Tetrahedron 65 (2009) 7056-7063

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of polyhydroxylated 7-aminopyrrolizidines and 8-aminoindolizidines

Sebastian Stecko^a, Margarita Jurczak^a, Olga Staszewska-Krajewska^a, Jolanta Solecka^b, Marek Chmielewski^{a,*}

^a Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
^b National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 01-791 Warsaw, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 25 March 2009 Received in revised form 28 May 2009 Accepted 11 June 2009 Available online 18 June 2009 The ammonolysis of a lactone moiety in tricyclic cycloadducts derived from non-racemic five-membered cyclic nitrone and 2(5*H*)-furanones furnishes an amido function, which after subsequent Hofmann rearrangement, leads to a protected amino group attached to the bicyclic isoxazolidine skeleton. A successive simple transformation, involving cleavage of N–O bond followed by intramolecular N-alkylation, provides an access to the polyhydroxylated 7-aminopyrrolizidines and 8-aminoindolizidines, potential glycosidases inhibitors.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Compounds containing the amino-pyrrolizidine and aminoindolizidine motifs are widespread in nature.^{1,2} Their potential bioactivity as antidepressant, analgesic, antiviral, antibacterial, or antitumor agents makes them a particularly attractive synthetic Although, there are numerous strategies applicable to the synthesis of simple amino-pyrrolizidine and amino-indolizidine alkaloids,^{2g,h,m,6} examples reporting preparation of their polyhydroxylated analogues, such as amino-iminosugars, are limited.^{7–12} The indolizidines **6** and **7** were synthesized by Tyler and coworkers through modification of the castanospermine structure.⁷

target for academic and industrial research laboratories. This trend can be exemplified by the recent reports of syntheses of absouline **1** and its geometric isomer **2**,³ laburnamine **3**,⁴ loline **4**,⁵ and slaframine **5**.^{2h,m}

On the other hand, Pandey and co-workers⁸ synthesized the 1deoxy derivative of **6** (**8**) via a photoinduced electron transfer radical cyclization of pyrrolidine with a chiral acetylene derived from tartaric acid. It is noteworthy, that compound **8** is a weak inhibitor of almonds' β -glucosidase, whereas alkaloid **6** displays no activity. Recently, Alcaide and Almendros⁹ presented the asymmetric synthesis of highly functionalized indolizidine systems based on the combination of the aza-Diels–Alder reaction of

^{*} Corresponding author. Tel.: +48 22 631 87 88; fax: +48 22 632 66 81. *E-mail address:* chmiel@icho.edu.pl (M. Chmielewski).

^{0040-4020/\$ –} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.06.043

Scheme 1.

2-azetidinone-tethered imines and subsequent rearrangement of the 2-azetidinone ring. Following this strategy, compound **9** and its 8a-epimer were obtained.⁹ A similar synthetic approach has also been applied for the synthesis of 7-amino-indolizidine derivatives.¹⁰ Another example of amino-iminosugar is the amino analogue of swansonine (**10**) synthesized by Hashimoto and coworkers.¹¹

Recognizing the potential of unexplored biological activity of amino-iminosugars⁷ and our ongoing research program directed at the search for novel glycomimetics,⁸ we have developed an attractive strategy of the synthesis for 7-amino-pyrrolizidines and 8-amino-indolizidines. In contrast to the known literature protocols^{7,8} of amino-iminosugars synthesis, the amino function is introduced at the early stage of the synthesis, prior to the formation of the pyrrolizidine or indolizidine skeleton. The general approach is depicted in Scheme 1. Both types of amino alkaloids can be obtained from the amino-isoxazolidine A by N-O bond cleavage, followed by intramolecular N-alkylation. The aminoisoxazolidine A can be derived from the amide **B**. The attractive precursor of **B** is the cycloadduct C easily accessible by the 1,3-dipolar cycloaddition reaction between a five-membered cyclic nitrone and 2(5H)-furanone. The cycloaddition step is the most important for the entire synthesis because of the formation of three new stereogenic centers. The proper selection of cycloaddition components enables the formation of the initial cycloadduct with a high diastereoselectivity¹⁴ and provides an entry to the stereocontrolled synthesis of a highly functionalized amino-azabicycloalkanes.

2. Results and discussion

To demonstrate the applicability of our methodology, we synthesized the amino-iminosugars **11** and **12** that belong to the pyrrolizidine and indolizidine groups, respectively (Scheme 2). These compounds may also be regarded as potential glycosidase inhibitors.

The synthesis of **11** was carried out following the steps shown in Scheme 3. The cycloadduct **15a** was obtained as a single product by the 1,3-dipolar cycloaddition between nitrone **14** and lactone **13a**, following the protocol developed in our group.^{14a} Treatment of lactone 15a with ammonia gave amide 16 in 75% yield. Initially, the 7 N solution of ammonia in methanol was used. However, during the scale-up optimization steps, it was found that a better result could be obtained when the lactone, dissolved in small amount of MeOH, is treated with liquid ammonia. After opening of the lactone moiety, the free hydroxy group in 16 was silvlated immediately to avoid a re-cyclization process leading back to the starting lactone. The protection of the hydroxyl group also prevents the intramolecular cyclization, which may occur during the next step (Hofmann rearrangement). The treatment of the amide 17 with PhI(OAc)₂ in MeOH,¹⁵ led to the Hofmann rearrangement with the retention of configuration at C-3 and the methoxycarbonyl protected amine 18 was obtained in 80% yield. The configuration at C-3 in **18** was proved by $J_{2,3}$ =6.3 Hz and spin-spin interaction between H-2 and H-3 protons (NOE). Unfortunately, this protocol worked only when the reaction was carried out in MeOH leading to the N-Moc derivative. Replacement of MeOH by *t*-BuOH or BnOH failed, and the starting material was recovered. The analogous procedure involving PhI(CF₃COO)₂ in acetonitrile/water mixture did not succeed either.¹⁶ On the other hand, the standard Hofmann rearrangement conditions (RONa or NaOH, Br2 in ROH) caused the decomposition of the substrate. Similarly, the other protocol, involving treatment of 17 with $Pb(OAc)_4$ in DMF in presence of t-BuOH¹⁷ was not successful.

The desilylation of **18** with tetrabutylammonium fluoride in THF followed by mesylation led to the mesylate **19**, which was hydrogenated under atmospheric pressure in the presence of palladium on charcoal. The resulted pyrrolizidine was isolated as the acetate **20**. Subsequently, the *tert*-butyl protection in **20** was removed by treatment with trifluoroacetic acid and both hydroxy groups were acetylated to give **21**, which was easily purified by chromatography.

Scheme 3. Reactants and conditions: (a) NH₃ (liquid), MeOH, rt, 75%; (b) *t*-BuPh₂SiCl, imidazole, CH₂Cl₂, -15 °C then rt, 91%; (c) Phl(OAc)₂, MeOH, rt, 80%; (d) i. TBAF, THF, rt, ii. MsCl, Et₃N, CH₂Cl₂, -15 °C then rt; (e) i. H₂, Pd/C, AcOEt/MeOH (4:1), rt; ii. Ac₂O, Et₃N, 0 °C then rt, 65% (4 steps); (f) i. CF₃COOH, rt; ii. Ac₂O, Et₃N, 0 °C then rt, 79% (2 steps); (g) 1% NH₃ in MeOH, rt, 85%.

The final deacetylation using a protocol well established by our group¹³ (1% NH₃ in MeOH) gave the desired amino-pyrrolizidine **11** in 24% overall yield.

The synthesis of indolizidine 12 is shown in Scheme 4. The starting **15b** was obtained by the cycloaddition of nitrone **14** and lactone 13b according to the reported procedure.^{14a} After protection of the free hydroxy group in 15b with a tert-butyldiphenylsilyl group,^{13g} the lactone **22** was treated with liquid ammonia. Next, the free hydroxyl group in 23 was immediately protected to avoid the re-cyclization process. According to the planned synthetic sequence, the benzyl group was chosen as the most attractive protection, which could be easily removed during hydrogenolysis of the N-O bond step. The standard benzylation of 23, however, did not succeed and only the re-cyclization product 15b was formed with further N-benzvlation and decomposition.^{13h} On the other hand, the benzvlation carried out under neutral conditions by treatment with Dudley's reagent^{13h,18} did not proceed as expected and the starting material was recovered. Finally, this problem was resolved by acetylation of hydroxyl group in 23, which led to the amide 24 in 91% yield.

The Hofmann rearrangement carried out with **24** and PhI(OAc)₂ in MeOH led to the *N*-Moc protected amine **25** in 83% yield. As for **18**, the configuration at C-3 in **25** was proved by $J_{2,3}$ =4.4 Hz and spin–spin interaction between H-2 and H-3 protons (NOE). The presence of acetyl protection at the C-1' hydroxyl group forced

a revision of the original cyclization strategy leading to the indolizidine skeleton. Initially, desilylation of the primary hydroxyl group followed by its mesylation was planned. In the case of **25**, however, to avoid the unwanted migration of the acetyl group from the secondary hydroxyl to the primary one, the desilylation, and deacetylation sequence were performed to provide diol **26** in 80% yield.

Subsequently, diol **26** was submitted to the reaction sequence leading to formation of the indolizidine skeleton. The mesylation using 1 equiv of MsCl, followed by hydrogenolysis and acetylation gave the desired indolizidine **27** in 62% yield but with a low purity. Additionally, a small quantity of compound **28** was isolated as a byproduct. This compound, derived from the dimesylate of diol **26**, was not stable, and underwent decomposition within a few days. Because of the unsatisfactory result of the presented transformations, several alternate strategies of cyclization were considered.

An alternative approach assumed a reductive cleavage of the N–O bond in **26** followed by the intramolecular cyclization under Mitsunobu conditions. Unexpectedly, this bond turned out to be relatively strong and hydrogenolysis under standard conditions did not proceed at all (Pd/C, H₂, 1.5 bar). Another reduction method, involving the treatment with zinc in acetic acid¹⁹ also failed. Finally, when hydrogenolysis was carried out under elevated pressure (Pd/C in EtOH, 60 bar) the desired aminoalcohol **29** was obtained, albeit only in a 50% yield after 7 days. The subsequent Mitsunobu reaction

Scheme 4. Reagents and conditons: (a) NH₃ (liquid), MeOH, rt, 70%; (b) Ac₂O, Et₃N, 0 °C then rt, 91%; (c) Phl(OAC)₂, MeOH, rt, 83%; (d) i. TBAF, THF, rt, ii. 1% NH₃ in MeOH, rt, 80%; (e) i. CBr₄, PPh₃, CH₂Cl₂, 0 °C then rt, ii. H₂, Pd/C, EtOH, iii. Ac₂O, Et₃N, 0 °C then rt, 70% (3 steps); (f) MsCl, Et₃N, CH₂Cl₂, ii. H₂, Pd/C, EtOH, iii. Ac₂O, Et₃N, 0 °C then rt, 10% (3 steps); (f) MsCl, Et₃N, CH₂Cl₂, ii. H₂, Pd/C, EtOH, iii. Ac₂O, Et₃N, 0 °C then rt, 10% (3 steps); (h) i. CF₃COOH, rt, ii. Ac₂O, Et₃N, 0 °C rt, 86% (2 steps); (i) 1% NH₃ in MeOH, rt, 75%.

with **29** followed by the acetylation gave a poor yield of **27** (less then 20%, overall after 3 steps 10%).

The best yield of **27** was achieved applying the third alternate cyclization strategy involving the Appel reaction followed by hydrogenolysis and acetylation. Here, the desired indolizidine **27** was obtained in a 70% yield (3 steps) and with a high purity.

Subsequently, the *tert*-butyl groups were removed by treatment with CF₃COOH and the product was isolated after acetylation as compound **30**. The final deacetylation was carried out as previously described (1% NH₃ in MeOH) affording the target indolizidine **12** in a 19% overall yield starting from **15b**.

Recently, we have demonstrated that compound 22 is not only an attractive substrate for the synthesis of polyhydroxylated indolizidines but also provides an entry to the pyrrolizidine class of iminosugars.^{13g-i} This can be achieved by changing the cyclization step strategy.^{13g-i} We decided to apply the new strategy to prepare the 7aminopyrrolizidine 31 from 25. For this purpose, the acetate 25 was submitted to selective deprotection of the secondary hydroxyl group by treatment with 10% ammonia solution in methanol (Scheme 5). Subsequently, the alcohol 32 was treated with mesyl chloride. Unexpectedly, this reaction did not proceed as expected under standard condition and starting material was recovered. The same result was also observed when the reaction was performed in neat MsCl as a solvent and DMAP as a base. The elevation of reaction temperature from ambient to 40 °C caused consumption of the starting material, but only a trace of the desired product **33** was noticed. As a result, a complex mixture of unidentified products was obtained. The failure of mesylation at low temperature can be explained due to the steric hindrance, which restricts an access to the hydroxy group. The elevated reaction temperature may initially lead to the formation of expected mesyl product, but simultaneously it also promotes the participation of neighboring substituents, which likely cause further reactions, involving nucleophilic substitution or elimination, leading finally to decomposition.

To overcome these difficulties we decided to modify the reaction sequence and start with the removal of the silyl protection. The altered route leading to **31** is outlined in Scheme 5. The treatment of **25** with TBAF in THF gave the primary alcohol **34** which immediately underwent intramolecular acetyl migration leading to the secondary alcohol **35**. The crude alcohol **35** was treated with mesyl chloride to afford mesylate **36**, which was hydrogenated in the presence of Pd/C causing cleavage of the N–O bond followed by the intramolecular alkylation of nitrogen atom. The crude 7-amino-pyrrolizidine was acetylated and purified as acetate **37**. The comparison of its ¹H NMR spectra with that of **27** confirmed the presence of the pyrrolizidine skeleton in acetate **37**. Finally, the pyrrolizidine **37** was transformed into target molecule **31** applying the standard deprotection sequence described before. The overall yield of the process from **15b**, was ca. 16% (11 steps).

The resulting amino-iminosugars (**11**, **12** and **31**) were tested as potential inhibitors of several standard glycosidase enzymes: α -L-fucosidase (bovine kidney), β -D-galactosidase (bovine liver), β -D-glucuronidase (bovine liver), α -D-glucosidase (rice), β -D-glucosidase (almond), and α -D-mannosidase (jack bean). Unfortunately, only compound **31** displayed weak activity toward one of tested enzymes (inhibition of β -D-galactosidase IC₅₀ 0.9 mM). It must be stressed, however, that the bicyclic amino-iminosugars are still a relatively unexplored class of glycomimetics and the relation between their substitution patterns, their absolute configuration and their biological activity is hard to predict. The preliminary unsatisfactory results do not exclude the possibility of finding bioactivity in this class of compounds.

3. Conclusions

To conclude, we have established an attractive synthetic strategy leading to the formation of amino-iminosugars. The strategy involves the 1,3-dipolar cycloaddition between the five-membered cyclic nitrone and 2(5*H*)-furanones, ammonolysis of the lactone moiety and Hofmann rearrangement as the key steps. The general value of this method was demonstrated by the synthesis of polyhydroxy-alkaloids with both indolizidine and pyrrolizidine skeleton.

Scheme 5. Reagents and conditons: (a) 10% NH₃ in MeOH, rt, 98%; (b) MsCl, Et₃N, CH₂Cl₂ or MsCl, DMAP; (c) TBAF, THF, rt; 75%; (d) MsCl, Et₃N, CH₂Cl₂, rt, 80%, 0 °C then rt; (e) i. H₂, Pd/C, EtOH, rt, ii. Ac₂O, Et₃N, 0 °C then rt, 70% (2 steps); (f) i. CF₃COOH, rt, ii. Ac₂O, Et₃N, 0 °C then rt, 85% (2 steps),(g) 1%NH₃ in MeOH, 90%.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were recorded on a Brucker DRX 500 Avance Spectrometer at 500 MHz and 125 MHz, respectively, using deuterated solvents and TMS as an internal standard. Chemical shifts are reported as δ values in ppm and coupling constants are in hertz. Proton assignment was done based on COSY experiments. Infrared spectra were recorded on a FT-IR-1600 Perkin–Elmer spectrophotometer. The optical rotations were measured with JASCO J-2000 digital polarimeter. High-resolution mass spectra were recorded on ESI-TOF Mariner Spectrometer (Perspective Biosystem). Thin layer chromatography was performed on aluminium sheet Silica Gel 60 F₂₅₄ (20×20×0.2) from Merck. Column chromatography was carried out using Merck silica gel (230–400 mesh) and Florisil (100–200 mesh). All solvents were purified by standard techniques.²⁰

4.2. (2*S*,3*R*,3*aS*,4*S*,5*S*)-4,5-Di-*tert*-butoxy-2-(*tert*-butyldiphenylsilyloxymethyl)hexahydropyrrolo[1,2-*b*]isoxazolo-3-carboxyamide (17)

A solution of compound 15a (0.31 g, 1.0 mmol) in MeOH (10 mL) was put into ampoule (cooled to $-20 \,^{\circ}$ C) equipped with dry-ice condenser connected with ammonia bottle. After condensing of ca. 30 mL of liquid ammonia, the ampoule was closed and warmed up to room temperature. After 48 h ammonia and MeOH were carefully removed and a residue was chromatographed on a silica gel (CH₂Cl₂/MeOH, 30:1). Afforded amide 16 (0.25 g, 75%) was dissolved in CH₂Cl₂ (10 mL) and transferred to a solution of imidazole (0.14 g, 2.0 mmol) in CH₂Cl₂ (10 mL). After cooling to -15 °C, t-BuPh₂SiCl (0.25 g, 0.9 mmol) was added and obtained mixture was stirred at room temperature till disappearance of starting alcohol (TLC, CH₂Cl₂/MeOH, 1:1). Then solvent was removed and obtained residue was purified on silica gel (CH₂Cl₂/MeOH, 30:1) affording amide **17** (0.39 g, 91%) as a colourless oil. $[\alpha]_D$ +42.1 (*c* 0.15, CH₂Cl₂); IR (film) v: 3330, 3190, 1670, 1112 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ: 7.70-7.25 (10H, Ar), 6.21 (1H, br s, CONHH), 5.19 (1H, br s, CONHH), 4.58 (1H, ddd, J 6.6, 5.8, 4.8 Hz, H-2), 3.95 (1H, dd, J 11.2, 4.8 Hz, CHHOSi), 3.90 (1H, ddd, J 6.0, 5.6, 2.3 Hz, H-5), 3.84 (1H, dd, J 11.2, 6.6 Hz, CHHOSi), 3.76-3.72 (2H, H-3a, H-4), 3.56 (1H, dd, J 12.4, 5.6 Hz, H-6a), 3.20 (1H, br d, J 5.8 Hz, H-3), 3.04 (1H, dd, J 12.4, 6.0 Hz, H-6b), 1.20 (9H, s, t-Bu), 1.18 (9H, s, t-Bu), 1.05 (9H, s, t-Bu); ¹³C NMR (125 MHz,C₆D₆) δ: 172.5, 135.6, 135.5, 133.2, 133.1, 129.8, 129.7, 127.7, 127.6, 81.8, 78.4, 76.5, 74.8, 74.4, 74.3, 62.3, 61.5, 56.5, 28.8, 28.5, 26.8, 19.2; HRMS (ESI): m/z calcd for C₃₂H₄₈N₂O₅NaSi [M+Na⁺]: 591.3225; found: 591.3206. Anal. Calcd for C₃₂H₄₈N₂O₅Si: C, 67.57; H, 8.51; N, 4.92. Found: C, 67.54; H, 8.48; N, 4.90.

4.3. Methyl (2S,3R,3aS,4S,5S)-4,5-di-*tert*-butoxy-2-(*tert*-butyldiphenylsilyloxymethyl)hexahydropyrrolo[1,2b]isoxazol-3-ylcarbamate (18)

Diacetoxyiodobenzene (0.34 g, 1.06 mmol) was added to solution of amide **17** (0.3 g, 0.53 mmol) in MeOH (20 mL) and obtained mixture was stirred at room temperature. The progress of reaction was controlled by TLC. Then a solvent was removed and residue was purified on a silica gel (hexane/AcOEt, 1:1) affording *N*-protected amine **18** (0.25 g, 80%) as a colourless oil. [α]_D +43.5 (*c* 0.55, CH₂Cl₂); IR (film) *v*: 3325, 1725, 1113 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ : 8.00–7.20 (10H, Ar), 6.14 (1H, d, *J* 9.6 Hz, NH), 5.05 (1H, ddd, *J* 9.6, 6.3, 4.3 Hz, H-3), 4.26 (1H, ddd, *J* 6.3, 3.9, 3.6 Hz, H-2), 4.18 (1H, m, H-4), 3.98 (1H, dd, *J* 11.5, 3.9 Hz, CHHOSi), 3.89 (1H, ddd, *J* 6.1, 5.8, 3.7 Hz, H-5), 3.80 (1H, dd, *J* 11.5, 5.8 Hz, H-6a), 2.95 (1H, dd, *J* 11.5, 6.1 Hz, H-

6b), 1.22 (9H, s, *t*-Bu), 1.19 (9H, s, *t*-Bu), 1.02 (9H, s, *t*-Bu); 13 C NMR (125 MHz, benzen- d_6) δ : 156.8, 136.2, 135.9, 133.7, 133.1, 130.1, 130.0, 127.9, 127.8, 80.9, 79.4, 77.4, 77.3, 74.2, 73.6, 62.6, 61.6, 60.9, 51.8, 28.8, 28.4, 26.9, 19.4; HRMS (ESI): *m/z* calcd for C₃₃H₅₀N₂O₆NaSi [M+Na⁺]: 621.3330; found: 621.3309. Anal. Calcd for C₃₃H₅₀N₂O₆Si: C, 66.19; H, 8.42; N, 4.68. Found: C, 66.14; H, 8.40; N, 4.65.

4.4. (1*S*,2*S*,6*R*,7*R*,7*aS*)-6-Acetoxy-1,2-di-*tert*-butoxy-7-(methoxycarbonylamino)-pyrrolizidine (20)

A solution of TBAF (0.11 g, 0.36 mmol) in THF (5 mL) was added to a solution of 18 (0.2 g, 0.33 mmol) in THF (5 mL). The progress of reaction was monitored by TLC. Subsequently, solvent was removed and residue was chromatographed on a silica gel (CH₂Cl₂/MeOH, 25:1 with 1% Et₃N). Afforded alcohol was dissolved in CH₂Cl₂ (5 mL), Et₃N was added (67 mg, 0.66 mmol) and after cooling to -15 °C, MsCl was added slowly (49 mg, 0.43 mmol). When substrate was consumed, solvent was removed and residue was purified on a silica gel (CH₂Cl₂/MeOH, 25:1 with 1% Et₃N). Obtained mesylate 19, was immediately dissolved in mixture AcOEt/MeOH (1:1, 10 mL), Pd/C was added (100 mg) and vigorously stirred solution was saturated with hydrogen at atmospheric pressure. After disappearance of mesylate, post-reaction mixture was filtrated through Celite, and solvents were removed under diminished pressure. Residue was dissolved in Et₃N (5 mL), cooled and Ac₂O (2 mL) was added. After 1 h solvents were removed and residue purified on a silica gel (CH₂Cl₂/MeOH, 25:1 with 1% Et₃N) affording pyrrolizidine **20** (83 mg, 65%) as a yellowish oil. $[\alpha]_D$ +4.1 (*c* 0.35, CH₂Cl₂): IR (film) v: 3325, 1730, 1723, 1239 cm⁻¹: ¹H NMR (500 MHz, toluene-*d*₈) δ: 5.30 (1H, br m, H-7), 5.19 (1H, m, H-6), 4.66 (1H, m, H-2), 4.32 (1H, br s, NH), 3.84 (1H, m, H-1), 3.51 (1H, dd, /8.5, 7.1 Hz, H-5a), 3.43 (3H, s, Me), 3.22 (1H, dd, / 11.4, 4.0 Hz, H-3a), 3.15 (1H, br d, J 8.5 Hz, H-5b), 3.07 (1H, m, H-7a), 2.61 (1H, dd, J 11.2, 2.4 Hz, H-3b), 1.61 (3H, s, Ac), 1.19 (9H, s, t-Bu), 1.11 (9H, s, t-Bu); ¹³C NMR (125 MHz, toluene-*d*₈) δ: 170.2, 157.0, 80.2, 79.7, 76.9, 75.4, 74.0, 73.6, 60.3, 58.7, 57.3, 51.6, 28.7, 28.4, 19.9; HRMS (ESI): m/z calcd for C₁₉H₃₅N₂O₆ [M+H⁺]: 387.2489; found: 387.2473.

4.5. (1*S*,2*S*,6*S*,7*R*,7*aS*)-1,2,6-Triacetoxy-7-(methoxycarbonylamino)-pyrrolizidine (21)

Pyrrolizidine **20** (55 mg, 0.14 mmol) was dissolved in CF₃COOH (5 mL) and stirred overnight. After removal of solvent under diminished pressure, residue was dissolved in Et₃N (3 mL), cooled and Ac₂O (1 mL) was added slowly. After 1 h solvent was removed and residue was chromatographed on a silica gel (hexane/AcOEt, 1:4) affording pyrrolizidine **21** (40 mg, 79%) as a yellowish oil. [α]_D +9.1 (*c* 1.09, CH₂Cl₂); IR (film) *v*: 1731, 1723 cm⁻¹; ¹H NMR (500 MHz, toluene-*d*₈) δ : 5.48 (1H, m, H-7), 5.27 (1H, m, H-6), 5.20 (1H, br s, NH), 5.12 (1H, q, H-2), 4.40 (1H, m, H-1), 3.44 (3H, s, Me), 3.39 (1H, dd, *J* 9.6, 6.7 Hz, H-5a), 3.28 (1H, dd, *J* 12.2, 5.0 Hz, H-3a), 3.13 (1H, dd, *J* 7.5, 2.0 Hz, H-7a), 2.76–2.65 (2H, H-3b, H-5b), 1.68 (3H, s, Ac), 1.65 (3H, s, Ac), 1.63 (3H, s, Ac); ¹³C NMR (125 MHz, toluene-*d*₈) δ : 170.1, 169.5, 169.2, 157.0, 80.2, 78.9, 77.3, 73.6, 59.2, 57.9, 57.5, 51.9, 30.3; HRMS (ESI): *m*/*z* calcd for C₁₅H₂₂N₂O₈Na [M+Na⁺]: 381.1274; found: 381.1269.

4.6. (1*S*,2*S*,6*S*,7*R*,7*aS*)-1,2,6-Trihydroxy-7-(methoxycarbonylamino)-pyrrolizidine (11)

Pyrrolizidine **21** (30 mg, 84 µmol) was dissolved in 5 mL of 1% soln NH₃ in MeOH and stirred overnight under argon atmosphere. The progress of reaction was monitored by mass spectrometry. After filtration through Florisil, solvent was removed affording target pyrrolizidine **11** (16 mg, 85%) as yellowish oil. [α]_D –9.0 (*c* 0.49, MeOH); IR (film) ν : 3330, 1720 cm⁻¹; ¹H NMR (500 MHz,

metanol- d_4) δ : 4.19 (1H, m, H-1), 4.11–4.06 (2H, H-2, H-6), 4.03 (1H, t, *J* 7.7 Hz, H-7), 3.65 (3H, s, Me), 3.24 (1H, dd, *J* 9.5, 5.8 Hz, H-5a), 3.18 (1H, dd, *J* 11.5, 4.6 Hz, H-3a), 3.03 (1H, dd, *J* 7.7, 3.2 Hz, H-7a), 2.90 (1H, dd, *J* 9.5, 8.3 Hz, H-5b), 2.85 (1H, dd, *J* 11.5, 4.0 Hz, H-3b); ¹³C NMR (125 MHz, metanol- d_4) δ : 159.6, 81.3, 79.6, 76.3, 75.9, 62.2, 61.0, 60.4, 52.5; IR (film) ν : 3330, 1720 cm⁻¹; HRMS (ESI): *m/z* calcd for C₉H₁₇N₂O₅ [M+H⁺]: 233.1132; found: 233.1143.

4.7. (2*S*,3*R*,3*aS*,4*S*,5*S*,1'*R*)-2'-(*tert*-Butyldiphenylsilyloxy)-1'-(4,5-di-*tert*-butoxy-3-carbamoylhexahydro-pyrrolo[1,2*b*]isoxazol-2-yl)ethyl acetate (24)

Ammonolysis of 22 (1.0 g, 1.72 mmol) was carried out in the same way like for 17. After chromatographically purification on a silica gel (CH₂Cl₂/MeOH, 25:1 with 1% Et₃N) 0.72 g (70%) of amide 23 was obtained. This compound was immediately dissolved in Et₃N (25 mL), cooled and Ac₂O (10 mL) was added slowly. After 3 h solvents were removed and residue was chromatographed on a silica gel (AcOEt 100%) affording amide 24 (0.7 g, 91%) as a colourless oil. [a]_D +38.5 (c 0.65, CH₂Cl₂); IR (film) v: 3416, 1747, 1639 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ: 8.00–7.20 (10H, Ar), 5.66 (1H, s, NH), 5.50 (1H, ddd, J 8.9, 4.8, 2.6 Hz, H-1'), 5.37 (1H, s, NH), 4.90 (1H, dd, J 8.9, 6.2 Hz, H-2), 4.24 (1H, dd, J 11.4, 2.6 Hz, H-2'a), 4.09 (1H, dd, J 11.4, 4.8 Hz, H-2'b), 3.87 (1H, dd, J 4.5, 2.6 Hz, H-3a), 3.77 (1H, ddd, J 6.0, 5.1, 4.1 Hz, H-5), 3.72 (1H, dd, J 4.5, 4.1 Hz, H-4), 3.42 (1H, dd, J 12.1, 5.1 Hz, H-6a), 3.37 (1H, dd, J 6.2, 2.6 Hz, H-3), 3.07 (1H, dd, / 12.1, 6.0 Hz, H-6b), 1.96 (3H, s, Ac), 1.19 (9H, s, t-Bu), 1.05 (9H, s, t-Bu), 0.95 (9H, s, t-Bu); ¹³C NMR (125 MHz, C₆D₆, carbon atoms of Ph groups omitted) δ : 172.5, 169.2, 82.6, 77.6, 75.6, 75.5, 74.1, 73.7, 72.3, 64.4, 61.6, 57.6, 28.8, 28.4, 27.1, 20.7, 19.6; HRMS (ESI): *m*/*z* calcd for C₃₅H₅₂N₂O₇SiNa [M+Na⁺]: 663.3436; found: 663.3453. Anal. Calcd for C35H52N2O7Si: C, 65.59; H, 8.18; N, 4.37. Found: C, 65.54; H, 8.13; N, 4.36.

4.8. (2S,3R,3aS,4S,5S,1'R)-2'-(*tert*-Butyldiphenylsilyloxy)-1'-(4,5-di-*tert*-butoxy-3-(methoxycarbonyl-amino)hexahydropyrrolo[1,2-*b*]isoxazol-2-yl)ethyl acetate (25)

Diacetoxyiodobenzene (0.3 g, 0.94 mmol) was added to a solution of amide 24 (0.3 g, 0.47 mmol) in MeOH (20 mL) and stirred at room temperature. The progress of reaction was monitored by TLC. After disappearance of substrate MeOH was removed and residue was chromatographed on a silica gel (hexane/AcOEt, 4:1 then 1:1) affording amide **25** (0.26 g, 83%) as colourless oil. $[\alpha]_D$ +4.4 (*c* 5.3, CH₂Cl₂); IR (film) *v*: 3333, 1747, 1724, 1255 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ: 7.9–7.20 (10H, Ar), 5.95 (1H, d, J 10.3 Hz, NH), 5.47 (1H, dd, J 10.3, 4.4 Hz, H-3), 5.02 (1H, ddd, J 9.1, 4.9, 2.5 Hz, H-1'), 4.68 (1H, dd, / 9.1, 4.4 Hz, H-2), 4.16 (1H, dd, / 11.4, 2.5 Hz, H-2'a), 4.01 (1H, dd, / 11.4, 4.9 Hz, H-2'b), 3.87-3.77 (2H, H-4, H-5), 3.57 (1H, dd, / 11.4, 5.7 Hz, H-6a), 3.49 (4H, H-3a, MeO), 3.03 (1H, dd, / 11.4, 7.2 Hz, H-6b), 2.03 (3H, s, Ac), 1.19 (9H, s, t-Bu), 1.11 (9H, s, t-Bu), 0.98 (9H, s, *t*-Bu); ¹³C NMR (125 MHz, C₆D₆, carbon atoms of Ph groups omitted) δ: 169.3, 156.5, 81.1, 78.6, 76.1, 75.1, 74.1, 73.6, 70.4, 64.6, 61.1, 60.3, 28.9, 28.4, 27.0, 21.1, 19.6; HRMS (ESI): m/z calcd for C₃₆H₅₄N₂O₈SiNa [M+Na⁺]: 693.3542; found: 693.3562. Anal. Calcd for C₃₆H₅₄N₂O₈Si: C, 64.45; H, 8.11; N, 4.18. Found: C, 64.40; H, 8.08; N, 4.17.

4.9. Methyl (2*S*,3*R*,3*aS*,4*S*,5*S*,1′*R*)-4,5-Di-*tert*-butoxy-2-(-1′,2′dihydroxyethyl)hexahydro-pyrrolo[1,2-*b*]isoxazol-3ylcarbamate (26)

A solution of tetrabutylammonium fluoride (0.14 g, 0.43 mmol) in THF (5 mL) was added to a solution of amide **25** (0.25 g, 0.36 mmol) in THF (15 mL). After consumption of substrate, solvent was removed under diminished pressure and residue was dissolved

in 1% soln of NH₃ in MeOH (10 mL) and stirred 24 h. After removal of solvent residue was chromatographed on a silica gel (hexane/ AcOEt, 1:1 then AcOEt 100%) affording diol 26 (91 mg, 80%) as a colourless oil. $[\alpha]_D$ +94.3 (*c* 1.60, CH₂Cl₂); IR (film) ν : 3363, 1708 cm⁻¹; ¹H NMR (500 MHz, metanol-*d*₄) δ: 4.67 (1H, dd, *J* 5.1, 2.5 Hz, H-3), 4.23 (1H, dd, / 7.6, 5.1 Hz, H-2), 4.02 (1H, dd, / 4.1, 3.9 Hz, H-4), 3.84 (1H, ddd, / 5.5, 5.3, 3.9 Hz, H-5), 3.74 (1H, ddd, / 7.6, 6.1, 3.5 Hz, H-1'), 3.67–3.60 (4H, singlet for Me, and dd, / 11.5, 3.5 Hz, for H-2'a), 3.52 (1H, dd, / 11.5, 6.1 Hz, H-2'b), 3.45 (1H, dd, / 12.5, 5.5 Hz, H-6a), 3.29 (1H, dd, / 4.1, 2.5 Hz, H-3a), 2.95 (1H, dd, / 12.5, 5.3 Hz, H-6b), 1.22 (9H, s, t-Bu), 1.20 (9H, s, t-Bu); ¹³C NMR (125 MHz, metanol-d₄) δ: 159.2, 81.8, 80.4, 78.4, 77.5, 75.7, 70.5, 65.0, 62.5, 61.6, 52.7, 29.1, 28.8; HRMS (ESI): m/z calcd for C₁₈H₃₅N₂O₇ [M+H⁺]: 391.2444; found: 391.2440. Anal. Calcd for C₁₈H₃₅N₂O₇·H₂O: C, 52.93; H, 8.88; N, 6.82. Found: C, 52.90; H, 8.86; N, 6.81.

4.10. (1*S*,2*S*,6*R*,7*S*,8*R*,8*aS*)-6,7-Diacetoxy-1,2-di-*tert*-butoxy-8-(methoxycarbonylamino)-indolizidine (27)

A solution of CBr₄ (0.12 g, 0.36 mmol) in CH₂Cl₂ (2 mL) was added to cooled solution of diol 26 (90 mg, 0.28 mmol) in CH₂Cl₂ (5 mL) containing Ph₃P (95 mg, 0.36 mmol). After consumption the substrate solvent was removed and residue was dissolved in EtOH and 10% Pd/C (100 mg) was added. Obtained solution was saturated with hydrogen under atmospheric pressure. Subsequently, postreaction mixture was filtered through Celite and solvent was removed. Residue was dissolved in Et₃N (2 mL), cooled and Ac₂O was added (1 mL). After 1 h solvents were removed and residue purified on a silica gel (hexane/AcOEt, 1:1) affording diacetate 27 (75 mg, 70%) as a colourless oil. $[\alpha]_D$ – 20.1 (*c* 0.94, CH₂Cl₂); IR (film) *v*: 3363, 1746, 1708 cm⁻¹; ¹H NMR (500 MHz, toluene- d_8) δ : 5.29 (1H, ddd, J 3.1, 2.7, 1.7 Hz, H-6), 4.65 (1H, dd, J 10.4, 3.1 Hz, H-7), 4.44 (1H, m, H-8), 4.33 (1H, br s, NH), 4.07 (1H, dd, J 6.3, 2.6 Hz, H-1), 3.72 (1H, ddd, J 6.3, 2.6, 2.0 Hz, H-2), 3.45 (3H, s, MeO), 2.87 (1H, dd, J 9.7, 2.0 Hz, H-3b), 2.83 (1H, dd, J 13.1, 2.7 Hz, H-5a), 2.27 (1H, dd, J 9.7, 6.3 Hz, H-3b), 2.00 (1H, dd, J 13.1, 1.7 Hz, H-5b), 1.82 (4H, H-8a, Ac), 1.71 (3H, s, Ac), 1.19 (9H, s, t-Bu), 1.03 (9H, s, t-Bu); ¹³C NMR (125 MHz, toluene-d₈) δ: 170.0, 156.4, 83.5, 79.2, 74.6, 74.1, 73.5, 68.9, 60.3, 52.9, 51.6, 29.1, 29.0, 20.5, 20.4; HRMS (ESI): m/z calcd for C₂₂H₃₈N₂O₈Na [M+Na⁺]: 481.2526; found: 481.2521.

4.11. (1*S*,2*S*,6*R*,7*S*,8*R*,8a*S*)-1,2,6,7-Tetraacetoxy-8-(methoxycarbonylamino)-indolizidine (30)

Indolizidine **27** (50 mg, 0.11 mmol) was dissolved in CF₃COOH (2 mL) and stirred overnight. Subsequently, solvent was removed under diminished pressure and residue was acetylated affording, after chromatography on a silica gel (AcOEt/hexane, 5:1), indolizidine **30** (40 mg, 86%) as a colourless oil. [α]_D –25.8 (*c* 0.73, CH₂Cl₂); IR (film) *v*: 3363, 1739, 1713, 1232 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ : 5.58 (1H, dd, *J* 7.6, 2.5 Hz, H-6), 5.31 (1H, m, H-2), 5.13 (1H, dd, *J* 5.5, 2.5 Hz, H-7), 4.79 (1H, m, H-1), 4.32 (1H, m, H-8), 3.35 (3H, s, MeO), 2.76–2.63 (2H, H-3a, H-5a), 2.26 (1H, m, H-3b), 1.95–1.80 (2H, H-5b, H-8a), 1.82 (3H, s, Ac), 1.77 (3H, s, Ac), 1.76 (3H, s, Ac), 1.67 (3H, s, Ac); ¹³C NMR (125 MHz, C₆D₆) δ : 170.5, 170.0, 169.8, 169.7, 156.3, 80.4, 77.5, 72.4, 68.5, 67.8, 57.7, 52.3, 51.5, 51.4, 20.0, 19.9, 19.8, 19.7; HRMS (ESI): *m/z* calcd for C₁₈H₂₆N₂O₁₀Na [M+Na⁺]: 453.1480; found: 453.1486.

4.12. (15,25,6R,75,8R,8aS)-1,2,6,7-Tetrahydroxy-8-(methoxycarbonylamino)-indolizidine (12)

Indolizidine **30** (40 mg, 93 μ mol) was dissolved in 1% soln of NH₃ in MeOH (5 mL) and stirred at room temperature under argon atmosphere. The progress of reaction was controlled by mass

spectrometry. After filtration through Florisil, solvent was removed affording indolizidine **12** (18 mg, 75%) as a colourless oil. $[\alpha]_D - 33.0$ (*c* 0.64, MeOH); IR (film) ν : 3363, 1713 cm⁻¹; ¹H NMR (500 MHz, metanol-*d*₄) δ : 3.98 (1H, br d, *J* 6.7 Hz, H-1), 3.90–3.84 (2H, H-2, H-6), 3.77 (1H, m, H-7), 3.37 (1H, dd, *J* 10.5, 2.7 Hz, H-8), 3.34 (3H, s, MeO), 3.01 (1H, dd, *J* 12.1, 2.5 Hz, H-5a), 2.80 (1H, br d, *J* 10.1 Hz, H-3a), 2.56 (1H, dd, *J* 10.1, 5.3 Hz, H-3b), 2.31 (1H, br d, *J* 12.1 Hz, H-5b), 1.84 (1H, dd, *J* 10.4, 6.7 Hz, H-8a); ¹³C NMR (125 MHz, metanol-*d*₄) δ : 160.1, 83.9, 79.7, 75.0, 73.7, 70.2, 60.6, 56.1, 55.3; HRMS (ESI): *m/z* calcd for C₁₀H₁₉N₂O₆ [M+H⁺]: 263.1238; found: 263.1231.

4.13. (1*S*,2*S*,5*S*,6*S*,7*R*,7*aS*)-6-Acetoxy-5-acetoxymethyl-1,2-ditert-butoxy-7-(methoxycarbonylamino)-pyrrolizidine (37)

A solution of tetrabutylammonium fluoride (0.14 g, 0.43 mmol) in THF (5 mL) was added to a solution of amide 25 (0.25 g, 0.36 mmol) in THF (15 mL). After consumption of substrate, solvent was removed under diminished pressure and residue was chromatographed on a silica gel (EtOAc/hexane 4:1). Resulting alcohol **35** (0.27 mmol, 75% yield) was dissolved in CH₂Cl₂ (5 mL) and Et₃N (60 mg, 0.60 mmol) was added. After cooling to -15 °C MsCl (34 mg, 0.30 mmol) was added dropwise. After 3 h solvent was removed and residue was chromatographed through short silica gel pad (AcOEt/hexane 1:1) to afford mesylate 36 (110 mg, 80%) which was immediately used in next step. Its solution in AcOEt (5 mL) containing 10 mg of 10% Pd/C was saturated with hydrogen under atmospheric pressure. After 24 h reaction mixture was filtered and solvent was removed. Residue was dissolved in Et₃N (1 mL), cooled and Ac₂O (0.5 mL) was added. After 1 h solvent was removed and residue was chromatographed on a silica gel (EtOAc/hexane 9:1) to afford pyrrolizidine 37 as a yellowish oil. $[\alpha]_{D}$ +34.4 (c 0.45, CH₂Cl₂); IR (film) ν : 3360, 1740, 1235 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ: 5.46–5.34 (3H, H-1, H-2, H-6), 4.67 (1H, s, NH), 4.42 (1H, dd, J 11.5, 6.5 Hz, CHHOAc), 4.34 (1H, dd, J 11.5, 6.7 Hz, CHHOAc), 4.15 (1H, m, H-7), 3.60 (1H, m, H-5), 3.39 (3H, s, MeO), 3.12 (1H, m, H-3a), 3.04 (1H, m, H-7a), 2.92 (1H, m, H-3b), 1.75 (3H, s, Ac), 1.58 (3H, s, Ac), 1.19 (9H, s, t-Bu), 1.08 (9H, s, t-Bu); ¹³C NMR (125 MHz, C₆D₆) δ: 170.4, 170.0, 168.4, 81.1, 79.6, 73.9, 73.5, 66.1, 61.5, 61.0, 53.4, 52.6, 51.9, 28.9, 28.6, 22.8, 20.5, 20.3; HRMS (ESI): m/z calcd for C₂₂H₃₈N₂O₈Na [M+Na⁺]: 481.2520; found: 481.2534.

4.14. (1*S*,2*S*,5*S*,6*S*,7*R*,7*aS*)-1,2,6-Triacetoxy-5-(acetoxymethyl)-7-(methoxycarbonylamino)-pyrrolizidine (38)

Pyrrolizidine **37** (50 mg, 0.11 mmol) was dissolved in CF₃COOH (2 mL) and stirred overnight. Subsequently, solvent was removed under diminished pressure and residue was acetylated affording, after chromatography on a silica gel (AcOEt/hexane, 6:1), pyrrolizdine **38** (40 mg, 85%) as a colourless oil. [α]_D +11.1 (*c* 1.45, CH₂Cl₂); IR (film) *v*: 3354, 1742, 1234 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ: 5.53 (1H, ddd, *J* 7.0, 5.7, 5.0 Hz, H-2), 5.48–5.40 (2H, H-1, H-6), 5.28 (1H, br s, NH), 4.29 (1H, dd, *J* 11.7, 5.9 Hz, CHHOAc), 4.24 (1H, m, H-7), 4.13 (1H, dd, *J* 11.7, 6.9 Hz, CHHOAc), 3.40 (3H, s, MeO), 3.28 (1H, dd, *J* 9.6, 5.7 Hz, H-3a), 3.20 (1H, m, H-7a), 2.97 (1H, dd, *J* 9.6, 7.0 Hz, H-3b), 1.74 (3H, s, Ac), 1.66 (3H, s, Ac), 1.65 (3H, s, Ac), 1.61 (3H, s, Ac); ¹³C NMR (125 MHz, C₆D₆) δ: 170.2, 169.9, 169.7, 169.5, 156.7, 80.2, 79.8, 78.4, 72.9, 61.7, 61.2, 60.2, 51.9, 51.2, 20.34, 20.32, 20.28, 20.17; HRMS (ESI): *m/z* calcd for C₁₈H₂₆N₂O₁₀Na [M+Na⁺]: 453.1480; found: 453.1483.

4.15. (1*S*,2*S*,5*S*,6*S*,7*R*,7*aS*)-1,2,6-Trihydroxy-5-(hydroxymethyl)-7-(methoxycarbonylamino)-pyrrolizidine (31)

Pyrrolizidine **38** (40 mg, 93 μ mol) was dissolved in 1% soln of NH₃ in MeOH (5 mL) and stirred at room temperature under

argon atmosphere. The progress of reaction was controlled by mass spectrometry. After filtration through Florisil, solvent was removed affording pyrrolizidine **31** (21 mg, 90%) as a colourless oil. [α]_D +0.7 (*c* 1.0, CH₂Cl₂); IR (film) ν : 3334, 1748 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ : 4.10–3.98 (3H, H-1, H-2, H-6), 3.93 (1H, dd, *J* 11.5, 5.9 Hz, *CH*HOH), 3.88 (1H, dd, *J* 11.5, 6.6 Hz, CHHOH), 3.35 (3H, s, MeO), 3.21 (1H, dd, *J* 9.3, 8.0 Hz, H-3a), 3.14 (1H, ddd, *J* 6.6, 5.9, 4.0 Hz, H-5), 3.08 (1H, dd, *J* 9.3, 5.8 Hz, H-3b), 3.03 (1H, dd, *J* 5.8, 4.0 Hz, H-7a); ¹³C NMR (125 MHz, CD₃OD) δ : 159.2, 81.9, 79.9, 77.9, 76.0, 66.5, 64.0, 58.6, 53.5, 52.6; HRMS (ESI): *m/z* calcd for C₁₀H₁₈N₂O₆Na [M+Na⁺]: 285.1057; found: 285.1045.

References and notes

- (a) Pearson, M. S.; Mathe-Allainmat, M.; Fargeas, J.; Lebreton, J. Eur. J. Org. Chem. 2005, 11, 2159–2167; (b) Watson, A. A.; Fleet, G. W. J.; Asano, N.; Molyneux, R. J.; Nash, R. J. Phytochemistry 2001, 56, 265–295; (c) Asanao, N.; Kato, A.; Watson, A. A. Mini-Rev. Med. Chem. 2001, 1, 145–154.
- 2. (a) Fleet, G. W. J.; Fellows, L. E.; Winchester, B. In Bioactive Compounds from Plants; Chadwick, P. J., March, J., Eds.; Wiley & Sons: Chichester, UK, 1990; pp 112-125; (b) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645-1680; (c) Carbohydrate Mimics; Chapleur, Y., Ed.; Wiley-VCH: Weinheim, 1998; (d) Martin, O. R.; Compain, Ph. Curr. Top. Med. Chem. 2003, 3, 541-560; (e) El Nemr, A. Tetrahedron 2000, 56, 8579-8627; (f) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693-3712; (g) Cossy, J.; Vogel, P. In Stereoselective Synthesis; Part, H., Atta-ur-Rahman, Eds.; Elsevier: Amsterdam, 1993; Vol. 12, pp 275-363; (h) Herczegh, P.; Kovacs, I.; Sztaricskai, F. Chemistry of Biologically Important Hydroxylated Indolizidines: Synthesis of Swainsonine, Castanospermine and Slaframine; Springer: Berlin, 1993; (i) Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products; Lukacs, G., Ohno, M., Eds.; Springer: Berlin, 1993; Vol. 2, pp 751-828; (j) Cipolla, L.; La Ferla, B.; Nicotra, F. Curr. Top. Med. Chem. 2003, 3, 485-511; (k) Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Lewerothy, D. P.; Pryce, R. J.; Arnold, E.; Chardy, J. Phytochemistry 1981, 20, 811-814; (l) Pastuszak, I.; Molyneux, R. J.; James, L. F.; Elbien, A. D. Biochemistry 1990, 29, 1886-1891; (m) El Ashry, E. S. H.; El Nemr, A. Synthesis of Naturally Occurring Nitrogen Heterocycles from Carbohydrates; Blackwell: Oxford, 2005.
- (a) Vargas-Sanchez, M.; Couty, F.; Evano, G.; Prim, D.; Marrot, J. Org. Lett. 2005, 7, 5861–5864;
 (b) Tang, T.; Ruan, Y.-P.; Ye, J.-L.; Huang, P.-Q. Synlett 2005, 213–234.
- 4. Giri, N.; Petrini, M.; Profeta, R. J. Org. Chem. 2004, 69, 7303-7308.
- (a) Blakemore, P. R.; Schulze, V. K.; White, J. W. Chem. Commun. 2000, 1263– 1264; (b) Schardel, C.; Grossman, R. B.; Nagabhzru, P.; Faulkner, J. R.; Mallik, U. P. Phytochemistry 2007, 68, 980–996.
- (a) Foresti, E.; Calmieri, G.; Petrini, M.; Profeta, R. Org. Biomol. Chem. 2003, 1, 4275–4281; (b) Albano, V. G.; Gualandi, A.; Monari, M.; Savoia, D. J. Org. Chem. 2008, 73, 8376–8381; (c) Broggini, G.; La Rosa, C.; Pilati, T.; Terraneo, A.; Zecchi, G. Tetrahedron 2001, 57, 8322–8332.
- 7. Furneaux, R. H.; Gainsford, G. J.; Mason, J. M.; Tyler, P. Tetrahedron 1995, 51, 12611–12630.
- Pandey, G.; Dumbre, S.; Pal, S.; Khan, M.; Shabab, M. Tetrahedron 2007, 63, 4756–4761.
- Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F. Chem.—Eur. J. 2003, 9, 3415–3426.
- 10. Alcaide, B.; Almendros, P.; Redondo, M. C.; Ruiz, M. P. J. Org. Chem. 2005, 70, 8890–8894.
- 11. Hashimoto, S.; Setoi, H.; Takeno, S.; Ito, Y. Patent JP 61,277,685, 1986; Chem. Abstr. 1987, 106, 138253y.
- (a) Iminosugars as Glycosidases Inhibitors: Norjirmycin and Beyond; Stütz, A., Ed.; Wiley-VCH: Weinheim, 1999; (b) Compain, P.; Martin, O. R. Iminosugars: from Synthesis to Therapeutic Applications; John Wiley and Sons: Chichester, UK, 2007.
- (a) Socha, D.; Jurczak, M.; Chmielewski, M. Carbohydr. Res. 2001, 336, 315–318;
 (b) Rabiczko, J.; Urbańczyk-Lipkowska, Z.; Chmielewski, M. Tetrahedron 2002, 58, 1433–1441;
 (c) Socha, D.; Paśniczek, K.; Jurczak, M.; Solecka, J.; Chmielewski, M. Carbohydr. Res. 2006, 341, 2005–2011;
 (d) Paśniczek, K.; Solecka, J.; Chmielewski, M. J. Carbohydr. Chem. 2006, 84, 534–539;
 (e) Panfil, I.; Solecka, J.; Chmielewski, M. J. Carbohydr. Chem. 2006, 26, 673–684;
 (f) Paśniczek, K.; Solecka, J.; Chmielewski, M. J. Carbohydr. Chem. 2007, 26, 195–211;
 (g) Stecko, S.; Jurczak, M.; Urbańczyk-Lipkowska, Z.; Solecka, J.; Chmielewski, M. Carbohydr. Res. 2008, 343, 2215–2220;
 (h) Stecko, S.; Solecka, J.; Chmielewski, M. 167–176;
 (i) Stecko, S.; Paśniczek, K.; Solecka, J.; Chmielewski, M. Pol. J. Chem. 2009, 83, 237–243.
- (a) Stecko, S.; Paśniczek, K.; Jurczak, M.; Urbańczyk-Lipkowska, Z.; Chmielewski, M. *Tetrahedron: Asymmetry* **2006**, *17*, 68–79; (b) Stecko, S.; Paśniczek, K.; Jurczak, M.; Urbańczyk-Lipkowska, Z.; Chmielewski, M. *Tetrahedron: Asymmetry* **2007**, *18*, 1085–1093; (c) Stecko, S.; Paśniczek, K.; Michel, C.; Milet, A.; Perez, S.;

Chmielewski, M. Tetrahedron: Asymmetry 2008, 19, 1660-1669; (d) Stecko, S.; Paśniczek, K.; Michel, C.; Milet, A.; Perez, S.; Chmielewski, M. Tetrahedron: Asymmetry **2008**, 19, 2140–2148.

- Song, H.; Chen, W.; Wang, Y.; Qin, Y. Synth. Commun. 2005, 35, 2735–2742.
 Almond, M.; Simmel, J.; Thomson, A.; Loudon, M. Org. Synth. 1988, 66, 132–135.
- 17. Mostowicz, D.; Bełecki, Cz.; Chmielewski, M. Synthesis 1991, 273-275.
- (a) Poon, K.; House, S. E.; Dudley, G. *Synlett* **2005**, 3142–3144; (b) Poon, K.; Dudley, G. J. Org. Chem. **2006**, 71, 3923–3929; (c) Poon, K.; Dudley, G. Org. Synth. **2007**, 84, 295–299; (d) ALDRICH. ChemFiles **2007**, 7, 3.
 Chiacchio, U.; Casuscelli, F.; Corsaro, A.; Librando, V.; Rescifina, A.; Romeo, R.;
- Romeo, G. Tetrahedron 1995, 51, 5689–5700.
 Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 5th ed.;
- Butterwoth-Heinemann: Burlington, MA, 2003.