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Asthma is one of the most rapidly growing therapeutic markets,
the disease affecting over 300 million people worldwide.1 Cys-
teinyl leukotrienes (LTC4, LTD4 and LTE4) are products of the 5-
lipoxygenase pathway of arachidonic acid metabolism and play a
crucial role in asthma pathophysiology by causing bronchocon-
striction, mucus production and an increase in vascular permeabil-
ity.2 They represent one of the most effective approaches to the
treatment of asthma3 and several compounds with this mechanism
of action have reached the market.4 In recent years there has been
particular interest in searching for dual H1/cysLT1 antagonists in
the hope of managing asthma by synergistic effects.5

One of the chemical series we have designed in order to achieve
this goal is based on the antiH1 derivative mebhydroline.6 Taking
into account the pharmacophoric model for cysLT1 antagonists,7

we expected that the introduction of a quinoline-type substituent
in the benzyl group of mebhydroline and an acid group branching
from the piperidine moiety (see Fig. 1) would confer a cysLT1

antagonistic character to the resulting structure (e.g. 1, see Fig. 2).
Although the first compounds synthesized in this series (1 and

related tetrahydro-b-carbolines) lacked the parent anti H1 activity,
the anticysLT1 activities were so interesting as to encourage us to
pursue our efforts in this field.8 In this Letter we describe our stud-
ies in developing a new series of cysLT1 antagonists based on our
first mebhydroline derivative, compound 1.
ll rights reserved.
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The basic pathway to the target compounds is depicted in
Scheme 1. Starting from the phenylhydrazines 2 the corresponding
tetrahydrocarbazoles 3 were prepared by Fischer indolization of 1-
benzyloxycarbonyl-4-piperidone. Compounds 3 were alkylated at
the indole nitrogen and then the BOC group was removed in acidic
conditions. After alkylation of the carboline nitrogen in 4 and sub-
sequent hydrolysis (or reaction of the corresponding nitrile with
tributyltin azide) the target carbolines 1 and 5–30 were obtained.9

The hexahydrocarboline derivative 33 were prepared through a
similar synthetic pathway from the corresponding compounds
32, which were in turn synthesized by cyanoborohydride reduction
of the indole compound 3 (R1 = H).

The indole derivatives 35 and 36 (Scheme 2) were obtained by
alkylation and subsequent saponification of the butyric esters 34,
which are commercially available (when R = H) or easily prepared
from phenylhydrazine and ethyl 6-oxoheptanoate (when R = Me).
Mebhydroline H1/cysLT1 antagonist

Figure 1.
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The open chain amino derivatives 37 and 38 were prepared from
tryptamine and indole, respectively, following the same reaction
procedure as above (Scheme 2).

The carbazole 39 was prepared through a synthetic pathway
involving Fries-type and Willgerodt–Kindler transpositions, whilst
the tetrahydrocarbazole 40 was synthesised again through a
Fischer-indole cyclization. The b-carboline derivatives 41 and 42
were prepared from the commercially available tetrahydro-b-carb-
oline (Scheme 3).

All synthesized compounds were tested in a binding assay in
guinea pig lung using [3H]LTD4 as a radioligand,10 and in the inhi-
bition of LTD4-induced airway microvascular permeability at 4 h,
also in guinea pigs.11 First of all, the influence of the carboxylic side
chain R in c-carbolines (1, 5–12) was assessed (Table 1). All com-
pounds tested showed moderate to good in vitro activity, while
the best in vivo compound was our first derivative, the propionic
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Figure 2.
acid 1. By inserting a double C@C bond, a cyclopropyl or a phenyl
group the affinity improved significantly but not the oral activity.

The nature of the linker between the phenyl spacer and the
lipophilic group was also examined (Table 2). Substitutions of the
vinyl bridge for methoxy (13), ethylene (15), or acetylene (16) or
inclusion in a benzofuran ring (14) afforded compounds with
poorer oral activities in all cases. Similar results were obtained
when changing the position of the nitrogen atom to a b-carboline,
modifying the acid group to a tetrazole, saturating the system to
indoline or ‘opening’ the carboline system (Table 3), in spite of
the improvement in some affinity values. The role of the carboline
nitrogen atom was also assessed. In all the analogs lacking it—open
or cyclic derivatives—the oral activities decreased in spite of the
improvement in affinity (Table 4). The improvement of oral activity
related to the x-aminoalkyl carboxylic chain motif has also been
observed with many of the 2nd generation antiH1 derivatives. In
this type of compounds the presence of a carboxylic chain attached
to the nitrogen atom keeps or sometimes enhances oral activity
compared to the parent amine compound, even though in some
cases the H1 affinity decreases.12 The next point of variation con-
cerns the lipophilic moiety, for which a number of substituted
quinolines and other heterocycles were tested (Table 5). In this
case a significant improvement was achieved with the 6,7-diflu-
oroquinoline derivative, a compound that shows an ED50 value
for inhibition of LTD4 extravasation of 0.04 mg/kg. Finally, a few
substitutions at the carboline phenyl system were tested. A meth-
oxy group did not improve oral activity on parent compound 1, but
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Scheme 3. Reagents and conditions: (a) AlCl3 neat, 115 �C, 2 h; (b) S8, morpholine, rfx, 16 h, then KOH/EtOH, rfx, 5 h (38%); (c) EtOH/HCl rfx, 5 h; (d) NaH, (E)-7-chloro-2-(3-
(chloromethyl)styryl)quinoline; DMF, rt; then NaOH 5 N, EtOH, THF, rt (23–42% overall yield); (e) ethyl (4-oxocyclohexyl)acetate, AcOH, 100 �C, 1 h (32%); (f) ethyl acrylate,
EtOH, rfx, 1 h (quantitative) for 41; Br(CH2)3CO2Et, K2CO3, KI, MIK, 90 �C, 2 h (62%) for 42.

Table 1
Binding and oral activities for different acid side-chains of c-carbolines (1, 5–12)

N

N

N

R

Cl

 1   CH2CH2CO2H
 5   CH2CO2H
 6   (CH2)3CO2H
 7   (CH2)4CO2H

 8

 9    COCH2CO2H
10    (E) CH2CH=CHCO2H

H2C CH2CO2H

N

N

N

R

F

11 

12

F
CH2

CO2H

CO2H

O
CH2CH2

R

Compd LTD4 binding IC50
a (nM) Inhibition of LTD4 extravasationb

1 16 (6) 72 (0.1); 100 (1)
5 17 (6) 22 (0.1); 43 (1)
6 30 (12) 25 (0.1); 80 (1)
7 16 (6) 13 (0.1); 77 (1)
8 3.2 (1.1) 20 (0.1); 64 (1)
9 26 (11) 1 (0.1); 26 (1)
10 4.1 (1.5) 22 (0.1); 52 (1)
11 3.0 (1.8) 34 (0.1); 79 (1)
12 0.91 (0.43) 0 (0.1); 46 (1)

a Values are means of three experiments, standard deviation is given in
parentheses.

b % Inhib (dose mg/kg).

Table 2
Binding and oral activities for different quinoline/spacer linkers of c-carbolines (13–
16)

N

N

N
Cl

CO2H

lin k e r

linker

OCH2

CH=C

O

C    C
CH2CH2

13
14

15
16

Compd LTD4 binding IC50
a (nM) Inhibition of LTD4 extravasationb

13 42 (13) 24 (0.1); 55 (1)
14 14 (4) 15 (0.1); 30 (1)
15 25 (1) 7 (0.1); 19 (1)
16 1.3 (0.08) 0 (0.1); 60 (1)

a,b See footnotes at Table 1.

Table 3
Binding and oral activities for miscellaneous compounds (17, 33, 37, 38, 41, 42)

Compd LTD4 binding IC50
a (nM) Inhibition of LTD4 extravasationb

41 20 (5.4) 10 (0.1); 43 (1)
42 15 (3.4) 16 (0.1); 39 (1)
17c 1.2 (1.7) 3 (0.1); 14 (1)
33 12 (4.5) 22 (0.1); 66 (1)
37 9.3 (2.7) 55 (0.1); 67 (1)
38 61 (19) —

a,b See footnotes at Table 1.
c Compound 17 has a structure as 1 exchanging the carboxyl by a 5-tetrazolyl

group.
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a fluorine atom at 9 position on parent difluoro derivative 21 did
(Table 6).

In order to assess the duration of action of this type of com-
pounds, the inhibition of LTD4 extravasation in guinea-pig was also
performed at 1 and 8 h for some selected compounds (see results
in Table 7). The assayed compounds showed a sustained duration
of action in vivo, similar to that observed for Zafirlukast or Mont-
elukast, with potencies lying between those observed for these
two standard LTD4 antagonists. The pharmacokinetics of 21 in rat



Table 5
Binding and oral activities for different lipophilic moieties (1, 18–24)

22
N

S
Cl

Cl

S

N Cl

N
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tBu

23 24

N

R1

R2

N

N

Het

CO2H Het

1     H   Cl
18   H   F
19   Cl  Cl
20   F   Cl
21   F   F

R1  R2

Compd LTD4 binding IC50
a (nM) Inhibition of LTD4 extravasationb

1 16 (6) 72 (0.1); 100 (1)
18 3.4 (2.2) 42 (0.1); 100 (1)
19 21 (6.8) 0 (0.1); 86 (1)
20 1.7 (0.5) 58 (0.1); 97 (1)
21 1.0 (0.4) 48 (0.03); 96 (0.1); 100 (1)
22 37 (9) —
23 112 (52) —
24 50 (29) —

a,b See footnotes at Table 1.

Table 6
Binding and oral activities for some phenyl-substituted c-carbolines (1, 21, 25–30)

N

N

N

CO2H

6«

7«6

8
9

R1
R2

7

1   H           7«-Cl
25   6-OEt    7«-Cl
26   7-OMe   7«-Cl
27   8-OMe   7«-Cl
21   H        6«,7«-diF
28   7-F     6«,7«-diF
29   8-F     6«,7«-diF
30   9-F     6«,7«-diF

R1          R2

Compd LTD4 binding IC50
a (nM) Inhibition of LTD4 extravasationb

1 16 (6) 72 (0.1); 100 (1)
25 150 (74) —
26 16 (5) 29 (0.1); 53 (1)
27 7.5 (2,5) 45 (0.1); 74 (1)
21 1.0 (0.1) 0.04
28 4.5 (3.4) 0.05
29 2.5 (0.6) 0.07
30 1.2 (0.8) 0.02

a See footnotes at Table 1.
b % Inhib (dose mg/kg) or ED50, mg/kg.

Table 7
Duration of action in vivo of selected compounds

Compound Oral activitya

1 h 4 h 8 h

1 0.06 0.041 0.075
21 0.02 0.04 0.03
30 0.014 0.02 0.05
Ab 0.14 0.43 0.39
Bb 0.26 2.0 1.0
Cb 0.027 0.008 0.006

a Inhibition of LTD4 extravasion: ED50, mg/kg.
b A:{3-[2-Methoxy-4-toluene-2-sulfonylaminocarbonyl)benzyl]-1-methyl-1H-

indol-5-yl}carbamic acid cyclopentyl ester (zafirlukast); B: 8-[4-(4-phenylbu-
tyloxy)benzoyl]amino-2-(tetrazol-5-yl)-4-oxo-4H-1-benzopyran (pranlukast); C:
[1-(1-{3-[2-(7-chloroquinolin-2-yl)-vinyl]-phenyl}-3-[2-(1-hydroxy-1-methyl-ethyl)-
phenyl]-propylsulfanylmethyl)-cyclopropyl]-acetic acid (montelukast).

Table 4
Binding and oral activities for compounds lacking the carboline N-atom (35, 36, 39,
40)

Compd LTD4 binding IC50
a (nM) Inhibition of LTD4 extravasationb

39 4.8 (1.4) 29 (0.1); 52 (1)
40 4.9 (2.1) 14 (0.1); 66 (1)
35 4.4 (2.8) 24 (0.1); 31 (1)
36 3.4 (3) 0 (0.1); 15 (1)

a,b See footnotes at Table 1.
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shows a 47% of bioavailability, an intermediate value between the
63% for montelukast and the 25% for zafirlukast.

In conclusion, we have developed a SAR around the tetrahyd-
rocarbazole scaffold, which led to the selection of compound 21.
Further studies will provide a better understanding of its long term
efficacy and potential for human treatment.
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