Palladium-Catalyzed Synthesis of 1-Azaazulenes from Cycloheptatrienylmethyl Ketone *O*-Pentafluorobenzoyl Oximes

Mitsuru Kitamura, Shunsuke Chiba, Osamu Saku, and Koichi Narasaka*

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033

(Received February 18, 2002; CL-020155)

Substituted 1-azaazulenes are synthesized from cycloheptatrienylmethyl ketone *O*-pentafluorobenzoyloximes by the intramolecular Heck-type amination catalyzed by Pd(dba)₂–(*t*-Bu)₃P.


Recently, we reported that N-O bond of oxime derivatives is cleaved by the oxidative addition to Pd(0) complexes to generate alkylidenaminopalladium(II) species.¹ This procedure provides an alternative method to generate alkylidenaminopalladium(II) species which have been prepared previously by the ligand exchange of carbopalladium species with imines.² We have demonstrated that Mizoroki-Heck-type cyclization (amino-Heck reaction) of olefinic oxime derivatives proceeds via the aminopalladium complexes, affording various azaarenes such as pyrroles,^{1a} pyridines,^{1b} isoquinolines,^{1b} and spiroimines.^{1c}

Although azaazulene derivatives have received much interest for several decades due to their physical properties as azanonbenzenoid aromatics and pharmacological activities,³ few preparative methods have been known.^{3,4} Therefore, we tried to apply this amino-Heck reaction to the synthesis of 1-azaazulenes from cycloheptatrienylmethyl ketone oximes.

By employing 2-(2,4,6-cycloheptatrienyl)-1-phenylethan-1one O-pentafluorobenzoyloxime (1a),⁵ intramolecular amino-Heck reaction was examined under various reaction conditions as shown in Table 1. After heating a mixture of 1a, triethylamine, and a catalytic amount of Pd(PPh₃)₄ in DMF at 80 °C for 5 h and an usual work up, ¹H NMR of the crude mixture exhibited the formation of 3,4-dihydro-2-phenyl-1-azaazulene (3a), a small amount of isomers of 3a, 2-phenyl-1-azaazulene (4a), and ketone **5a**. Successive treatment of the crude mixture with MnO_2^{4d} gave 1-azaazulene 4a and ketone 5a in 25% and 35% yield, respectively (run 1). Addition of MS 4A was effective to increase the yield of 1-azaazulene 4a and to suppress the ketone formation, as is observed in the previous synthesis of spiroimines^{1c} (run 2). When the reaction was carried out by using bis(dibenzylideneacetone)palladium $[Pd(dba)_2]$ and $(t-Bu)_3P$ instead of $Pd(PPh_3)_4$, the yield of 4a was improved to 78% (run 3). Concerning bases examined, no remarkable influence was observed on the product yields except DBU (runs 4-7).

This method was then applied to the cyclization of various cycloheptatrienyl *O*-pentafluorobenzoyloximes, and the results are summarized in Table 2. In the reaction of **1b** having bulky *tert*-butyl group as R¹ at 80 °C, it required 4.5 h to consume the starting material **1b** and gave the desired 1-azaazulene **4b** in 64% yield, while **4b** was obtained in 84% yield at 110 °C within 0.5 h (run 2). The oximes bearing secondary alkyl groups such as isopropyl and cyclopropyl groups **1c**, **d** cyclized at 80 °C to give the corresponding azaazulenes **4c**, **d** in good yields (runs 3, 4). In contrast, 2-methylazaazulene **4e** was obtained in low yield (run 5). α , β -Unsaturated ketone oxime **1f** having styryl group was

Table 1. Synthesis of 1-azaazulene 4a from oxime 1a

D	Pd cat.	Base	A J J 141	T:	Yield/% ^a	
Rur	(10 mol%)	Base (3 mol amt)	Additive	Time/n -	4a	5a
1	Pd(PPh ₃) ₄	Et ₃ N	none	5	25	35
2	$Pd(PPh_3)_4$	Et ₃ N	MS 4A	5	69	21
3	$\frac{Pd(dba)_2}{+ 4 (t-Bu)_3 P}$	Et ₃ N	MS 4A	0.5	78	5
4	$\frac{Pd(dba)_2}{+ 4 (t-Bu)_3 P}$	DBU	MS 4A	1	7	12
5	$\begin{array}{c} Pd(dba)_2 \\ + 4 \ (t-Bu)_3 P \end{array}$	Cs ₂ CO ₃	MS 4A	1	54	15
6	$\begin{array}{c} Pd(dba)_2 \\ + 4 \ (t-Bu)_3 P \end{array}$	K ₂ CO ₃	MS 4A	0.8	70	9
7	$Pd(dba)_2$ + 4 (t-Bu) ₃ P	K ₃ PO ₄	MS 4A	1	74	8

^aIsolated yield.

converted to 2-styrylazaazulene **4f** in 68% yield (run 6). Alkynyl ketone oxime **1g** gave nitrile **6** via the fragmentation of alkylidenaminopalladium intermediate **2g**⁶ (run 7). 2,3-Disubstituted azaazulenes **4h–j** were prepared in moderate yields from α -substituted cycloheptatrienylmethyl ketone oximes **1h–j** (runs 8–10).

This method can be applied also to the synthesis of polycyclic derivatives. α -Cycloheptatrienyltetralone oxime (1k) cyclized to benzo[g]cyclohepta[b]indole (8) and 5,6-Dihydro-benzo[g]-cyclohepta[b]indole (9) in 86% combined yield (eq 1).

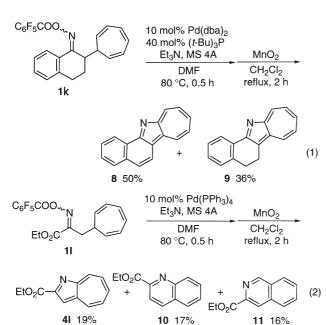
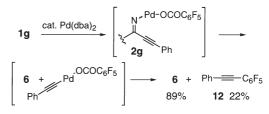

Cyclization products of different type were obtained in the reaction of oxime of α -keto ester. 2-(2,4,6-Cycloheptatrienyl)-1- ethoxycarbonylethan-1-one *O*-pentafluorobenzoyloxime (**1**) underwent the cyclization, leading the desired azulenyl ester **4** in only 19% yield, and quinoline **10** and isoquinoline **11** were obtained in 33% combined yield⁷ (eq 2).

 Table 2. Synthesis of azaazulene 4 from oxime 1 by amino-Heck reaction

$\begin{array}{c} R^{2} \\ R^{2} \\ \hline \\ N \\ \hline \\ 1 \\ \end{array} \xrightarrow{I) Pd cat., Base^{a}}_{reflux, 2 h} \\ R^{2} \\ R^{1} \\ R^{2} \\ \hline \\ \\ N \\ + \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$											
Run	Oxime		Con	Conditions ^a		Yield/% ^b					
	\mathbf{R}^1	\mathbf{R}^2	1	T/°C	Time/h	4	5				
1	Ph	Н	1a	80	0.5	78	5				
2	t-Bu	Н	1b	110	0.5	84	0				
3	<i>i</i> -Pr	Н	1c	80	1	62	4				
4	\triangleleft	Н	1d	80	1.5	63	5				
5	Me	Н	1e	110	0.3	27	9				
6	$\sqrt{2}$	Н	1f	80	1	68	2				
7 ^c –	=-()	н	1g	80	1	0	0				
8	Ph	Me	1h	110	0.5	52	0				
9	Ph	Ph	1i	110	0.5	55	4				
10 ^d	Et	Me	1j	110	0.5	42	0				

^aReaction conditions: 10 mol% Pd(dba)₂, 40 mol% (*t*-Bu)₃P, 3 mol amt Et₃N, MS 4A, DMF. ^bIsolated yield. ^cSee Note 6. ^d**7** was obtained in 21% yield.



As described above, the amino-Heck cyclization of *O*-pentafluorobenzoyloximes of cycloheptatrienylmethyl ketones proceeds by the catalytic use of $Pd(dba)_2-(t-Bu)_3P$. As the starting materials, oximes **1**, are readily prepared by the addition of ketone derivatives to cycloheptatrienyl tetrafluoroborate⁵ and the successive oximation and *O*-pentafluorobenzoylation,^{1a} the present method provides a simple procedure to prepare various 2-substituted and 2,3-disubstituted 1-azaazulenes.

This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) "Exploitation of Multi-Element Cyclic Molecules" from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and Notes

- a) H. Tsutsui and K. Narasaka, *Chem. Lett.*, **1999**, 45. b) H. Tsutsui and K. Narasaka, *Chem. Lett.*, **2001**, 526. c) M. Kitamura, S. Zaman, and K. Narasaka, *Synlett*, **2001**, 974. Recently, palladium(0)-catalyzed synthesis of nitriles from cyclobutanone oximes was reported via alkylidenaminopalladium species; see d) T. Nishimura and S. Uemura, *J. Am. Chem. Soc.*, **122**, 12049 (2000).
- J. P. Wolfe, J. Åhman, J. P. Sadighi, R. A. Singer, and S. L. Buchwald, *Tetrahedron Lett.*, **38**, 6367 (1997); G. Mann, J. F. Hartwig, M. S. Driver, and C. Fernández-Rivas, *J. Am. Chem. Soc.*, **120**, 827 (1998).
- 3 N. Abe, in "Recent Research Developments in Organic and Bioorganic Chemistry," ed. by S. G. Pandalai, Transworld Research Network, Trivandrum (2001), Vol. 4, p 14.
- 4 a) N. Abe, H. Fujii, K. Tahara, and M. Shiro, *Heterocycles*, 55, 1659 (2001). b) T. Takayasu and M. Nitta, *J. Chem. Soc.*, *Perkin Trans. 1*, 1999, 687. c) T. Takayasu, K. Ito, and M. Nitta, *Heterocycles*, 43, 2667 (1996). d) K. Ito and M. Nitta, *Heterocycles*, 36, 2247 (1993). e) Y. Sugimura, N. Soma, and Y. Kishida, *Bull. Chem. Soc. Jpn.*, 45, 3174 (1972).
- 5 I. D. Reingold, H. A. Trujillo, and B. E. Kahr, J. Org. Chem., 51, 1627 (1986).
- 6 Formation of diarylacetylene 12 in the reaction of 1g (Table 2, run 7) suggested 6 was formed by β -alkynylelimination from 2g and successive decarboxylation.

7 When the reaction of 1l was carried out with Pd(dba)₂-(t-Bu)₃P instead of Pd(PPh₃)₄, 4l, 10, and 11 were obtained in 5, 10, and 10% yields, respectively.