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Abstract: Nitrile hydratase fromRhodococcus equiA4 discriminated between geometric isomers of substituted
alicyclic nitriles. The enzyme transformedtrans-4-benzoyloxycyclohexanecarbonitrile (trans-1a), cis-3-benzoyloxy-
cyclohexanecarbonitrile (cis-2a), trans-2-hydroxycyclohexanecarbonitrile (trans-3a), and trans-2-hydroxycyclo-
pentanecarbonitrile (trans-4a) into the corresponding amides. On the contrary,cis-2-hydroxycyclohexanecarbonitrile
(cis-3a) and cis-2-hydroxycyclopentanecarbonitrile (cis-4a) were not converted to a significant extent.cis-4-Benzoyl-
oxycyclohexanecarbonitrile (cis-1a) was also a substrate of the enzyme but reacted slowly. Diequatorial arrangement
of the substituents intrans-1a, cis-2a, and trans-3a appears to positively influence the activity of the nitrile hydratase.
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Résumé: L’hydratase des nitriles obtenue à partir deRhodococcus equiA4 donne lieu à de la discrimination entre
des isomères géométriques de nitriles alicyliques substitués. L’enzyme a transformé lestrans-4-benzoyloxycyclo-
hexanecarbonitrile (trans-1a), cis-3-benzoyloxycyclohexanecarbonitrile (cis-2a), trans-2-hydroxycyclohexanecarbonitrile
(trans-3a) et trans-2-hydroxycyclopentanecarbonitrile(trans-4a) en amides correspondants. Au contraire, le degré de
conversion descis-2-hydroxycyclohexanecarbonitrile (cis-3a) et cis-2-hydroxycyclopentanecarbonitrile (cis-4a) est
faible. Comme substrat de cet enzyme, lecis-4-benzoyloxycyclohexanecarbonitrile (cis-1a) ne réagit que lentement.
L’arrangement diéquatorial des substituants dans les isomèrestrans-1a, cis-2a et trans-3a semble influencer positive-
ment l’activité de l’hydratase des nitriles.

Mots clés: hydratase des nitriles, cyclohexanecarbonitriles substitués, cyclopentanecarbonitriles substitués.
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Introduction

The use of bacterial nitrile-converting enzymes for enantio-,
regio-, and chemoselective hydration and hydrolysis of nitriles
has been described in numerous works (1). This work re-
ports the resolution of geometric isomers using a nitrile
hydratase.

Different affinities of this enzyme for geometric isomers
of trans-1,4-dicyanocyclohexane (DCC) were shown using
Corynebacterium sp. C5 cells containing both nitrile
hydratase and amidase. The relative specific activity of the
biocatalyst for thecis isomer of DCC was only 6% of that
for the trans isomer (2). The conversion oftrans-DCC to
trans-4-cyanocyclohexane-1-carboxylic acid was involved in
the chemoenzymatic synthesis of the pharmaceutically im-

portant trans-4-aminomethylcyclohexanecarboxylic acid (tran-
examic acid) (3).

The hydrolysis of alicyclic mono- and dinitriles and
amides ofcis configuration was reported to be catalyzed by
Rhodococcus rhodochrousIFO 15564 with enantioselectiv-
ity in some cases (4), but the biotransformation of the corre-
spondingtrans isomers was not studied.

Whole-cell biocatalyst SP 409 (Novo Industri, not available
commercially) hydrolyzed bothcis- and trans-2-hydroxycy-
clohexanecarbonitrile andcis-2-hydroxycyclopentanecarbo-
nitrile (5).

Here we report the discrimination oftrans andcis isomers
of the 3- and 4-benzoyloxy- and 2-hydroxy derivatives of
cyclohexanecarbonitriles as well as 2-hydroxycyclopen-
tanecarbonitriles by the nitrile hydratase fromRhodococcus
equi A4.

Results and discussion

Hydrolysis of alicyclic nitriles, 2-hydroxycyclohexanecar-
bonitrile, 2-hydroxycyclopentanecarbonitrile (5), cyclopenta-
necarbonitrile (6), and 2-arylcyclopropanecarbonitriles (7),
or the regioselective hydrolysis of DCC (2, 3, 8),trans-cyc-
lohexane-1,4-diacetonitrile (9), and other saturated and un-
saturated dinitriles (4) was the subject of few reports
regarding enzymatic nitrile conversion. The present work
demonstrated that the nitrile hydratase fromR. equi A4,
which showed a broad substrate specificity for aromatic,
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arylaliphatic, and aliphatic nitriles (10), is also useful for the
hydration of alicylic nitriles. The use of the purified enzyme
afforded 2-, 3-, and 4-substituted (hydroxy-, benzoyloxy-)
alicyclic amides. On the contrary, whole-cell biocatalyst SP 409
exhibiting nitrile hydratase and amidase activities gave
2-hydroxycyclohexane- and 2-hydroxycyclopentanecarboxylic
acids as the only products (5).

The syntheses ofcis- andtrans-2-hydroxycyclohexanecar-
boxamide (11), 2-hydroxycyclopentanecarboxamide (11), as
well as cis- (12, 13) andtrans-4-hydroxycyclohexanecar-
boxamide (13) have been published previously. Hydroxy-
cyclohexanecarboxamides, both thecis- and trans-3-
isomers, were reported as the respectiveO-acetyl derivatives
only (12); however, no NMR data were given for these com-
pounds.

All examined trans isomers of 2- and 4-substituted
alicyclic nitriles (Scheme 1) were readily converted into the
corresponding amides by the nitrile hydratase fromR. equi
A4 (Table 1). trans-4-Benzoyloxycyclohexanecarbonitrile
(trans-1a) was transformed at a substantially higher rate than
cis-1a. The reaction rate ofcis-3-benzoyloxycyclohexane-
carbonitrile (cis-2a) was somewhat lower than that of
trans-1a (Table 1). Thetrans isomer of2a was not available.

An even more striking difference than betweentrans-1a
and cis-1a was observed when comparing the activities of
the nitrile hydratase towardstrans and cis isomers of
2-hydroxycyclohexanecarbonitriles (trans-3a and cis-3a) or
2-hydroxycyclopentanecarbonitriles (trans-4a and cis-4a)
(Table 1). In both pairs of nitriles, the compounds bearing
trans-substituents were totally converted within 3 h to afford
corresponding amidestrans-3b and trans-4b, respectively.
On the contrary, only traces ofcis-3b were formed from
cis-3a, and nitrilecis-4a was not transformed by the enzyme
at all.

It is apparent that the enzyme prefers an equatorial posi-
tion for both substituents, which can be adopted by the
trans-1,2- and trans-1,4-isomers of the investigated substi-
tuted cyclohexanecarbonitriles. Nevertheless, this diequator-
ial arrangement of the substituents is also in accordance with
cis-3-benzoyloxycyclohexanecarbonitrile (cis-2a), which is
readily converted to the amide. The two large coupling con-
stantsJaa= 9.2 and 9.7 Hz andJaa= 8.7 and 8.8 Hz for H-1

and H-3, respectively, and the1H coupling pattern clearly
reveal a diequatorial substituent position incis-2a.

Impairment of the activity of the nitrile hydratase fromR.
equi A4 by steric effects, for example by nitriles with bulky
groups such as2-(3-benzoylphenyl)propionitrile,2,6-dichloro-
benzonitrile, and some 2-substituted benzonitriles, was pre-
viously observed (10). Its inefficient hydration of 2- and
4-substituted cyclohexane(pentane)carbonitriles with a
cis-configuration suggested that this enzyme is more sensi-
tive to steric hindrances than biocatalyst SP 409.

Experimental

NMR spectra of substrates were recorded on a Varian
Gemini 200 spectrometer (200 and 50.3 MHz for1H and
13C, respectively) in CDCl3. NMR spectra of products of the
biotransformation were recorded on a Unity Inova 400 MHz
spectrometer (399.90 MHz for1H, 100.57 MHz for13C) in
DMSO-d6 at 30°C. The assignment was based on COSY,
HMQC, and HMBC experiments performed using the manu-
facturer’s software. Residual solvent signals (DMSO:dH
2.50 ppm, dC 39.60 ppm; CDCl3: dH 7.27 ppm, dC
77.27 ppm) were used as internal standards.

Synthesis of substrates
Nitriles trans-1a (14), cis-1a (14), cis-2a (15), trans-3a

(16), cis-3a (17), trans-4a (18), andcis-4a (17) were pre-
pared according to literature reported procedures.13C and1H
NMR data were previously reported fortrans-1a (19), cis-1a
(19), trans-3a (16, 20), cis-3a (20–22), trans-4a (18), and
cis-4a (20–22) but no1H–1H coupling constants were given.

trans-1a
1H NMR d: 1.70–1.84 (m, 4H, H-2, H-3, H-5, H-6), 2.06–

2.16 (m, 4H, H-2, H-3, H-5, H-6), 2.71 (tt,J = 7.8, 4.4 Hz,
1H, H-1), 5.11 (tt,J = 7.6, 3.7 Hz, 1H, H-4), 7.44 (m, 2H,
H-meta), 7.56 (m, 1H, H-para), 8.02 (m, 2H, H-ortho).

cis-1a
1H NMR d: 1.83–2.11 (m, 8H, H-2, H-3, H-5, H-6), 2.77

(tt, J = 7.4, 3.7 Hz, 1H, H-1), 5.10 (tt,J = 7.4, 3.7 Hz, 1H,
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Substratea
Reaction
time (h) Product Conversion (%)b

Isolated
yield (%)

trans-1a 2 trans-1b 100 91
cis-1a 48 cis-1b 85 74
cis-2a 5 cis-2b 86 79
trans-3a 3.5 trans-3b 100 48
cis-3a 24 cis-3b <5c —
trans-4a 3 trans-4b 100 51
cis-4a 24 no reaction — —

aThe structures (see Scheme 1) represent single enantiomers oftrans-1a,
cis-1a, cis-2a, trans-3a, cis-3a, trans-4a, andcis-4a, whereas the
biotransformations were carried out with racemates.

bDetermined by TLC (for compound4a) or HPLC (for other
compounds).

c Traces of amide detected by NMR.

Table 1. Biotransformations of 2-hydroxycyclohexanecarbonitriles,
2-hydroxycyclopentanecarbonitriles, and 3-, 4-benzoyloxycyclohex-
anecarbonitriles by the nitrile hydratase ofRhodococcus equiA4.
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Scheme 1.
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H-4), 7.46 (m, 2H, H-meta), 7.58 (m, 1H, H-para), 8.05 (m,
2H, H-ortho).

cis-2a
1H NMR d: 1.40–2.10 (m, 7H), 2.31 (m, 1H), 2.72 (tt,J =

3.5, 5.9, 9.2, 9.7 Hz, 1H, H-1), 5.04 (tt,J = 3.5, 5.0, 8.7,
8.8 Hz, 1H, H-3), 7.44 (m, 2H, H-meta), 7.53 (m, 1H,
H-para), 8.06 (m, 2H, H-ortho). 13C NMR d: 21.68 (C-5),
26.22 (C-6), 28.95 (C-4), 30.56 (C-2), 33.98 (C-1), 70.36
(C-3), 121.88 (CN), 128.62 (C-meta), 129.95 (C-ortho),
130.32 (C-ipso), 133.33 (C-para), 165.98 (C=O).

trans-3a
1H NMR d: 1.10–1.44 (m, 4H, H-3, H-4, H-5, H-6), 1.51–

1.84 (m, 3H, H-4, H-5, H-6), 2.06 (m, 1H, H-3), 2.42 (ddd,J
= 11.5, 9.3, 3.8 Hz, 1H, H-1), 3.03 (br s, 1H, OH), 3.69 (dt,
J = 9.4, 4.2 Hz, 1H, H-2).

cis-3a
1H NMR d: 1.13–2.20 (m, 8H, H-3/3, H-4/4, H-5/5,

H-6/6), 3.01 (q,J = 3.1 Hz, 1H, H-1), 3.10 (br s, 1H, OH),
3.75 (dt,J = 8.4, 4.1, Hz, 1H, H-2).

trans-4a
1H NMR d: 1.48–2.30 (m, 6H), 2.65 (m,S J = 13.2 Hz,

1H, H-1), 3.68 (d,J = 3.5 Hz, 1H, OH), 4.37 (m,S J =
11.9 Hz, 1H, H-2).

cis-4a
1H NMR d: 1.46–2.10 (m, 6H), 2.71 (dt,J = 8.3, 4.8 Hz,

1H, H-1), 3.65 (br s, 1H, OH), 4.35 (dt,J = 5.3, 3.5 Hz, 1H,
H-2).

General procedure of the biotransformation
The nitrile hydratase fromRhodococcus equiA4 (10) was

diluted with KH2PO4–Na2HPO4 buffer (54 mM, pH 7.5) to a
concentration of 22mg of protein mL–1 (42 mg of pro-
tein mL–1 for cis-2a) and the substrates were added from
stock solutions in methanol to make up final concentrations
of 1.25 mM of trans-1a, cis-1a, and cis-2a and 5 mM of
trans-3a, cis-3a, trans-4a, andcis-4a. Methanol did not ex-
ceed 5% (v/v) of the reaction mixture. The reactions were
carried out in shaken vessels (850 rpm, Thermomixer Com-
pact Eppendorf) at 30°C. At intervals, samples were with-
drawn, the reaction was quenched with 1 M HCl (0.1 mL
per 1 mL of sample) and the precipitated protein was re-
moved by centrifugation. The supernatants were analyzed by
HPLC as described below or by TLC on silica gel plates
(Merck) developed with chloroform–ethyl acetate (10:1) (for
substratestrans-3a, cis-3a, trans-4a, and cis-4a); the spots
were visualized by charring with 5% sulphuric acid in etha-
nol.

Analytical HPLC
The concentrations of substrates and products were deter-

mined using an HPLC system consisting of a sol-
vent-delivery system 600 (Waters), a photo-diode array
detector 996 (Waters), and a refractive-index detector 2410
(Waters) and a Nova-Pak C18 column (5mm, 3.9 × 150 mm,
Waters). As mobile phases, 50% (v/v) acetonitrile (for com-
poundstrans-1a, trans-1b, cis-1a, cis-1b, cis-2a, andcis-2b)
or 10% (v/v) acetonitrile (for other compounds) in water

plus 0.1 % (v/v) H3PO4 were employed at a flow rate of
1.0 mL min–1. Compounds trans-1a, trans-1b, cis-1a,
cis-1b, cis-2a, andcis-2b (retention times 5.6, 2.2, 5.0, 1.8,
5.5, and 2.1 min, respectively) were detected at 230 nm.
Compoundscis-3a, trans-4a, andcis-4a (retention times 5.4,
3.5, and 2.9 min, respectively) were detected by the refrac-
tive-index detector.

Isolation and identification of products
Amides trans-1b, cis-1b, and cis-2b were extracted from

supernatants of the reaction mixtures with ethyl acetate at
pH 8.5–8.8 (NaOH). The reaction mixtures from the
biotransformations of substratestrans-3a and trans-4a were
lyophilized and extracted with methanol to give the respec-
tive amidestrans-3b and trans-4b.

trans-1b
1H NMR d: 1.41–1.55 (m, 4H, H-2a, H-3a, H-5a, H-6a),

1.85 (m, 2H, H-2b, H-6b), 2.05 (m, 2H, H-3b, H-5b), 2.14
(m, S J = 29.7 Hz, 1H, H-1), 4.82 (m,S J = 29.7 Hz, 1H,
H-4), 6.71 (br s, 1H, NH), 7.25 (br s, 1H, NH), 7.52 (m, 2H,
H-meta), 7.64 (m, 1H, H-para), 7.94 (m, 2H, H-ortho). 13C
NMR d: 27.17 (t, C-2 and C-6), 30.60 (t, C-3 and C-5),
42.44 (d, C-1), 73.01 (d, C-4), 128.82 (d, C-meta), 129.19
(d, C-ortho), 130.25 (s, C-ipso), 133.33 (d, C-para), 165.29
(s, OCOPh), 176.80 (s, CONH2).

cis-1b
1H NMR d: 1.60–1.80 (m, 6H, H-2, H-6, H-3a, H-5a),

1.93 (m, 2H, H-3b, H-5b), 2.22 (m,S J = 28.6 Hz, 1H, H-1),
5.14 (m,S J = 13.9 Hz, 1H, H-4), 6.71 (br s, 1H, NH), 7.23
(br s, 1H, NH), 7.55 (m, 2H, H-meta), 7.66 (m, 1H, H-para),
7.99 (m, 2H, H-ortho). 13C NMR d: 23.96 (t, C-2 and C-6),
28.77 (t, C-3 and C-5), 42.10 (d, C-1), 69.64 (d, C-4),
128.76 (d, C-meta), 129.06 (d, C-ortho), 130.38 (s, C-ipso),
133.20 (d, C-para), 165.01 (s, OCOPh), 176.78 (s, CONH2).

cis-2b
1H NMR d: 1.27 (m, 1H, H-6a), 1.37 (m, 1H, H-4a), 1.38

(m, 1H, H-5a), 1.52 (d,J = 12.2 Hz, 1H, H-2a), 1.74 (m, 1H,
H-6b), 1.86 (m, 1H, H-5b), 2.01 (m, 1H, H-4b), 2.08 (m,S J =
23.6 Hz, 1H, H-2b), 2.30 (dd,J = 3.5, 11.9 Hz, 1H, H-1),
4.88 (dd,J = 4.4, 11.0 Hz, 1H, H-3), 6.73 (br s, 1H, NH),
7.25 (br s, 1H, NH), 7.52 (m, 2H, H-meta), 7.65 (m, 1H,
H-para), 7.95 (m, 2H, H-ortho). 13C NMR d: 23.07 (t, C-5),
28.19 (t, C-6), 31.01 (t, C-4), 34.33 (t, C-2), 41.97 (d, C-1),
72.92 (d, C-3), 128.71 (d, C-meta), 129.10 (d, C-ortho),
130.13 (s, C-ipso), 133.22 (d, C-para), 165.11 (s, OCOPh),
175.75 (s, CONH2).

trans-3b
1H NMR d: 1.01–1.24 (m, 3H, H-3a, H-4a, H-5a), 1.27

(m, 1H, H-6a), 1.54–1.72 (m, 3H, H-4b, H-5b, H-6b), 1.81
(m, 1H, H-3b), 1.94 (ddd,J = 3.7, 9.8, 12.2 Hz, 1H, H-1),
3.46 (m, 1H, H-2), 4.57 (d,J = 5.1 Hz, 1H, OH), 6.61 (br s,
1H, NH), 7.13 (br s, 1H, NH).13C NMR d: 24.39 (t, C-4),
24.84 (t, C-5), 28.73 (t, C-6), 35.16 (t, C-3), 52.10 (d, C-1),
69.80 (d, C-2), 176.67 (s, CONH2).

trans-4b
1H NMR d: 1.42 (m, 1H, H-3a), 1.50–1.64 (m, 3H, H-4a,

H-4b, H-5a), 1.68–1.83 (m, 2H, H-3b, H-5b), 2.39 (m, 1H,
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H-1), 4.08 (m, 1H, H-2), 6.67 (br s, 1H, NH), 7.20 (br s, 1H,
NH). 13C NMR d: 22.50 (t, C-4), 27.90 (t, C-5), 34.96 (t,
C-3), 53.01 (d, C-1), 75.42 (d, C-2), 176.54 (s, CONH2).
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