenylsilyl*)*oxy*)-*4*-(*3*,*5*-*dimethoxyphenyl*)*pentanoic acid* (*52*). PDC (2.59 g, 6.75 mmol, 3 equiv) was added to a solution of alcohol **51** (1.08 g, 2.25 mmol, 1 equiv) in dry DMF (15 mL), and the mixture was stirred at room temperature for 6 h. After this, H₂O (150 mL) was added to the reaction and the resulting mixture was extracted with EtOAc (2 × 100 mL). Next, the combined organic phases were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 75:25 to 60:40) to give carboxylic acid **52** (602 mg, 1.22 mmol) as a colorless oil in 54% yield. TLC (SiO₂): R_f = 0.15 (hexanes:EtOAc 75:25); $[\alpha]_D^{25} = -8$ (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.07 (s, 9H), 1.82-2.02 (m, 1H), 2.19-2.40 (m, 3H), 2.70-2.85 (m, 1H), 3.77 (s, 6H), 3.79 (d, *J* = 7.4 Hz, 2H), 6.33 (d, *J* = 2.1 Hz, 2H), 6.37 (d, *J* = 2.1 Hz, 1H), 7.32-7.47 (m, 6H), 7.57-7.66 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.2 (C), 26.6 (CH₂), 26.8 (3CH₃), 32.0 (CH₂), 48.0 (CH), 55.2 (2CH₃), 68.3 (CH₂), 98.6 (CH), 106.2 (2CH), 127.6 (4CH), 129.5 (CH), 129.6 (CH), 133.5 (C), 133.6 (C), 135.5 (2CH), 135.6 (2CH), 145.1 (C), 160.7 (2C), 179.8 (C); IR (ATR, cm⁻¹): 2929, 2857, 1709, 1597, 1462,

The Journal of Organic Chemistry

1429, 1205, 1155, 1112, 702; HRMS (ESI +): m/z calculated for C₂₉H₃₆O₅SiNa⁺ [M+Na]⁺ 515.2224, found 515.2222.

(R)-4-(((tert-butyldiphenylsilyl)oxy)methyl)-6,8-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (53). Oxalyl chloride (110 µL, 1.3 mmol, 2 equiv) and DMF (5.0 µL, 65 µmol, 10 mol %) were added to a solution of carboxylic acid 52 (320 mg, 0.65 mmol, 1 equiv) in anhydrous CH₂Cl₂ (13 mL) at 0 °C, then, the cooling bath was removed and the mixture was stirred for 1.5 h at room temperature. Next, the volatiles were removed under reduced pressure, and the residue was directly diluted in dry CH2Cl2 (13 mL). To this solution, SnCl₄ (1 M in CH₂Cl₂, 715 µL, 0.71 mmol, 1.1 equiv) was added at 0 °C, and the mixture was stirred for 2 h at the same temperature. Next, water (10 mL) was added to the reaction at 0 °C, the organic phase was separated and the aqueous phase was extracted with CH₂Cl₂ (10 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 60:40 to 50:50) to afford tetralone 53 (266 mg, 0.56 mmol) as a colorless oil in 86% overall yield. TLC (SiO₂): $R_f = 0.30$ (hexanes:EtOAc 60:40); $[\alpha]_D^{25} =$ +50 (c 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃); δ 1.06 (s, 9H), 2.03-2.34 (m, 2H), 2.40-2.69 (m, 2H), 2.97-3.10 (m, 1H), 3.76 (s, 3H), 3.86 (s, 3H), 3.78-3.87 (m, 2H), 6.22 (d, J = 2.3 Hz, 1H), 6.34 (d, 1H), 7.31-7.47 (m, 6H), 7.59-7.68 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.2 (C), 23.6 (CH₂), 26.8 (3CH₃), 36.0 (CH₂), 42.3 (CH), 55.3 (CH₃), 55.9 (CH₃), 66.2 (CH₂), 97.6 (CH), 105.1 (CH), 116.3 (C), 127.7 (4CH), 129.7 (2CH), 133.2 (C), 133.4 (C), 135.5 (4CH), 149.1 (C), 162.3 (C), 163.7 (C), 195.8 (C); IR (ATR, cm⁻¹): 2930, 2857, 1670, 1597, 1455, 1255, 1088, 824, 702; HRMS (ESI +): *m/z* calculated for $C_{29}H_{34}O_4SiNa^{\dagger}$ [M+Na]⁺ 497.2119, found 497.2124.

(R)-tert-butyl((6',8'-dimethoxy-3',4'-dihydro-2'H-spiro[[1,3]dithiane-2,1'-naphthalen]-4'-

yl)methoxy)diphenylsilane (54). 1,3-Propanedithiol (222 µL, 2.19 mmol, 4 equiv) and BF₃•Et₂O (135 µL, 1.1 mmol, 2 equiv) were added to a solution of tetralone 53 (260 mg, 0.55 mmol, 1 equiv) in CH₂Cl₂ (6 mL) at 0 °C. After 10 min, the ice bath was removed and the reaction was stirred for 18 h. Next, the mixture was diluted with NaHCO₃ saturated solution (10 mL), and the mixture was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phases were dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 95:5 to 85:15) to furnish dithiane 54 (213 mg, 0.38 mmol) as a colorless oil in 69% yield. TLC (SiO₂): R_f = 0.35 (hexanes:EtOAc 85:15); $[\alpha]_D^{25} = +47$ (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.11 (s, 9H), 1.93-2.18 (m, 4H), 2.40 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 2.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 3.61-2.88 (m, 3H), 2.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 3.61-2.88 (m, 3H), 3.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 3.61-2.88 (m, 3H), 3.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 3.61-2.88 (m, 3H), 3.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 3.61-2.88 (m, 3H), 3.88-3.01 (m, 1H), 3.17 (ddd, *J* = 14.5, 10.3, 4.3 Hz, 1H), 3.81-3.01 (m, 3H), 3.81-3.01 (m,

10.7, 3.6 Hz, 2H), 3.65 (s, 3H), 3.89 (s, 3H), 3.71-3.92 (m, 2H), 6.11 (d, J = 2.5 Hz, 1H), 6.37 (d, J = 2.5 Hz, 1H), 7.34-7.48 (m, 6H), 7.63-7.76 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.2 (C), 20.9 (CH₂), 24.6 (CH₂), 26.9 (3CH₃), 27.1 (CH₂), 27.6 (CH₂), 33.5 (CH₂), 42.1 (CH), 50.4 (C), 55.1 (CH₃), 56.5 (CH₃), 67.6 (CH₂), 99.9 (CH), 106.4 (CH), 120.2 (C), 127.6 (4CH), 129.6 (2CH), 133.6 (C), 133.8 (C), 135.58 (2CH), 135.62 (2CH), 141.0 (C), 159.5 (C), 161.2 (C); IR (ATR, cm⁻¹): 2930, 2857, 1671, 1597, 1428, 1257, 1155, 1112, 998; HRMS (ESI +): *m/z* calculated for C₃₂H₄₀O₃S₂SiNa⁺ [M+Na]⁺ 587.2080, found 587.2061.

(*R*)-(*6*',*8*'-dimethoxy-3',4'-dihydro-2'H-spiro[[1,3]dithiane-2,1'-naphthalen]-4'-yl)methanol (**55**). TBAF solution (1 M in THF, 0.80 mL, 0.80 mmol, 2 equiv) was added to a mixture of silyl ether **54** (226 mg, 0.40 mmol, 1 equiv) in dry THF (5 mL) at 0 °C, and after 5 min the ice bath was removed. This mixture was stirred for 2 h, then was quenched by addition of saturated aqueous solution of NH₄Cl (10 mL). The mixture was extracted with EtOAc (2 x 15 mL). The organic phases were combined, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 50:50) to furnish alcohol **55** (105 mg, 0.32 mmol) as a colorless oil in 80% yield. TLC (SiO₂): R₁ = 0.33 (hexanes:EtOAc 50:50); $[q]_D^{25}$ = +22 (*c* 1.0, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.86-2.18 (m, 5H), 2.45-2.85 (m, 4H), 2.92 (quint, *J* = 6.0 Hz, 1H), 3.07-3.23 (m, 2H), 3.75 (s, 3H), 3.71-3.83 (m, 2H), 3.89 (s, 3H), 6.38 (d, *J* = 2.3 Hz, 1H), 6.40 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 21.5 (CH₂), 24.6 (CH₂), 27.2 (CH₂), 27.6 (CH₂), 34.1 (CH₂), 41.9 (CH), 50.4 (C), 55.2 (CH₃), 56.5 (CH₃), 66.8 (CH₂), 99.8 (CH), 106.3 (CH), 120.3 (C), 140.8 (C), 159.9 (C), 161.5 (C); IR (ATR, cm⁻¹): 3427, 2929, 1599, 1455, 1421, 1275, 1212, 1044, 938, 828; HRMS (ESI +): m/z calculated for C₁₆H₂₂O₃S₂Na⁺ [M+Na]⁺ 349.0903, found 349.0904.

1-(6',8'-dimethoxy-3',4'-dihydro-2'H-spiro[[1,3]dithiane-2,1'-naphthalen]-4'-yl)-1-hydroxy-5-

((1S,4aS,8aS)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalen-1-yl)pentan-3-one (**56**). SO₃•py (58.6 mg, 0.37 mmol, 4.0 equiv) was added to a solution of alcohol **55** (30.0 mg, 92 µmol, 1.0 equiv), DIPEA (160 µl, 920 µmol, 10 equiv), and DMSO (65 µl, 920 µmol, 10 equiv) in dry CH₂Cl₂ (5 mL) at 0 °C. This mixture was stirred for 1 h, then H₂O (10 mL) was added, and the mixture was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and were concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 85:15) to furnish aldehyde **44**, which was directly used in the next step. TLC (SiO₂): R_f = 0.61 (hexanes/EtOAc 75:25); LiHMDS solution (1.0 M in THF, 129 µL, 0.13 mmol, 1.4 equiv) was added dropwise to a solution of ketone **2** (31.4 mg, 0.12 mmol, 1.3 equiv) in THF (2.5 mL) at -78 °C, the resulting mixture was stirred for

The Journal of Organic Chemistry

15 min at the same temperature. Next, a solution of the freshly prepared aldehyde 44 in dry THF (2.5 mL) was added dropwise to lithium enolate solution, the reaction was stirred for 1 h at -78 °C. The reaction was quenched by addition of NH₄Cl saturated solution (15 mL), and was extracted with EtOAc (2 x 20 mL). The combined organic phases were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 85:15 to 75:25) to furnish 56 (33.0 mg, 56 µmol) as a colorless oil in 61% yield (for two steps). Note: The product was obtained as a mixture of 4 diastereoisomers, the ratio of these compounds was not determined. TLC (SiO₂): $R_f = 0.24$ -0.30 (hexanes/EtOAc 75:25); ¹H NMR (500 MHz, CDCl₃): ō 0.77 and 0.78 (s, 3H), 0.867 and 0.871 (s, 3H), 0.89 and 0.90 (s, 3H), 0.84-1.00 (m, 2H), 1.12-1.21 (m, 2H), 1.34-1.61 (m, 4H), 1.64 and 1.66 (s, 3H), 1.69-2.19 (m, 9H), 2.31-2.98 (m, 9H), 3.11-3.25 (m, 2H), 3.788, 3.792 and 3.81 (s, 3H), 3.940 and 3.943 (s, 3H), 4.38-4.43 and 4.53-4.59 (m, 1H), 5.49 (br. s, 1H), 6.42 and 6.46 (d, J = 2.5 Hz, 1H), 6.45 and 6.59 (d, J = 2.5 Hz, 1H); ¹³C NMR (126 MHz, CDCI₃): Signals that represent same carbon position from different isomers are marked with same letters δ 13.59 (CH₃)^a, 13.60 (CH₃)^a, 18.8 (CH₂)^b, 20.19 (CH₂)^c, 20.23 (CH₂)^c, 20.59 (CH₂)^{c or d}, 20.62 (CH₂)^{c or d}, 20.67 (CH₂)^{c or d}, 21.2 (CH₂)^d, 21.9 (CH₃)^e, 22.2 (CH₃)^f, 23.8 (CH₂)^g, 24.60 (CH₂)^h, 24.63 (CH₂)^h, 27.1 (CH₂)ⁱ, 27.2 (CH₂)ⁱ, 27.6 (CH₂)^j, 27.8 (CH₂)^j, 33.0 (C)^k, 33.2 (CH₃)^l, 35.1 (CH₂)^m, 35.5 (CH₂)^m, 36.9 (C)ⁿ, 39.4 (CH₂)^o, 42.2 (CH₂)^p, 43.73 (CH)^q, 43.75 (CH)^q, 44.2 (CH)^q, 44.61 (CH₂)^r, 44.64 (CH₂)^r, 45.77 (CH₂)^{r or s}, 45.81 (CH₂)^{r or s}, 45.9 (CH₂)^s, 46.29 (CH₂)^s, 46.33 (CH₂)^s, 50.1 (CH)^t, 50.4 (C)^u, 50.6 (C)^u, 54.26 (CH)^v, 54.30 (CH)^v, 54.34 (CH)^v, 55.2 (CH₃)^w, 55.3 (CH₃)^w, 56.4 (CH₃)^x, 70.6 (CH)^y, 70.7 (CH)^y, 70.9 (CH)^y, 71.0 (CH)^y, 99.5 (CH)^z, 99.7 (CH)^z, 105.87 (CH)^{a'}, 105.88 (CH)^{a'}, 106.51 (CH)^{a'}, 106.53 (CH)^{a'}, 120.6 (C)^{b'}, 121.0 (C)^{b'}, 123.0 (CH)^{c'}, 123.1 (CH)^{c'}, 134.4 (C)^{d'}, 140.6 (C)^{e'}, 140.8 (C)^{e'}, 159.8 (C)^f, 159.9 (C)^f, 161.5 (C)^{g'}, 161.6 (C)^{g'}, 211.9 (C)^{h'}, 212.0 (C)^{h'}, 212.25 (C)^{h'}, 212.28 (C)^{h'}; IR (ATR, cm⁻¹): 3474, 2924, 1706, 1601, 1578, 1308, 1202, 1155, 1051, 754; HRMS (ESI +): m/z calculated for $C_{34}H_{50}O_4S_2Na^{+}$ [M+Na]⁺ 609.3043, found 609.3015.

1-(3,5-dimethoxyphenyl)allyl acetate (58). VinylMgBr (1 M in THF, 7.2 mL, 7.2 mmol, 2 equiv) was added dropwise to a solution of aldehyde 57 (610 mg, 3.6 mmol, 1 equiv) in THF (30 mL) at 0 °C. The reaction was stirred for 30 min at the same temperature and was then quenched by addition of saturated aqueous solution of NH₄Cl (50 mL). The mixture was extracted with EtOAc (2 x 50 mL), the organic phases were combined, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 90:10 to 60:40) to give the allylic alcohol intermediate along with minor impurities (550 mg, 2.83 mmol), this material was used in the next reaction. The allylic alcohol was diluted in dry CH₂Cl₂ (20 mL) and to this mixture were added Et₃N (0.79 mL, 5.6 mmol, 2 equiv), DMAP (17 mg, 0.14 mmol, 5 mol %) and Ac₂O (0.40 mL, 4.2 mmol, 1.5 equiv) at room temperature, and the reaction mixture was stirred for 1 h. The reaction was quenched by the addition of brine (20 mL) and was extracted with CH₂Cl₂ (2 x 20 mL). The organic phases were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 90:10) to give the acetate **58** (587 mg, 2.48 mmol) as a colorless oil in 69% overall yield (for 2 steps). TLC (SiO₂): R_f = 0.39 (hexanes/EtOAc 90:10); IR (ATR, cm⁻¹): 2955, 2941, 2909, 2840, 1737, 1598, 1460, 1372, 1229, 1206, 1067, 933, 750; ¹H NMR (250 MHz, CDCl₃): δ 2.06 (s, 3H), 3.71 (s, 6H), 5.18 (dt, *J* = 10.3, 1.1 Hz, 1H), 5.27 (dt, *J* = 17.2, 1.1 Hz, 1H), 5.95 (ddd, *J* = 17.0, 10.4, 6.0 Hz, 1H), 6.17 (d, *J* = 6.0 Hz, 1H), 6.37 (t, *J* = 2.3 Hz, 1H), 6.50 (d, *J* = 2.2 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 20.9 (CH₃), 55.1 (2CH₃), 76.0 (CH), 99.8 (CH), 105.0 (2CH), 116.7 (CH₂), 136.2 (CH), 141.3 (C), 160.9 (2C), 169.6 (C); HRMS (ESI +): *m*/z calculated for C₁₃H₁₆O₄Na⁺ [M+Na]⁺ 259.0941, found 259.0949.

(*S*)-2-(*3*,5-*dimethoxyphenyl*)*but-3-en-1-ol* (*60*). A pressure tube was charged with paraformaldehyde (12.6 mg, 0.42 mmol of CH₂O units, 1 equiv), K₃PO₄ (45.5 mg, 0.21 mmol, 0.5 equiv), (*R*)-Krische catalyst (21.7 mg, 0.021 mmol, 5 mol %),³² NMO (39.4 mg, 0.34 mmol, 0.8 equiv) and allylic acetate **58** (149 mg, 0.63 mmol, 1.5 equiv). The tube was purged with argon, and dry THF (1.0 mL) was added followed by dry isopropyl alcohol (64.3 µL, 0.84 mmol, 2 equiv), the pressure tube was sealed and heated at 60 °C for 36 h. After this period, the mixture was cooled to room temperature, the volatiles were removed under reduced pressure, and the residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 90:10 to 75:25) to give alcohol **60** (45 mg, 0.216 mmol) as a colorless oil in 51% yield. TLC (SiO₂): R_f = 0.23 (hexanes/EtOAc 75:25); ee = 93% (determined by ¹⁹F NMR of Mosher ester derivatives); $[\alpha]_D^{25} = +28$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 3393 (broad), 3003, 2395, 2831, 1602, 1466, 1434, 1208, 1153, 1067, 917, 840; ¹H NMR (250 MHz, CDCl₃): δ 1.59 (br. s, 1H), 3.46 (q, *J* = 7.1 Hz, 1H), 3.78 (s, 6H), 3.76-3.87 (m, 2H), 5.14-5.27 (m, 2H), 5.89-6.07 (m, 1H), 6.36 (t, *J* = 2.1 Hz, 1H), 6.39 (d, *J* = 2.2 Hz, 2H); ¹³C NMR (62.9 MHz, CDCl₃): δ 52.7 (CH), 55.3 (2CH₃), 65.9 (CH₂), 98.6 (CH), 106.1 (2CH), 117.1 (CH₂), 137.9 (CH), 143.0 (C), 161.0 (2C); HRMS (ESI +): *m/z* calculated for C₁₂H₁₆O₃Na⁺ [M+Na]⁺ 231.0992, found 231.0994.

(S)-tert-butyl((2-(3,5-dimethoxyphenyl)but-3-en-1-yl)oxy)diphenylsilane (**61**). Imidazole (27 mg, 0.40 mmol, 2 equiv) and TBDPSCI (80 μ L, 0.30 mmol, 1.5 equiv) were added to a solution of alcohol **60** (41.7 mg, 0.20 mmol, 1 equiv) in CH₂Cl₂ (10 mL) at room temperature. After stirring the reaction for 18 h, H₂O

The Journal of Organic Chemistry

(15 mL) was added, and the mixture was extracted with CH₂Cl₂ (20 mL). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 90:10) to give the silyl ether **61** (70 mg, 0.16 mmol) as a colorless oil in 78% yield. TLC (SiO₂): $R_f = 0.40$ (hexanes/EtOAc 90:10); $[\alpha]_D^{25} = +10$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 3073, 2955, 2933, 2859, 1598, 1463, 1430, 1206, 1156, 1113, 1070, 1000, 828, 705, 616; ¹H NMR (250 MHz, CDCl₃): δ 1.07 (s, 9H), 3.50 (q, *J* = 7.0 Hz, 1H), 3.78 (s, 6H), 3.84-4.00 (m, 2H), 5.13-5.24 (m, 2H), 6.10 (ddd, *J* = 16.4, 11.2, 7.4 Hz, 1H), 6.39 (s, 3H), 7.33-7.50 (m, 6H), 7.58-7.69 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.3 (C), 29.9 (3CH₃), 52.5 (CH), 55.2 (2CH₃), 67.6 (CH₂), 98.6 (CH), 106.4 (2CH), 116.2 (CH₂), 127.6 (4CH), 129.6 (2CH), 133.7 (C), 133.8 (C), 135.66 (2CH), 135.70 (2CH), 138.6 (CH), 144.2 (C), 160.7 (2C); HRMS (ESI +): *m/z* calculated for C₂₈H₃₄O₃SiNa⁺ [M+Na]⁺ 469.2169, found 469.2158.

(*S*,*E*)-5-((*tert-butyldiphenylsilyl)oxy*)-4-(*3*,5-*dimethoxyphenyl*)*pent-2-enal* (**62**). Freshly distilled (*E*)crotonaldehyde (60 μL, 0.65 mmol, 5 equiv) was added to a solution of alkene **61** (58 mg, 0.13 mmol) in CH₂Cl₂ (1.3 mL). Next, 2nd generation Grubbs' catalyst (11 mg, 13 μmol, 10 mol %) was added and the mixture was stirred at 40 °C for 18 h. The reaction contents were directly subjected to flash chromatography (SiO₂, hexanes/EtOAc 90:10) to give enal **62** (31 mg, 65 μmol) as a colorless oil in 50% yield. TLC (SiO₂): R_f = 0.20 (hexanes/EtOAc 90:10); $[α]_D^{25} = +10$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2954, 2929, 2857, 1693, 1598, 1460, 1430, 1206, 1156, 1115, 826, 745, 704; ¹H NMR (250 MHz, CDCl₃): δ 1.04 (s, 9H), 3.67 (q, *J* = 6.9 Hz, 1H), 3.74 (s, 6H), 3.92-3.99 (m, 2H), 6.17 (ddd, *J* = 15.8, 7.9, 1.3 Hz, 1H), 6.26 (d, *J* = 2.2 Hz, 2H), 6.36 (t, *J* = 2.2 Hz, 1H), 6.99 (dd, *J* = 15.8, 6.9 Hz, 1H), 7.32-7.48 (m, 6H), 7.54-7.63 (m, 4H), 9.52 (d, *J* = 7.7 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.2 (C), 26.8 (3CH₃), 51.4 (CH), 55.3 (2CH₃), 66.6 (CH₂), 99.0 (CH), 106.4 (2CH), 127.7 (4CH), 129.8 (2CH), 133.2 (2C), 133.6 (CH), 135.58 (2CH), 135.61 (2CH), 141.1 (C), 157.6 (CH), 161.0 (2C), 193.9 (CH); HRMS (ESI +): *m/z* calculated for C₂₉H₃₄O₄SiNa⁺ [M+Na]⁺ 497.2119, found 497.2117.

(S)-tert-butyl((5,7-dimethoxy-1,2-dihydronaphthalen-1-yl)methoxy)diphenylsilane (63). Pd/C (5% w/w, 5.6 mg, 2.6 µmol, 5 mol %) was added to a solution of enal 62 (25.2 mg, 53.0 µmol, 1 equiv) in EtOAc (5 mL) at room temperature. This mixture was purged with H₂ and was stirred for 2 h. Next, the reaction contents were directly filtered through a plug of silica using EtOAc as eluent to furnish the saturated aldehyde, which was used in the next step without further purification. TLC (SiO₂): $R_f = 0.60$ (hexanes/EtOAc 75:25). The saturated aldehyde obtained above was diluted in dry toluene (2.5 mL), and pTSA•H₂O (9.2 mg, 53 µmol, 1 equiv) was added to the reaction at room temperature. The mixture was

stirred for 1 h, then saturated aqueous solution of NaHCO₃ (5 mL) and EtOAc (15 mL) were added. The organic phase was separated, washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 95: 5 to 90:10) to give the bicycle **63** (17.0 mg, 37.1 µmol) as a colorless oil in 70% yield. TLC (SiO₂): $R_f = 0.40$ (hexanes/EtOAc 90:10); $[\alpha]_D^{25} = +5$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2955, 2926, 2857, 1726, 1605, 1579, 1465, 1428, 1270, 1151, 1087, 830, 704, 616; ¹H NMR (250 MHz, CDCl₃): δ 1.10 (s, 9H), 2.35-2.69 (m, 2H), 2.83-2.97 (m, 1H), 3.75 (s, 3H), 3.57-3.77 (m, 2H), 3.80 (s, 3H), 5.64-5.75 (m, 1H), 6.21 (d, *J* = 2.0 Hz, 1H), 6.31 (d, *J* = 2.0 Hz, 1H), 6.68 (dd, *J* = 9.8, 2.7 Hz, 1H), 7.32-7.48 (m, 6H), 7.59-7.70 (4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.3 (C), 24.4 (CH₂), 26.9 (3CH₃), 40.8 (CH), 55.3 (CH₃), 55.5 (CH₃), 67.1 (CH₂), 96.9 (CH), 105.5 (CH), 116.1 (C), 120.5 (CH), 122.5 (CH), 127.6 (4CH), 129.5 (2CH), 133.8 (C), 133.9 (C), 135.7 (4CH), 138.1 (C), 155.8 (C), 159.3 (C); HRMS (ESI +): *m/z* calculated for C₂₉H₃₄O₃SiNa⁺ [M+Na]⁺ 481.2169, found 481.2153.

(*S*)-tert-butyl((*5*,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)methoxy)diphenylsilane (**64**). Pd/C (5% w/w, 72 mg, 34 µmol, 5 mol %) was added to a solution of alkene **63** (312 mg, 0.68 mmol, 1 equiv) in EtOAc (34 mL) at room temperature. This mixture was purged with H₂ and was stirred for 14 h. Next, the solvent was removed under reduced pressure, and the residue was subjected to flash chromatography (SiO₂, hexanes:EtOAc, 90:10) to afford the tetraline **64** (290 mg, 0.63 mmol) as a colorless oil in 93% yield. TLC (SiO₂): R_f = 0.44 (hexanes/EtOAc 90:10); $[\alpha]_D^{25} = -20$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2933, 2859, 1609, 1594, 1465, 1430, 1203, 1147, 1115, 1087, 826, 705; ¹H NMR (250 MHz, CDCl₃): δ 1.11 (s, 9H), 1.62-1.85 (m, 3H), 2.01-2.18 (m, 1H), 2.36-2.53 (m, 1H), 2.62 (dt, *J* = 17.4, 4.9 Hz, 1H), 2.87-3.01 (m, 1H), 3.69 (s, 3H), 3.78 (s, 3H), 3.70-3.89 (m, 2H), 6.16 (d, *J* = 2.2 Hz, 1H), 6.29 (d, *J* = 2.2 Hz, 1H), 7.33-7.48 (m, 6H), 7.63-7.76 (4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 18.5 (CH₂), 19.3 (C), 22.6 (CH₂), 24.3 (CH₂), 26.9 (3CH₃), 41.0 (CH), 55.2 (2CH), 135.69 (2CH), 138.9 (C), 158.0 (2C); HRMS (ESI +): *m/z* calculated for C₂₉H₃₆O₃SiNa⁺ [M+Na]⁺ 483.2326, found 483.2321.

(S)-(5,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)methanol (65). TBAF solution (1 M in THF, 1.4 mL, 1.4 mmol, 2 equiv) was added to a mixture of silyl ether 64 (322 mg, 0.70 mmol, 1 equiv) in dry THF (14 mL) at room temperature. This mixture was stirred for 2 h, then was quenched by addition of saturated aqueous solution of NH_4CI (30 mL). The mixture was extracted with EtOAc (2 x 30 mL). The organic phases were combined, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The

The Journal of Organic Chemistry

residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 85:15 to 75:25) to furnish alcohol **65** (135 mg, 0.61 mmol) as a colorless oil in 87% yield. TLC (SiO₂): $R_f = 0.27$ (hexanes/EtOAc 75:25); $[\alpha]_D^{25} = -2$ (*c* 1.0, CHCl₃), for *ent*-**65** $[\alpha]_{D,lit}^{20} = +3.5$ (*c* 1.0, CHCl₃); ^{6 1}H NMR (250 MHz, CDCl₃): δ 1.59 (br. s, 1H), 1.68-1.98 (m, 4H), 2.42-2.70 (m, 2H), 2.93 (quint, *J* = 5.3 Hz, 1H), 3.79 (s, 6H), 3.77-3.84 (m, 2H), 6.32 (d, *J* = 2.2 Hz, 1H), 6.39 (d, *J* = 2.2 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 19.1 (CH₂), 22.6 (CH₂), 24.9 (CH₂), 40.8 (CH), 55.3 (2CH₃), 67.0 (CH₂), 96.2 (CH), 104.2 (CH), 119.4 (C), 138.4 (C), 158.3 (2C).

(S)-2-(3,5-dimethoxyphenyl)but-3-en-1-yl acrylate (**66**). Triethylamine (42 µL, 0.30 mmol, 3 equiv) and acryloyl chloride (17 µL, 0.20 mmol, 2 equiv) were added to a solution of alcohol **60** (20.8 mg, 0.20 mmol, 1 equiv) in dry CH₂Cl₂ (5 mL) at 0 °C. After stirring the reaction for 1 h at this temperature, brine (10 mL) was added, and the mixture was extracted with CH₂Cl₂ (15 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, hexanes/EtOAc 95:5) to give acrylate **66** (21 mg, 80 µmol) as a colorless oil in 80% yield. TLC (SiO₂): R_f = 0.19 (hexanes/EtOAc 95:5); $[\alpha]_D^{25} = +25$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2954, 2844, 1726, 1598, 1465, 1409, 1206, 1156, 1065, 990, 812; ¹H NMR (250 MHz, CDCl₃): δ 3.66 (q, *J* = 7.3 Hz, 1H), 3.78 (s, 6H), 4.32-4.46 (m, 2H), 5.10-5.22 (m, 2H), 5.80 (dd, *J* = 10.3, 1.6 Hz, 1H), 5.90-6.16 (m, 2H), 6.32-6.43 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃): δ 48.8 (CH), 55.3 (2CH₃), 66.8 (CH₂), 98.8 (CH), 106.1 (2CH), 116.8 (CH₂), 128.4 (CH), 130.8 (CH₂), 137.4 (CH), 142.6 (C), 160.9 (2C), 166.0 (C); HRMS (ESI +): *m/z* calculated for C₁₅H₁₈O₄Na⁺ [M+Na]⁺ 285.1097, found 285.1088.

(*S*)-*5*-(*3*,*5*-*dimethoxyphenyl*)-*5*,*6*-*dihydro*-2*H*-*pyran*-2-*one* (**67**). 2nd generation Grubbs catalyst (3.1 mg, 3.6 μmol, 10 mol %) was added to a solution of alkene **66** (19.1 mg, 73 μmol) in dry CH₂Cl₂ (7 mL). Next, reaction was stirred at 40 °C for 3 h. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 75:25 to 67:33) to give lactone **67** (15.7 mg, 67 μmol) as a colorless oil in 91% yield. TLC (SiO₂): R_f = 0.22 (hexanes/EtOAc 75:25); $[\alpha]_D^{25}$ = -66 (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2944, 2842, 1732, 1599, 1465, 1208, 1156, 1085, 828; ¹H NMR (250 MHz, CDCl₃): δ 3.75-3.84 (m, 1H), 3.79 (s, 6H), 4.33 (dd, *J* = 11.1, 9.3 Hz, 1H), 4.55 (ddd, *J* = 11.1, 5.5, 0.9 Hz, 1H), 6.14 (dd, *J* = 9.8, 2.2 Hz, 1H), 6.35 (d, *J* = 2.0 Hz, 2H), 6.41 (t, *J* = 2.1 Hz, 1H), 6.96 (ddd, J = 9.9, 3.0, 0.9 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 40.5 (CH), 55.4 (2CH₃), 72.1 (CH₂), 99.5 (CH), 106.1 (2CH), 121.4 (CH), 139.5 (C), 148.7 (CH), 161.3 (2C), 163.3 (C); HRMS (ESI +): *m/z* calculated for C₁₃H₁₄O₄Na⁺ [M+Na]⁺ 257.0784, found 257.0785.

(*S*)-*5*-(*3*,*5*-*dimethoxyphenyl*)*tetrahydro-2H-pyran-2-one* (*68*). Pd/C (5% w/w, 13.8 mg, 6.5 µmol, 5 mol %) was added to a solution of alkene **67** (15.2 mg, 65 µmol, 1 equiv) in EtOAc (10 mL) at room temperature. This mixture was purged with H₂ and was stirred for 16 h. Next, the solvent was removed under reduced pressure, and the residue was subjected to flash chromatography (SiO₂, hexanes:EtOAc, 67:33) to afford the lactone **68** (15.4 mg, 65 µmol) as a colorless oil in quantitative yield. TLC (SiO₂): $R_f = 0.30$ (hexanes/EtOAc 67:33); $[\alpha]_D^{25} = +18$ (*c* 1.0, CHCl₃); IR (ATR, cm⁻¹): 2948, 2842, 1734, 1598, 1463, 1333, 1208, 1154, 1056, 838, 698; ¹H NMR (250 MHz, CDCl₃): δ 2.00-2.27 (m, 2H), 2.54-2.84 (m, 2H), 3.12 (tt, *J* = 10.3, 5.1 Hz, 1H), 3.79 (s, 6H), 4.29 (t, *J* = 10.9 Hz, 1H), 4.46 (ddd, *J* = 11.2, 4.7, 1.7 Hz, 1H), 6.38 (s, 3H); ¹³C NMR (62.9 MHz, CDCl₃): δ 26.5 (CH₂), 29.6 (CH₂), 39.5 (CH), 55.3 (2CH₃), 73.7 (CH₂), 98.9 (CH), 105.5 (2CH), 141.9 (C), 161.2 (2C), 170.5 (C); HRMS (ESI +): *m/z* calculated for C₁₃H₁₆O₄Na⁺ [M+Na]⁺ 259.0941, found 243.0942.

(S)-(5,7-dimethoxy-1,2-dihydronaphthalen-1-yl)methanol (69). DIBAL-H solution (1.0 M in CH₂Cl₂, 105 μ L, 105 μ mol, 1.5 equiv) was added to a solution of lactone **68** (16.5 mg, 70 μ mol, 1 equiv) in dry CH₂Cl₂ (3 mL) at -78 °C, and was stirred at this temperature for 1 h. Next, the reaction was guenched by addition of aqueous saturated solution of NaHCO₃ (4 mL), Rochelle salt saturated solution (6 mL), and CH₂Cl₂ (10 mL). The resulting mixture was vigorously stirred for 3 h, and the phases were separated, the aqueous phase was extracted with CH₂Cl₂ (2 x 10 mL). The combined organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure. The crude lactol was used in the next step without further purification. TLC (SiO₂): R_f = 0.25 (hexanes/EtOAc 67:33). The crude lactol obtained above was diluted in dry toluene (6 mL), and pTSA+H₂O (12.2 mg, 70 µmol, 1 equiv) was added to the reaction at room temperature. The mixture was stirred for 3 h, then saturated aqueous solution of NaHCO₃ (5 mL) and EtOAc (15 mL) were added. The organic phase was separated, washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 85:15 to 75:25) to furnish the bicycle 69 (3.1 mg, 14 µmol) as a colorless oil in 20% yield. TLC (SiO₂): $R_f = 0.27$ (hexanes/EtOAc 75:25); $[\alpha]_D^{25} = -1$ (c 0.25, CHCl₃); IR (ATR, cm⁻¹): 3383, 2927, 1603, 1577, 1463, 1426, 1203, 1148, 1051, 939, 830; ¹H NMR (250 MHz, CDCl₃): δ 1.37 (br.s, 1H), 2.30-2.60 (m, 2H), 2.79-2.92 (m, 1H), 3.65 (d, J = 6.3 Hz, 2H), 3.81 (s, 3H), 3.82 (s, 3H), 5.76 (ddd, J = 9.9, 5.7, 3.0 Hz, 1H), 6.33-6.39 (m, 2H), 6.72 (dd, J = 9.8, 2.8 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 24.9 (CH₂), 40.7 (CH), 55.4 (CH₃), 55.5 (CH₃), 64.7 (CH₂), 96.9 (CH), 105.5 (CH), 115.9 (C),

120.6 (CH), 122.5 (CH), 137.7 (C), 156.1 (C), 159.5 (C); HRMS (ESI +): m/z calculated for $C_{13}H_{16}O_3Na^+$ [M+Na]⁺ 243.0992, found 243.1003.

(S)-(5,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)methanol (65). Pd/C (5% w/w, 2.8 mg, 1.3 μ mol, 10 mol %) was added to a solution of alkene 69 (2.9 mg, 13 μ mol, 1 equiv) in EtOAc (2 mL) at room temperature. This mixture was purged with H₂ and was stirred for 16 h. Next, the solvent was removed under reduced pressure, and the residue was subjected to flash chromatography (SiO₂, hexanes:EtOAc, 75:25) to afford alcohol 65 (2.5 mg, 11 μ mol) as a colorless oil in 89% yield. Spectroscopical and physical data of this compound are described above.

(S,E)-1-((S)-5,7-dimethoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-3-methyl-5-((1S,4aS,8aS)-2,5,5,8atetramethyl-1.4.4a.5.6.7.8.8a-octahydronaphthalen-1-yl)pent-2-en-1-ol (71). Solid NaHCO₃ (23.0 mg, 0.27 mmol, 2.2 equiv) and Dess-Martin periodinane (79.1 mg, 0.19 mmol, 1.5 equiv) were added to a solution of alcohol 65 (41.4 mg, 0.19 mmol, 1.5 equiv) in dry CH₂Cl₂ (5 mL) at room temperature. This mixture was stirred for 1 h, then the solvent was removed under reduced pressure, and the aldehyde was purified by flash chromatography (SiO₂, hexanes/EtOAc 90:10) to furnish aldehyde **70**, which was immediately used in the next step. TLC (SiO₂): $R_f = 0.60$ (hexanes/EtOAc 75:25); *n*-BuLi solution (2.14 M in hexanes, 118 µL, 0.25 mmol, 2 equiv) was added dropwisely to a solution of iodide 3 (48.0 mg, 0.12 mmol, 1 equiv) in Et₂O (2 mL) at -78 °C, the resulting mixture was stirred for 1 h at the same temperature. Next, a solution of the freshly prepared aldehyde 70 in dry Et₂O (2 mL) was added dropwisely to the vinyl lithium solution, the reaction was stirred for 1 h at -78 °C, and 16 h at -60 °C (cryostat bath). The reaction was quenched by addition of NH₄Cl saturated solution (10 mL), and was extracted with EtOAc (2 x 10 mL). The combined organic phases were dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was subjected to flash chromatography (SiO₂, hexanes/EtOAc 90:10) to furnish alcohol **71** (27.0 mg, 56 μ mol) as a colorless oil in 45% yield. Note: Analysis of a crude sample showed dr = 3:1. Substitution of *n*-BuLi by t-BuLi led to 25% yield of alcohol 71 and the same dr = 3:1 (crude sample). The analyses were performed with CHCl₃ or CDCl₃ treated with anhydrous K₂CO₃ to remove residual acidity, in order to prevent decomposition, *n*-BuLi was recently titrated using cyclohexanol (75 mg, 0.75 mmol) diluted in dry THF (5 mL), with 2,2'-bipyridine (bipy) as indicator. Data for isomer **71** (major): TLC (SiO₂): $R_f = 0.21$ (hexanes/EtOAc 90:10); $[\alpha]_D^{25} = +16$ (c 1.0, CHCl₃), $[\alpha]_{D,iit}^{20} = +19.2$ (c 1.6, CHCl₃); ⁶ ¹H NMR (250 MHz, CDCl₃): δ 0.76 (s, 3H), 0.86 (s, 3H), 0.88 (s, 3H), 0.79-1.04 (m, 1H), 1.58 (d, *J* = 1.1 Hz, 3H), 1.69 (s, 3H), 1.05-1.73 (m, 11H), 1.73-2.07 (m, 6H), 2.21 (td, J = 12.8, 4.5 Hz, 1H), 2.43-2.71 (m, 2H), 2.86 (q, J = 5.6

Hz, 1H), 3.78 (s, 3H), 3.79 (s, 3H), 4.76 (dd, J = 8.2, 4.9 Hz, 1H), 5.30 (dq, J = 8.2, 0.9 Hz, 1H), 5.39 (br. s, 1H), 6.32 (d, J = 2.4 Hz, 1H), 6.48 (d, J = 2.4 Hz, 1H); ¹³C NMR (62.9 MHz, CDCl₃): δ 13.5 (CH₃), 16.8 (CH₃), 18.8 (CH₂), 20.2 (CH₂), 21.8 (CH₃), 22.2 (CH₃), 22.6 (CH₂), 23.4 (CH₂), 23.8 (CH₂), 25.6 (CH₂), 33.0 (C), 33.1 (CH₃), 36.8 (C), 39.2 (CH₂), 42.3 (2CH₂), 44.2 (CH), 50.2 (CH), 54.6 (CH), 55.3 (2CH₃), 71.6 (CH), 96.0 (CH), 104.6 (CH), 120.3 (C), 122.3 (CH), 125.8 (CH), 135.3 (C), 138.5 (C), 138.9 (C), 158.1 (2C).

Cell culture and Cytotoxicity Assays

Compounds were prepared in DMSO (stock solutions of 50 mM) and transferred (30 µL) to the first and thirteenth columns of a 384 deep well small volume plate (Greiner BioOne) in four replicates, using the Janus Varispan (Perkin Elmer) liquid handler. Serial dilutions were prepared using the Versette (Thermo) liquid handler, in 11 points with a dilution factor of 0.4 (final stock concentrations ranging from 50 to 5.2 mM) in DMSO. The 12th point of the dilution curves contained only DMSO, and was used as the negative control. Tacrine was used as the reference cytotoxic compound, composing the positive control group.

HaCat (immortalized, but not transformed, epithelial cell line) and U2OS (human bone osteosarcoma epithelial cells) were cultivated in high-glucose Dulbecco's modified Eagle's medium (DMEM, Sigma) supplemented with 1% penicillin G-streptomycin (Invitrogen) and 10% heat-inactivated fetal bovine serum (FBS, VitroCell) at 37 °C and 5% CO₂. HSC-3 (human tongue squamous cell carcinoma cell line) and SCC9 (squamous cell carcinoma, a tumor cell line originated from a human tongue squamous cell carcinoma) were cultivated in Dulbecco's modified Eagle's medium HAMF12- medium (CultiLab) containing 1.2 g/L sodium bicarbonate, 2.5 mM L-glutamine, 15 mM HEPES and 0.5 mM sodium pyruvate supplemented with 400 ng/mL hydrocortisone, 10% heat-inactivated fetal bovine serum (VitroCell) and 1% penicillin G-streptomycin (Invitrogen) at 37 °C with 5% CO₂.

Cells were seeded into 384 well plates (μ CLEAR Greiner Bio-one) at densities of 2,000 (U2OS and SCC-9), 1,000 (HSC-3), and 1,500 (HaCat) cells per well, using 50 μ L of medium and cultivated for 24 h at 37 °C with 5% CO₂. After 24 h, compounds (0.6 μ L) were transferred to a dilution plate containing media (60 μ L), using the Janus MDT (Perkin Elmer) liquid dispenser. Diluted compounds (30 μ L) were then transferred to the plate containing the cells in fresh media (45 μ L) and incubated for 48 h at 37 °C and 5% CO₂. Final DMSO concentration in the cell assay was 0.4 %.

The Journal of Organic Chemistry

MitoTracker Deep Red (#M22426, Invitrogen) was dissolved in DMSO to 1 mM and Hoechst 33342 (Invitrogen) was dissolved in ultra-pure water to 10 mg/mL. A 500 nM MitoTracker, 5 μ g/mL Hoechst solution was prepared in pre-warmed media (DMEM, 10% FBS, 1% penicillin/streptomycin or in Dulbecco's modified Eagle's medium HAMF12- medium). Media was removed from plates; residual volume was 10 μ L in each well. 20 μ L of staining solution was added to the cells and incubated for 45 min at 37 °C and 5% CO₂. Media was removed from plates and 3.7% formaldehyde (in PBS) was added for cell fixation. The plates were then incubated at room temperature for 20 min and wells were washed once with 50 μ L 1x PBS.

Cell imaging was performed with the Operetta High-Content Imaging System (PerkinElmer), using a 10X long WD objective. The cell number was quantified using the software Columbus 2.4.0 (Perkin Elmer).

Processed data was transferred to the Prism software (Graph Pad, San Diego, v7). Concentration response curves were constructed using the final compound concentration in the assay, in logarithmic scale, and the average \pm SEM of the normalized number of cells (normalized to the negative control group, the later referred as 100% of the cell population), in each compound concentration. Each experiment was carried out in four replicates. Curves were fitted using the normalized concentration-response equation with variable slope implemented in Prism 7. At least three independent experiments with different cell batches were carried out. IC₅₀ values reported are the mean \pm SEM of these independent experiments.

ASSOCIATED CONTENT

Supporting Information

H¹NMR, DEPT135 and C¹³NMR spectra of all new compounds are provided (PDF).

AUTHOR INFORMATION

Corresponding Author

*E-mail: juliopastre@iqm.unicamp.br

ORCID

Luiz F. T. Novaes: 0000-0003-1209-2865

Kaliandra A. Gonçalves: 0000-0002-1733-3763

Daniela B. B. Trivella: 0000-0002-7505-2345

Julio C. Pastre: 0000-0001-9972-425X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGEMENTS

This work was made possible by grants from the São Paulo Research Foundation -FAPESP (grant No. 2014/26378-2, 2014/25770-6, 2015/08199-6), CNPq (grant No. 453862/2014-4), and CAPES (grant No. 23038.007775/2014-98). Authors thank the Bioassay Laboratory (LBE, LNBio-CNPEM) and staff for support with the cell assays. The authors are thankful to Prof. Ronaldo Pilli, Prof. José Augusto Rodrigues, Prof. Carlos Roque Correia, Prof. Igor Jurberg, Prof. Airton Salles Jr., Prof. Marcos Eberlin and MSc. Renan Galaverna (all from the University of Campinas, Brazil) for chemicals borrowing, FTIR, GC/MS and HRMS analyses. Finally, special thanks go to Dr. Duncan Browne (Cardiff University, UK) for helpful insights concerning the mechanism of the ring-opening reaction in **Scheme 6**.

REFERENCES

- Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Redox Economy in Organic Synthesis. *Angew. Chem. Int. Ed.* 2009, 48, 2854-2867.
- Young, I. S.; Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. *Nat. Chem.* **2009**, *1*, 193-205.
- (3) Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. *J. Nat. Prod.* 2016, 79, 629-661.
- (4) a) Novaes, L. F. T.; Pastre, J. C. Formal Total Synthesis of Actinoranone and Asymmetric Synthesis of Labda-7,13-(*E*)-dien-15-ol. *Org. Lett.* 2017, *19*, 3163-3166. b) Santos, C. C. S.; Paradela, L. S.;

Novaes, L. F. T.; Dias, S. M. G.; Pastre, J. C. Design and synthesis of cenocladamide analogues and their evaluation against breast cancer cell lines. *Med. Chem. Commun.* **2017**, *8*, 755-766.

- (5) Nam, S.-J.; Kauffman, C. A.; Paul, L. A.; Jensen, P. R.; Fenical, W. Actinoranone, a Cytotoxic Meroterpenoid of Unprecedented Structure from a Marine Adapted *Streptomyces* sp. *Org. Lett.* 2013, 15, 5400-5403.
- (6) Guo, Y.-a.; Zhao, M.; Xu, Z.; Ye, T. Total Synthesis and Stereochemical Assignment of Actinoranone. *Chem. Eur. J.* 2017, 23, 3572-3576.
- (7) a) Nicolaou, K. C.; Snyder, S. A. Chasing Molecules That Were Never There: Misassigned Natural Products and the Role of Chemical Synthesis in Modern Structure Elucidation. *Angew. Chem. Int. Ed.* 2005, *44*, 1012-1044. b) Maier, M. E. Structural revisions of natural products by total synthesis. *Nat. Prod. Rep.* 2009, *26*, 1105-1124. c) Suyama, T. L.; Gerwick, W. H.; McPhail, K. L. Survey of marine natural product structure revisions: A synergy of spectroscopy and chemical synthesis. *Bioorg. Med. Chem.* 2011, *19*, 6675-6701.
- (8) de la Torre, M. C.; García, I.; Sierra, M. A. An Approach to Furolabdanes and Their Photooxidation Derivatives from *R*-(+)-Sclareolide. *J. Nat. Prod.* **2002**, *65*, 661-668.
- (9) Quideau, S.; Lebon, M.; Lamidey, A.-M. Enantiospecific Synthesis of the Antituberculosis Marine Sponge Metabolite (+)-Puupehenone. The Arenol Oxidative Activation Route. *Org. Lett.* **2002**, *4*, 3975-3978.
- (10) Shimizu, T.; Osako, K.; Nakata, T. Efficient Method for Preparation of *N*-Methoxy-*N*-methyl Amides by Reaction of Lactones or Esters with Me₂AICI-MeONHMe·HCI. *Tetrahedron Lett.* **1997**, *38*, 2685-2688.
- (11) Deposit of X-Ray crystal structure data: CCDC1543718.
- (12) Poigny, S.; Nouri, S.; Chiaroni, A.; Guyot, M.; Samadi, M. Total Synthesis and Determination of the Absolute Configuration of Coscinosulfate. A New Selective Inhibitor of Cdc25 Protein Phosphatase. *J. Org. Chem.* **2001**, *66*, 7263-7269.
- (13) Oldenziel, O. H.; van Leusen, D.; van Leusen, A. M. Chemistry of sulfonylmethyl isocyanides. 13. A general one-step synthesis of nitriles from ketones using tosylmethyl isocyanide. Introduction of a onecarbon unit. *J. Org. Chem.* , *42*, 3114-3118.
- (14) For a recent example of gold(I) catalyzed regioselective alkyne hydration, see: Li, F.; Wang, N.; Lu, L.; Zhu, G. Regioselective Hydration of Terminal Alkynes Catalyzed by a Neutral Gold(I) Complex [(IPr)AuCI]

and One-Pot Synthesis of Optically Active Secondary Alcohols from Terminal Alkynes by the Combination of [(IPr)AuCl] and Cp*RhCl[(*R*,*R*)-TsDPEN]. *J. Org. Chem.* **2015**, *80*, 3538-3546.

- (15) Van Horn, D. E.; Negishi, E. Selective carbon-carbon bond formation via transition metal catalysts. 8. Controlled carbometalation. Reaction of acetylenes with organoalane-zirconocene dichloride complexes as a route to stereo- and regio-defined trisubstituted olefins. *J. Am. Chem. Soc.* **1978**, *100*, 2252-2254.
- (16) Takai, K.; Nitta, K.; Utimoto, K. Simple and selective method for aldehydes (RCHO) .fwdarw. (*E*)-haloalkenes (RCH:CHX) conversion by means of a haloform-chromous chloride system. *J. Am. Chem. Soc.* **1986**, *108*, 7408-7410.
- (17) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. A method of synthesis of β-methylfurans and αmethylene and β-methylene γ-lactones. Two menthofuran syntheses. *J. Am. Chem. Soc.* **1977**, 99, 3179-3181.
- (18) For the methodology work concerning decarboxylative halogenation using CTAB, see: Rajanna, K.; Reddy, N. M.; Reddy, M. R.; Saiprakash, P. J. Micellar Mediated Halodecarboxylation of α,β-Unsaturated Aliphatic and Aromatic Carboxylic Acids—A Novel Green Hunsdiecker–Borodin Reaction. *J. Dispersion Sci. Technol.* 2007, *28*, 613-616. For a recent application in total synthesis, see: Ding, X.-B.; Furkert, D. P.; Brimble, M. A. 2-Nitropyrrole cross-coupling enables a second generation synthesis of the heronapyrrole antibiotic natural product family. *Chem. Commun.* 2016, *52*, 12638-12641.
- (19) Suzuki, H.; Noma, M.; Kawashima, N. Two labdane diterpenoids from *Nicotiana setchellii*. *Phytochemistry* **1983**, *22*, 1294-1295.
- (20) Desai, L. V.; Malik, H. A.; Sanford, M. S. Oxone as an Inexpensive, Safe, and Environmentally Benign
 Oxidant for C-H Bond Oxygenation. *Org. Lett.* 2006, *8*, 1141-1144.
- (21) Kováčováa, S.; Adlaa, S. K.; Maiera, L.; Babiakb, M.; Mizushinac, Y.; Paruch, K. Synthesis of carbocyclic analogs of dehydroaltenusin: identification of a stable inhibitor of calf DNA polymerase α.*Tetrahedron*, **2015**, *71*, 7575-7582.
- (22) Ghatak, A.; Dorsey, J. M.; Garner, C. M.; Pinney, K. G. Synthesis of methoxy and hydroxy containing tetralones: versatile intermediates for the preparation of biologically relevant molecules. *Tetrahedron Lett.* **2003**, *44*, 4145-4148.

- (23) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. Enantioselective Iridium-Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition. *J. Am. Chem. Soc.* 2008, 130, 14891-14899.
- (24) For a modified Mitsunobu reaction employing acetone cyanohydrin, see: Tsunoda, T.; Uemoto, K.; Nagino, C.; Kawamura, M.; Kaku, H.; Itô, S. A facile one-pot cyanation of primary and secondary alcohols. Application of some new Mitsunobu reagents. *Tetrahedron Lett.* **1999**, *40*, 7355-7358.
- (25) Evans, D. A.; Enni, M. D.; Mathre, D. J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α -substituted carboxylic acid derivatives. *J. Am. Chem. Soc.* **1982**, , 1737-1739.
 - (26) Parikh, J. R.; Doering, W. v. E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. *J. Am. Chem. Soc.* **1967**, *89*, 5505-5507.
 - (27) Garza, V. J.; Krische, M. J. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination. *J. Am. Chem. Soc.* **2016**, *138*, 3655-3658.
 - (28) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. A General Model for Selectivity in Olefin Cross Metathesis. *J. Am. Chem. Soc.* **2003**, *125*, 11360-11370.
 - (29) Crane, E. A.; Gademann, K. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis. *Angew. Chem. Int. Ed.* **2016**, *55*, 3882-3902.
 - (30) Kumar, C. N. S. S. P.; Chein, R.-J. Synthesis of Labdane Diterpenes Galanal A and B from (+)-Sclareolide. *Org. Lett.* **2014**, *16*, 2990-2992.
 - (31) de la Torre, M. C.; García, I.; Sierra, M. A. Straightforward synthesis of the strong ambergris odorant γ-bicyclohomofarnesal and its endo-isomer from *R*-(+)-sclareolide. *Tetrahedron Lett.* **2002**, *43*, 6351-6353.
 - (32) The catalyst was synthesized, with similar results, according to the procedure described in ref. 27.