AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by UOW Library

Phenolics from Durian Exert Pronounced NO Inhibitory and Antioxidant Activities

Jianying Feng, Yihai Wang, Xiaomin Yi, Weimin Yang, and Xiangjiu He

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.6b01580 • Publication Date (Web): 09 May 2016

Downloaded from http://pubs.acs.org on May 18, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. Phenolics from Durian Exert Pronounced NO Inhibitory and Antioxidant Activities

Jianying Feng, Yihai Wang,* Xiaomin Yi, Weimin Yang, Xiangjiu He*

School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China

* Corresponding author:

Dr. Xiangjiu He (Tel/Fax: 86-20-3935-2132, E-mail: hexiangjiu@163.com);

Dr. Yihai Wang (Tel: 86-20-3935-2140, E-mail: wangyih88@163.com)

1 ABSTACT

Durian, known as the king of fruits, is native to Southeast Asia and popular in many 2 3 countries. Bioactivity-guided fractionation of the peel of durian was applied to determine its bioactive constituents. Four novel phenolics, along with sixteen known, 4 5 were purified and identified. Four novel phenolics were elucidated to be durianol A (1), durianol B (2), durianol C (3) and 5'-methoxy-7'-epi-jatrorin A (4), respectively. 6 7 The novel compounds were elucidated to be durianol A(1), durianol B(2), durianol C(3) and 5'-methoxy-7'-epi-jatrorin A (4), respectively. The antioxidant and NO 8 inhibitory activities were evaluated for the isolated phenolics. Some phenolics showed 9 10 significant antioxidant activity in DPPH and superoxide anion radical scavenging 11 capacity assay. Most of the phenolics revealed pronounced inhibitory effects on NO 12 production in murine RAW 264.7 cells induced by LPS, which showed more potent NO inhibitory activity compared to indomethacin. The results strongly demonstrated 13 14 that the phenolics may be partially responsible for durian's NO Inhibitory activity. KEYWORDS: durian, Durio zibethinus, phenolics, antioxidant, NO inhibitory 15 16 activity

17 **INTRODUCTION**

Known as the king of fruits, durian is native to Southeast Asia and popular in many 18 19 countries including China, Thailand, and Malaysia. Several kinds of wild Durio species produce edible fruits, and only D. zibethinus Murr. is cultivated in large 20 quantities in Southeast Asia and China. The durian fruit is in round or oval shape, 21 about the size of a coconut. The peel of them is thorny, with a color from yellowish to 22 dark yellow.¹ Durian is an argumentative fruit and some people regard the durian as 23 having a pleasantly sweet fragrance, others find the aroma overpowering and 24 25 revolting. However, durian fruit is rich in nutrients of carbohydrates, protein and also contains sufficient vitamins B and C. In addition to eaten raw, its attractive flesh is 26 frozen or dried for a popular snack. Previous chemical studies on Durio have resulted 27 in the identification of triterpenoids, phenolics, lignans, coumarins, flavonoids, 28 sulphur-containing compounds and some uncommon esters.²⁻⁵ In spite of the abundant 29 30 secondary metabolites in durian, few research has been concerned with the bioactive constituent in durian, especially in its peel that has currently been treated as 31 32 agricultural waste.

Studies of epidemiology have revealed that high fruit consumption was beneficial to prevent chronic diseases of atherosclerosis, cancer, diabetes and coronary heart diseases.⁶ Anti-cytokines and antioxidants in fruits showed the potential to reduce the probability of above diseases to improve human health.⁷ In the process of seeking effective bioactive components from medicinal plants, fruits and vegetables ⁸⁻¹⁰, detailed phytochemical characterization of phenolics in the peel of durian were conducted, and four new along with sixteen known phenolics were isolated and
identified in this study. The potent anti-inflammatory and antioxidant activities of the
isolated components were also evaluated *in vitro*.

42

43 MATERIALS AND METHODS

44 General Apparatus and Chemicals. PerkinElmer 100 IR spectrometer (Perkin Elmer Inc., Waltham, MA, USA) was used to scan IR spectra with KBr and Bruker 45 46 AVANCE III-500 NMR spectrometer (Bruker Inc., Fällanden, Switzerland) was 47 applied in obtaining NMR spectra. High-resolution ESI-MS (HR-ESI-MS) data were acquired on a Waters AQUITY UPLC/Q-TOF mass spectrometer (Milford, MA, 48 USA). Preparative HPLC was performed with a Rainin HPLC system (Rainin 49 50 Instrument Co. Inc., Woburn, MA, USA), including a Rainin pump, a Rainin UV 51 Absorbance detector of Model UV-D II and a Cosmosil HPLC column (5C18-MS-II, 52 10ID×250 mm, Nacalai Tesque, Kyoto, Japan). Silica gel (200-300 mesh and 300-400 53 mesh) was obtained from Anhui Liangchen Silicon Material Co. Ltd. (Lu'an, China). 54 ODS (40-60 µm, Merck KGaA, Darastadt, Germany) was used for medium pressure 55 liquid chromatography (MPLC). Methanol for HPLC was purchased from Oceanpak 56 Chemical Co. (Gothenburg, Sweden). (S)-(+)-2-Methylbutyric acid (Acoros organics, 57 Belgium) were used for HPLC analysis, which was applied with Waters 600 and Waters 996 Photodiode Array Detector (Milford, MA, USA). Sugar reagents for 58 59 GC/MS analysis were product of Sigma (St. Louis, MO, USA). A Varian CP-3800 GC (Varian Inc., Palo Alto, CA, USA) was applied for sugar analysis. 60

- Plant Material. The peels of durian were collected in Sep. 2014 from the local fruit markets of Guangzhou (Guangzhou, China) and the species was identified by Prof. X. J. He of Guangdong Pharmaceutical University. A voucher specimen (No. GDPU-NPR-201403) was deposited in the Lead Compounds Laboratory, School of Pharmacy, Guangdong Pharmaceutical University.
- 66

67 Extraction and Isolation Procedure. The clean, air-dry peels of durian (20 kg) 68 were extracted with 70% EtOH for four times at reflux, and the combined filtrate was concentrated under vacuum at 55 °C. The obtained extract was suspended in 15 L 69 distilled water and extracted with cyclohexane, chloroform, ethyl acetate and 70 71 n-butanol successively. All fractions were tested in DPPH radical-scavenging capacity 72 assay and NO inhibitory assay. The chloroform and ethyl acetate fractions were found to exhibit preferable activities with IC₅₀ of 195.43 \pm 17.10 and 230.38 \pm 15.13 µg/ml in 73 DPPH assay, and with IC₅₀ of 32.98 ± 2.85 and 28.70 ± 1.35 µg/ml in NO inhibitory 74 75 assay. Therefore, the fractions of chloroform and ethyl acetate were selected for 76 further purification. The chloroform fraction (50 g) was divided to ten fractions (A1-A10) by a preliminary isolation of a silica gel column (CHCl₃/MeOH, 100:0 to 77 78 0:100, v/v). The part of A6 (8 g) was isolated by silica gel (CHCl₃/MeOH, 80:20 to 79 0:100, v/v), ODS MPLC (MeOH/H₂O, 10:90 to 100:0, v/v), Sephadex LH-20 (cyclohexane/CHCl₃/MeOH, 5:5:1, v/v/v) column chromatography to get compounds 80 81 1 (3 mg), 8 (23 mg) and 9 (7 mg). Fraction A9 (5 g) was subjected to an ODS MPLC and preparative HPLC (MeOH/H₂O, 60:40, v/v) to obtain compounds 2 (11 mg), 7 (6 82

mg), and 14 (3 mg). Fraction A5 (8 g) was separated by silica gel (CHCl₃/

83

84	CH ₃ COCH ₃ , 80:20 to 0:100, v/v), ODS MPLC (MeOH/H ₂ O, 10:90 to 100:0, v/v),
85	Sephadex LH-20 (C_6H_{12} /CHCl ₃ /MeOH, 5:5:1, v/v/v) column chromatography, and
86	finally subjected to a preparative HPLC to get compound 10 (33 mg). Compounds 6
87	(4.3 mg, MeOH/H ₂ O, 50:50, v/v) and 11 (5 mg, MeOH/H ₂ O, 70:30, v/v) were
88	obtained from Fraction A4 through preparative HPLC. Compounds 12 (1.8 mg) and
89	15 (3 mg) were purified by preparative HPLC from Fraction A9 using 30% and 70%
90	methanol as mobile phase, respectively.
91	The ethyl acetate fraction (68 g) was subjected to a silica gel column
92	(CHCl ₃ /MeOH, 100:0 to 0:100, v/v) to give 8 fractions (B1-B8). Fraction B6 was
93	isolated by ODS column (MeOH/H ₂ O, 10:90 to 100:0, v/v), and compounds 3 (4 mg),
94	4 (2 mg), 18 (6 mg), and 20 (5.7 mg) were obtained by preparative HPLC
95	(MeOH/H ₂ O, 80:20, v/v). Compound 5 (3 mg) was purified from fraction B3 (2.9 g).
96	Compounds 16 (13 mg) and 17 (22 mg) were obtained by preparative thin layer
97	chromatography (pTLC) (CHCl ₃ /CH ₃ COCH ₃ /MeOH, 6:2:1, v:v:v) from fraction B7.
98	Compound 19 (3 mg) was isolated by silica gel, Sephadex LH-20, ODS MPLC and
99	preparative HPLC from fraction B4 using 70% methanol as mobile phase.
100	Durianol A (1): $[\alpha]_{D}^{15}$: -13.9 (c 0.1, MeOH); UV (MeOH) λ_{max} 216, 290, 340 nm; IR
101	(KBr) v _{max} 3483, 2975, 2940, 2883, 1724, 1616, 1569, 1510, 1454, 1425, 1380, 1276,
102	1243, 1194, 1123, 1072, 1013, 920, 881, 833, 755, 682, 624, 581, 511 cm ⁻¹ ; ¹ H and
103	13 C NMR data, see Table 1; HR-ESI-MS m/z 461.1407 [M+Na] ⁺ (calcd. for
104	C ₂₁ H ₂₆ O ₁₀ Na, 461.1424).

105	Durianol B (2): $[\alpha]_{D}^{15}$: -6.8 (c 0.1, MeOH); UV (MeOH) λ_{max} 204, 249, 289 nm; IR
106	(KBr) v _{max} 3368, 2963, 2676, 1729, 1705, 1606, 1520, 1463, 1432, 1384, 1283, 1188,
107	1066, 1023, 880, 762, 723, 615, 519 cm ^{-1} ; ¹ H and ¹³ C NMR data, see Table 1;
108	HR-ESI-MS m/z 437.1443 $[M+Na]^+$ (calcd. for $C_{19}H_{26}O_{10}Na$, 437.1424).
109	Durianol C (3): $[\alpha]_D^{15}$: -7.0 (c 0.1, MeOH); UV (MeCN) λ_{max} 240, 286 nm; IR (KBr)
110	v_{max} 3413, 2971, 1694, 1604, 1511, 1425, 1242, 1181, 1074, 1024, 832, 631 cm ⁻¹ ; ¹ H
111	and ${}^{13}C$ NMR data, see Table 1; HR-ESI-MS m/z 411.1684 [M + H] ⁺ (calcd. for
112	C ₂₀ H ₂₇ O ₉ , 411.1655).
113	5'-Methoxy-7'-epi-jatrorin A (4): $[\alpha]_D^{15}$: -10.2 (c 0.12, MeOH); UV (MeOH) λ_{max}
114	210, 309 nm; IR (KBr) v _{max} 3427, 2925, 2853, 1685, 1619, 1573, 1524, 1500, 1468,
115	1425, 1384, 1325, 1208, 1207, 842, 802, 724, 602 cm ^{-1} ; ¹ H and ¹³ C NMR data, see
116	Table 1; HR-ESI-MS m/z 425.0854 $[M + Na]^+$ (calcd. for C ₂₀ H ₁₈ O ₉ Na, 425.0849).
117	
118	DPPH Radical-Scavenging Capacity Assay. DPPH assay were applied to evaluate
119	antioxidant activities. The procedure of which were determined by reported method. ¹¹
120	Briefly, DPPH solution (in methanol, 50 mg/L, 995 μ L) was mixed with 5 μ L of each

of tested sample. The samples were dissolved in DMSO. The solution system wasshaken and reacted at room temperature in the dark for 30 min. The absorbance was

measured at 517 nm. Gallic acid and ascorbic acid were used as positive control.

124

Superoxide Anion Radical Scavenging Capacity Assay. The antioxidant of superoxide anion scavenging capacity of the isolated phenolics were evaluated

according to a described procedure with some modifification.¹² The 1000 μ L reaction 127 mixture contained 445 µL Tris-HCl (pH 8.1, 50 mM), 250 µL NADH (0.15 mM), 50 128 129 μ L PMS (0.03 mM), 250 μ L NBT (0.10 mM) and 5 μ L tested sample. All tested 130 samples were dissolved in Tris-HCl (50 mM, pH 8.1). The reaction was conducted for 131 5 min at 37 °C, and initiated by the addition of PMS. Gallic acid and ascorbic acid 132 were used as positive control. The radical scavenging capacity was calculated in the 133 way: scavenging activity (%) = $(B_1 - B_2)/B_1 \times 100$, B_1 , B_2 are the absorbance of the 134 blank and sample at 546 nm.

135

Nitric Oxide Inhibitory Assay. Macrophage RAW264.7 cells were cultured in DMEM containing 10% FBS, 100 units/mL penicillin and 100 μ g/mL streptomycin at 37 °C with a humid atmosphere of 5% CO₂/95% air. NO produced in the medium was measured by assaying the levels of NO₂⁻ via the Griess reaction.¹³

140

141 Acid Hydrolysis and GC Analysis of Sugars. The acid hydrolysis and GC analysis were applied to determine the chirality of the sugars of new phenolic 142 143 glycosides. Compounds 1–3 (1.5 mg) were heated for 3 h at 90 °C in ampoule with 5 144 mL 2 M HCl. Then the residue was evaporated under vacuum at 55 °C after extracted 145 with EtOAc. The residue was dissolved in 600 μ L pyridine and 5 mg NH₂OH·HCl was added. Then the system was heated at 90 °C for half hour. 300 µL Ac₂O was 146 147 added to the mixture when the system cooled to room temperature. After 148 homogenized, the mixtures were heated at 90 °C for 1 h. The reaction mixtures were

analyzed by GC using standard aldononitrile peracetates as reference samples aftercooling.

151

152 Identification of (2S)-Methyl Butanoic Acid. The unit of (2S)-methyl butanoic acid in molecule was confirmed by a described procedure.¹⁴ Compounds 1, 2, 3 (2.0 153 154 mg) were dissolved in 2 mL 5% KOH-H₂O and refluxed for 3 h. The reactant was 155 acidified to pH 4.0 with 4.0 M HCl and then extracted with CHCl₃ for three times. 156 Then 2.0 mg N, N-dimethyl-4-aminopyridine was added after the aqueous fraction 157 was washed, dried in vacuum. The mixture was dissolved in 1.0 mL CHCl₃. Then 158 10.0 µL (R)-1-phenylethanol and 15.0 mg N, N'-dicyclohexylcarbodiimide were 159 added after the mixtures cooled to 0 °C in ice bath. The system was reacted at 0 °C for 160 20 min and at room temperature for 15 h, and then filtrated. The filtrate was washed 161 with water $(4 \times 1 \text{ mL})$ and the reactant was analyzed by HPLC at following 162 chromatographic conditions: column RP-18e (5 μ m), detector wavelength at 210 nm, 163 column temperature at 35 °C, with mobile phase of 65% MeOH-H₂O at flow rate of 164 1.0 mL/min. The retention time of (R)-1-phenylethyl-(S)-2-methylbutanoate was 165 17.90 min, which with of the same standard was 166 (R)-1-phenylethyl-(S)-2-methylbutanoate (t_R 17.90 min). Reference substance was 167 obtained from (R)-1-phenylethanol and (S)-2-methylbutanoic acid by the same 168 method.

169 **RESULTS AND DISCUSSION**

Structural Elucidation of Phenolics. In this study, peels of durian were collected,
dried and extracted with 70% ethanol. The obtained extract was then successively
partitioned with different solvents and repeatedly chromatographed on silica gel,
Sephadex LH-20, ODS MPLC and RP-HPLC to give four new phenolics, as well as
sixteen known congeners (Figure 1).

175

176 Compound 1 was purified as a bright white powder. The molecular formula of $C_{21}H_{26}O_{10}$ was deduced according to its HR-ESI-MS at m/z 461.1407 [M+Na]⁺ (calcd. 177 for $C_{21}H_{26}O_{10}Na$, 461.1424), which could be confirmed through its ¹H-NMR and 178 179 ¹³C-NMR. The maximum absorption peak at 340 and 216 nm in UV, and the strong absorption at 1724 cm^{-1} in IR, indicated that compound 1 was a coumarin derivative. 180 181 The deduction was further verified by the proton signals at $\delta_{\rm H}$ 6.32 (1H, d, J = 9.5 Hz, H-3) and 7.95 (1H, d, J = 9.5 Hz, H-4) in ¹H-NMR, which coincided with the 182 character of coumarin. Two characteristic singlet signals at $\delta_{\rm H}$ 7.14 (1H, s) and 7.30 183 184 (1H, s) suggested the positions of C-6 and C-7 were substituted in coumarin. 185 Moreover, the ¹H-NMR spectrum revealed a glucosyl anomeric proton at $\delta_{\rm H}$ 5.18 (1H, 186 d, J = 7.3 Hz), a methoxyl group at $\delta_{\rm H} 3.78$ (3H, s) and the protons of 2-methylbutyric 187 acid in the higher field. The deduced fragments were linked by the correlations in HMBC, which were showed in Figure 2. The sugars were determined as D-glucose by 188 189 GC analysis of their chiral derivatives after acid hydrolysis. In the NOESY spectrum, 190 the main correlations approved the relative configuration of compound 1. The

191

absolute configuration of (S)-2-methyl butyrate was determined by the standard

192	substance after derivatization according to the protocol described in the experimental
193	section. ¹⁴ Based on above analyses, compound 1 was elucidated to be
194	6-methoxy-7-O- β -D- [6-(S)-2-methylbutanoyl-glucopyranosyl]-coumarin, and named
195	as durianol A. The full assignments of its NMR data were shown in Table 1.
196	Compound 2 was obtained as bright needle crystals. The molecular formula of
197	$C_{19}H_{26}O_{10}$ was deduced on the basis of HR-ESI-MS m/z 437.1443 $\left[M+Na\right]^+$ (calcd.
198	for $C_{19}H_{26}O_{10}Na$, 437.1424). The IR spectrum suggested the presence of hydroxyl
199	(3368 cm ^{-1}), alkyl (2963 cm ^{-1}), carbonyl (1705 cm ^{-1}), and aromatic ring (1606 and
200	1520 cm ⁻¹) functionalities. The ¹ H-NMR spectrum showed typical signals for 1, 3,
201	4-trisubstituted benzene at $\delta_{\rm H}$ 7.48 (1H, d, $J = 9.1$ Hz), 7.47 (1H, br. s) and 7.13 (1H,
202	d, $J = 9.1$ Hz) with a typical ABX spin system. The signal at $\delta_{\rm H}$ 3.80 (3H, s) was a
203	methoxyl linked to an aromatic ring. The NMR spectrum of 2 showed an anomeric
204	proton signal at $\delta_{\rm H}$ 5.08 (1H, d, J = 7.5 Hz), corresponding to an anomeric carbon at
205	$\delta_{\rm C}$ 99.2 in the spectrum of HSQC. That indicated the presence of a sugar moiety
206	which was identified as D-glucose by above GC analysis. And its coupling constants
207	$(J = 7.5 \text{ Hz})$ exposed the β -anomeric configuration. In the higher filed of ¹ H-NMR,
208	the isobutyl signal was evident, which was further inferred as 2-methyl butyric acid
209	on the basis of signal of carbonyl in the ¹³ C-NMR. Therefore, the molecule of
210	compound 2 was consisted of three parts, a β -glucopyranosyl, a 3-hydroxyanisic acid
211	and a 2-methyl butyric acid. The 2D-NMR, including HSQC and HMBC, were
212	applied to elucidate the structure of 2. In HMBC, the correlations from H-1' to C-4,

213 from the two protons of H-6' to C-1" provided the mutual connection positions of 214 three fragments, which the key correlations were shown in Figure 2. In the NOESY 215 spectrum, the main correlations approved the relative configuration of compound 2. 216 The absolute configurations of D-glucose and (S)-2-methyl butyrate were determined 217 by GC and HPLC analyses of their relevant derivatives. Combined with the above 218 analyses, compound 2 was elucidated to be 3-methoxy-4-O- β -D-[6-(S)-2-219 methylbutanoyl-glucopyranosl] benzoic acid, and named as durianol B. The full 220 assignments of its NMR data were shown in Table 1.

The IR spectrum compound **3** suggested the presence of hydroxyl (3413 cm^{-1}), 221 alkyl (2971 cm⁻¹), carbonyl (1694 cm⁻¹), and aromatic ring (1604 and 1511 cm⁻¹) 222 223 functionalities. The molecular formula of $C_{20}H_{26}O_9$ was verified on the basis of HR-ESI-MS m/z 411.1684 $[M+H]^+$ (calcd. for C₂₀H₂₇O₉, 411.1655). The ¹H-NMR 224 225 spectrum showed characteristic proton signals for 1, 4-disubstitued benzene at $\delta_{\rm H}$ 7.61 (2H, d, J = 8.3 Hz) and 7.03 (2H, d, J = 8.3 Hz) in a typical A₂B₂ spinning system. 226 The signals at $\delta_{\rm H}$ 7.54 (H, d, J = 15.9 Hz) and 6.40 (H, d, J = 15.9 Hz) were a pair of 227 228 oleafic group in *trans* configuration. The sugar obtained from the hydrolysate was 229 identified as D-glucose by GC analysis of their chiral derivatives. The anomeric 230 configuration of glucose was determined to be β -configuration by the coupling 231 constants of the anomeric proton at $\delta_{\rm H}$ 4.99 (1H, d, J = 7.4 Hz). In the high filed of 232 ¹H-NMR, the isobutyl signal was evident and it was further inferred as 2-methyl butyric acid on the basis of signal of carbonyl in the ¹³C-NMR. Therefore, three 233 234 fragments could be deduced in the molecule, which were β -D-glucopyranosyl, a

235	trans-cinnamic acid and a 2-methyl butyric acid. The 2D-NMR including HSQC and
236	HMBC data were applied to prove the connections of the deduced fragments. The
237	correlations from H-1' to C-4, from the two protons of H-6' to C-1" confirmed the
238	mutual connection position of three fragments in HMBC. Other key correlations in
239	HMBC were showed in Figure 2. In the NOESY spectrum, the main correlations
240	approved the relative configuration of compound 3. The fragment of (S) -2-methyl
241	butyrate was confirmed by standard substance after derivatives. From these results,
242	compound 3 was established as 4-O- β -D-[6-(S)-2-methylbutanoyl]-glucopyranosyl
243	cinnamic acid, and named as durianol C.
244	Compound 4 was isolated as a pale-yellow oily matter. The molecular formula of
245	$C_{20}H_{18}O_9$ was verified on the basis of HR-ESI-MS at m/z 425.0854 [M+Na] ⁺ (calcd.
246	for $C_{20}H_{18}O_9Na$, 425.0849), which could also be confirmed through ¹ H- and
247	¹³ C-NMR. The UV maximum absorption at 309 and 210 nm, and the absorption of IR
248	at 1685 cm^{-1} suggested that it was a coumarin derivative. The characteristic was
249	confirmed by the obvious signals $\delta_{\rm H}$ 6.27 (H-3) and 7.91 (H-4) with coupling
250	constants of 9.5 Hz in the ¹ H-NMR spectrum. Meanwhile, there was found two
251	coincident proton signals at $\delta_{\rm H}$ 6.76 indicating a symmetric benzene ring when
252	combined its ¹³ C-NMR data. The deduction was determined by the long-range
253	correlations between H-2'/6' and C-3'/5', C-1', C-4' in spectrum of HMBC. The other
254	signals were a fragment with three O-bearing carbons. The above data were
255	coincident with the reported data of cleomiscosins. ¹⁵ The structure of compound 4
256	was deduced by its ¹ H- ¹ H COSY and HMBC experiment (Figure 2). Its relative

257	configuration was determined using the NOESY spectrum. The correlations in
258	NOESY (Figure 3) were observed for H-7'/H-8' with coupling constants of 7.9 Hz in
259	the ¹ H-NMR spectrum suggested that these protons lie on one face of the molecule
260	with a <i>trans</i> configuration. In view of the optical activity $[\alpha]_D^{15} = -10.2$ (c 0.12, MeOH)
261	of compound 4 , it was concluded to be a single enantiomer and its absolute
262	configuration was opposite with 8'-epi-cleomiscosin. ¹⁶ Owing to these observations
263	and ¹ H-NMR, ¹³ C-NMR data shown in the Table 1, compound 4 was elucidated to be
264	5'-methoxy-7'-epi-jatrorin A. The long-range correlations between H-7' and C-7 were
265	extreme weak in HMBC. Fortunately, it existed a pattern that C-7 shifted to high field
266	and C-8 shifted to low field when the connection mode converted from C-7'– C-7 to
267	C-8'-C-7. ¹⁷ Based on above analyses, compound 4 was elucidated to be
268	5'-methoxy-7'-epi-jatrorin A, which was a novel compound as far as we knew.
269	The sixteen known compounds were confirmed as propacin (5) , ¹⁸ jatrocin A (6) ,
270	cleomiscosin A (7), ¹⁹ cleomiscosin B (8), ¹⁹ propacin isomer (9), ²⁰ 7-hydroxycoumarin
271	(10), ²¹ scopoletin (11) , ²¹ fraxetin (12) , ²² fraxidin (13) , ²² 3,4-dihydroxybenzoic acid
272	(14), ²³ 4-hydroxy-3-methoxybenzoic acid (15) , ²³ ethyl protocatechuate (16) , ²⁴
273	3,4-dihydroxybenzaldehyde (17) , ²⁵ evofolin-B (18) , ²⁶ 2-hydroxy-8 α -
274	hydroxycalamenene (19), ²⁷ α -conidendrin (20) ²⁸ by comparing spectroscopic data

with the reported compounds in literature.

276

277 Antioxidant Activity. The DPPH and PMS/NADH-NBT assays were applied to 278 evaluate the antioxidant activities. Ascorbic acid and gallic acid were used as positive

279	control for their efficient antioxidant and widely used in food and medicinal industry.
280	In the DPPH assays (Table 2), compound 13 exhibited stronger activity with IC_{50} of
281	7.83±1.00 μ M than Gallic acid (19.10±2.23 μ M) and ascorbic acid (10.21±1.45 μ M).
282	Other phenolics showed weaker antioxidant activity by comparing with the controls.
283	It was noteworthy that compound 16 (ethyl protocatechuate), showed more potent
284	antioxidant capacity. Only few compounds (such as 13) showed pronounced activity
285	in the PMS/NADH-NBT assay (Table 2).

286

NO Inhibitory Activity. NO is a signal transmission molecule that act as a crucial 287 288 role in immune and inflammatory responses and neuronal transmission for brain. The 289 inhibitors of NO production had potential to turn into anti-inflammatory agents. The 290 isolates were tested on Abelson murine leukemia virus-induced tumor (RAW 264.7) 291 where NO production originated in the stimulation of LPS. And the Griess reaction 292 was applied to quantify the effect of evaluation. Indomethacin (IC₅₀ 47.4 μ M), a 293 typical and common non-steroidal anti-inflammatory agent, was selected as positive 294 control. Most of the tested compounds showed obvious inhibitory effects on NO 295 production compared to indomethacin, and the result were exhibited in Table 3. 296 Among them, Compounds 8, 13, and 16 showed significant inhibitory activity with 297 IC_{50} values below 10 μ M, with the values of 3.56, 3.70 and 7.29 μ M, respectively. It 298 was noteworthy that compound 8 possessed pronounced inhibitory activity, while 299 compound 7 was weak. It could infer that the coumarinoligan with an aromatic moiety 300 close to the C-8 position, showed more potent effects on NO inhibitory activity.

301	Meanwhile, the most of the tested compounds from durian had less IC_{50} values than
302	positive control. The MTT assay was applied to evaluated cytotoxicity of the isolated
303	phenolics to RAW 264.7 cells. The results showed that most of the tested isolates
304	exhibited no cytotoxic effect at effective concentration.
305	
306	In conclusion, twenty phenolics, including four novels, were purified and identified
307	from durian. Some phenolics showed potent antioxidant and NO inhibitory activities.
308	The results strongly demonstrated the phenolics isolated from durian may be partially
309	responsible for its NO inhibitory activity.
310	
311	Funding
312	This research was supported by Guangdong natural science foundation (No.
313	2014A030313588), the project of Guangdong provincial department of science and
314	technology (2015A020211027) and the national natural science foundation of China
315	(No. 81573303).
316	
317	Notes
318	The authors declare no competing financial interest.
319	
320	REFERENCES
321	(1) Li, J. X.; Schieberle, P.; Steinhaus, M. Characterization of the major odor-active
322	compounds in Thai durian (Durio zibethinus L. 'Monthong') by aroma extract dilution

16 ACS Paragon Plus Environment

323		analysis and headspace gas chromatography-olfactometry. J. Agric. Food Chem. 2012,
324		60, 11253-11262.
325	(2)	Rudiyansyah and Mary J. G. Secondary metabolites from the wood bark of Durio
326		zibethinus and Durio kutejensis. J. Nat. Prod. 2006, 69, 1218-1221.
327	(3)	Rudiyansyah; Lynette, K. L.; Mary, J. G. Lignans and triterpenes from the bark of Durio
328		carinatus and Durio oxleyanus. J. Nat. Prod. 2010, 73, 1649–1654.
329	(4)	Liu, Y. C.; Feng, S. B.; Song, L. X.; He, G. Y.; Chen, M. J.; Huang, D. J. Secondary
330		metabolites in durian seeds: Oligomeric proanthocyanidins. Molecules 2013, 18,
331		14172-14185.
332	(5)	Naf, R. and Velluz, A. Sulphur compounds and some uncommon esters in durian (Durio
333		zibethinus Murr.). Flavour Frag. J. 1996, 11, 295-303.
334	(6)	Zineb, G.; Boukouada, M.; Djeridane, A.; Saidi, M.; Yousfi, M. Screening of antioxidant
335		activity and phenolic compounds of various date palm (Phoenix dactylifera) fruits from
336		Algeria. Mediterr. J. Nutr. Metab. 2012, 5, 119-126.
337	(7)	Iqbal, S.; Bhanger, M. I.; Anwar, F. Antioxidant properties and components of bran
338		extracts from selected wheat varieties commercially available in Pakistan. LWT-Food
339		Sci. Technol. 2007, 40, 361-367.
340	(8)	Qiao, A. M.; Wang, Y. H.; Zhang, W. W.; He, X. J. Neuroprotection of brain-targeted
341		bioactive dietary artoindonesianin O (AIO) from mulberry on rat neurons as a novel
342		intervention for Alzheimer's Disease. J. Agric. Food Chem. 2015, 63, 3687-3693.
343	(9)	Wang, Y. H.; Xiang, L. M.; Wang, C. H.; Tang, C.; He, X. J. Antidiabetic and
344		antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol

- 345 enhanced extract. *PLoS One* **2013**, *8*, e71144.
- 346 (10) He, X. J.; Liu, R. H. Triterpenoids isolated from apple peels have potent antiproliferative
- 347 activity and may be partially responsible for apple's anticancer activity. J. Agric. Food
- 348 *Chem.* **2007**, *55*, 4366-4370.
- 349 (11) Zeng, X. B.; Wang, Y. H.; Qiu, Q.; Jiang, C. G.; Jing, Y. T.; Qiu, G. F.; He, X. J.
- Bioactive phenolics from the fruits of *Livistona chinensis*. *Fitoterapia* 2012, *83*,
 104-109.
- 352 (12) Valentao, P.; Fernandes, E.; Carvalho, F.; Andrade, P. B.; Seabra, R. M.; Bastos, M. L.
- Antioxidant activity of *Centaurium erythraea* infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. *J. Agric. Food Chem.* 2001, 49, 3476-3479.
- 356 (13) Miranda, K.; Espey, M.; Wink, D. A rapid, simple spectrophotometric method for
- 357 simultaneous detection of nitrate and nitrite. *Nitric Oxide* **2001**, *5*, 62-71.
- 358 (14) Luyen, B. T. T.; Tai, B. H.; Thao, N. P.; Cha, J. Y.; Lee, H. Y.; Lee, Y. M.; Kim, Y. H.
- Anti-inflammatory compounds of *Chrysanthemum indicun* flowers. *Bioorg. Med. Chem. Lett.* 2015, *25*, 266-269.
- 361 (15) Yang, J. H.; Liu, W. Y.; Li, S. C.; Ye, H. Y.; Tang, H.; Chen, L. J.; Peng, A. H.
- 362 Coumarinolignans isolated from the seeds of *Brucea javanica*. *Helv. Chim. Acta.* 2014,
 363 97, 278-282.
- 364 (16) Viqar, U. A.; Farman, U.; Javid, H.; Umar, F.; Muhammad, Z.; Mahmud, T. H. K. and
- 365 Muhammad, I. C. Tyrosinase Inhibitors from *Rhodocdendron collectianum* and their
- 366 structure-activity relationship (SAR) studies. *Chem. Pharm. Bull.* **2004**, *52*, 1458-1461.

18

367 ((17)) Anna A.	; Alberto A.:	Lucio M. S	ynthests of	the natural	coumarinol	ignoids	propacin a	and
	• •									

- cleomiscosin A and B. an empirical spectroscopic method to distinguish regioisomers of
 natural benzodioxane lignoids. *Heterocycles* 1984, 22, 1537-1544.
- 370 (18) Ramesh, P.; Satya, S. K.; Kossi, H. K.; René, R. A chlorinated coumarinolignan from the
- 371 African medicinal plant, *Mondia whitei*. *Phytochemistry* **2005**, *66*, 683-686.
- 372 (19) Sajeli, A. B.; Mahendra, S.; Anil, B. R. Non-conventional lignans: coumarinolignans,
- flavonolignans and stilbenolignans. Prog. Chem. Org. Nat. Prod. 2010, 93, 1-70.
- 374 (20) Zoghbi, M. D. G. B.; Nídia F. R.; Otto R. G. Propacin, a coumarinolignoid from protium
- 375 *opacum. Phytochemistry* **1981**, *20*, 180.
- 376 (21) Sankar, S. S.; Gilbert, R. D.; Fornes, R. E. ¹³C NMR studies of some hydroxycoumarins
 377 and related compounds. *Org. Magn. Reson.* 1982, *19*, 222-224.
- 378 (22) Takaaki, Y.; Mai F.; Takahiro, N.; Ayumi, H.; K, O. Metabolic fate of fraxin
 379 administered orally to rats. *J. Nat. Prod.* 2006, *69*, 755-757.
- 380 (23) Mitsuo, M.; T, O.; Misaki, T.; Masayoshi, H. Suppression of chemical
- 381 mutagens-induced SOS response by phenolic acids from black rice bran using
- 382 salmonella typhimurium TA1535/pSK1002 umu test. J. Oleo Sci. 2003, 52, 471-481.
- 383 (24) Lu, Q. P.; Wang, J. S.; Kong, L. Y.; Chemical constituents from *Psychotria yunnanensis*
- and its chemotaxonomic study. *Biochem. Syst. Ecol.* **2014**, *52*, 20-22.
- 385 (25) Mao, H. L.; Zhan, Z. J.; Qian, J. Study on chemical constituents from *Breynia fruticose*.
- 386 *Chin. Tradit. Herb. Drugs* **2009**, *40*, 100-102.
- 387 (26) Wu, T. S.; Yeh, J. H.; Wu, P. L. The heart wood constituents of *Tetradium glabrifolium*.
- 388 *Phytochemistry* **1995**, *40*, 121-124.

- 389 (27) Joseph K. R.; Nikolaus H. F.; Marcus A. N.; Thomas J. S.; Dana K. B. Carbon-13
- 390 assignments and revision of the stereostructures of the cadinanes
- 391 2-hydroxy- 8α -angeloyloxycalamenenea and 2-hydroxy- 8α -hydroxycalamenene.
- 392 *Spectrosc. Lett.* **1996**, *29*, 799-818.
- 393 (28) Fu, Z. H.; Zhang, Y. M.; Tan, N. H.; Chu, H. B.; Ji, C. J. Chemical constituents of
- 394 *Keteleeria evelyniana. Nat. Prod. Res. Dev.* **2008**, *20*, 257-261.

	1		2		3	3		
no.	$\delta_{ m H}$	$\delta_{ m c}$	$\delta_{ m H}$	$\delta_{ m c}$	$\delta_{ m H}$	$\delta_{ m c}$	$\delta_{ m H}$	$\delta_{ m c}$
1				124.2		128.0		
2		160.4	7.47 s	112.7	7.61 d (8.3)	129.6		160.2
3	6.34 d (9.5)	113.4		148.5	7.03 d (8.3)	116.4	6.27 d (9.5)	113.1
4	7.97 d (9.5)	144.2		150.0		158.7	7.91 d (9.5)	144.8
5	7.30 s	109.7	7.13 d (9.1)	114.3	7.03 d (8.3)	116.4	6.67 s	104.0
6		145.9	7.48 d (9.1)	122.5	7.61 d (8.3)	129.6		143.1
7		149.6		167.0	7.54 d (15.9)	143.4		136.6
8	7.14 s	103.0			6.40 d (15.9)	117.1		131.8
9		148.8				167.6		136.8
10		112.3						111.5
1′	5.18 d (7.3)	99.1	5.08 d (7.5)	99.2	5.00 d (7.4)	99.7		125.9
2'	3.30-3.36	76.4	3.20-3.32	76.5	3.20-3.40	76.2	6.76 s	105.6
3'	3.30-3.36	72.9	3.20-3.32	72.9	3.20-3.40	73.0		148.0
4′	3.16 m	70.1	3.16 m	70.0	3.16 m	70.0		136.1
5'	3.77 m	73.8	3.65 m	73.9	3.66 m	73.8		148.0
6'	4.03 dd (11.8, 8.0)		4.02 dd (11.7, 7.6)		4.04 dd (11.6, 7.3)			
	4.33 dd (11.8, 1.8)	63.6	4.31 dd (11.7, 1.8)	63.5	4.33 d (11.6)		6.76 s	105.6
7′							4.97 d (7.9)	76.4
8'							4.33 m	77.8
9′							3.65 m, 3.27 m	59.9
1″		175.6		175.4		175.4		
2″	2.35 m	40.1	2.32 m	40.2	2.35 m	40.1		
3″	1.32 m,1.49 m	26.1	1.34 m, 1.51 m	26.2	1.38 m, 1.52 m	26.1		
4″	0.68 t (7.4)	11.1	0.76 t (7.4)	11.3	0.77 t (7.4)	11.2		
5″	1.02 d (7.0)	16.1	1.03 d (7.0)	16.1	1.05 d (6.9)	16.1		
-OMe	3.78 s	56.0	3.80 s	55.6			3.77 s	56.1

Table 1. NMR data of compounds 1–4 (δ in ppm and J in Hz) ^{a, b}

^a Measured in DMSO-*d*₆. ^b Assignments were based on HSQC, HMBC, and ¹H-¹H COSY experiments

	$IC_{50}^{b}(\mu M)$				
Compa.	DPPH	PMS/NADH-NBT			
6	568.50±6.28	_			
7	268.37±11.02	394.34±71.33			
8	807.22±18.66	_			
12	260.26±5.44	-			
13	7.83±1.00	11.4±1.44			
15	56.61±3.09	-			
16	23.82±0.54	870.07±63.28			
17	58.13±0.72	494.85±14.91			
19	1201.88±30.76	-			
20	90.97±2.10	-			
70% Ethanol exact of durian	372.08±73.02 °				
Chloroform fraction	195.43±17.10 °				
Ethyl acetate fraction	230.38±15.13 °				
n-Butanol fraction	392.06±85.04 °				
Ascorbic acid	10.21±1.45	54.12±8.31			
Gallic acid	19.10±2.23	83.29±14.22			

Table 2. Antioxidant activities of the phenolics from durian ^a

^a Data are represented as the mean value \pm SD, n=3; ^b The test concentrations ranged from 0 to

1500 μ M; ^cThe concentration units are μ g/ml.

_

Table 3. Inhibitory effects of the phenolics on NO production induced by LPS in

RAW 264.7

Compd.	IC ₅₀ (μΜ)	Correct	IC ₅₀ (μM)			
	NO Inhibitory Assay	MTT Assay	Compa.	NO Inhibitory Assay	MTT Assay		
1	36.32±1.39	>50.00	14	17.87±2.79	>50.00		
2	38.07±2.40	>50.00	15	31.53±2.24	>50.00		
3	41.26±0.44	>50.00	16	7.29±1.00	>50.00		
4	35.23±1.79	>50.00	17	16.03±2.98	>50.00		
5	>50.00	>50.00	18	>50.00	>50.00		
6	21.70±2.35	>50.00	19	32.91±0.74	>50.00		
7	28.88±2.08	>50.00	20	30.82±3.17	>50.00		
8	3.56±0.49	>50.00	70% Ethanol exact of durian	21.29±2.54 ^b	>50.00 ^b		
9	>50.00	>50.00	Chloroform fraction	32.98±2.85 ^b	>50.00 ^b		
10	30.28±3.56	>50.00	Ethyl acetate fraction	28.70±1.35 ^b	>50.00 ^b		
11	26.01±3.37	>50.00	n-Butanol fraction	33.06±1.12 ^b	>50.00 ^b		
12	28.15±3.94	>50.00	Indo ^a	47.40±4.50	>50.0		
13	3.70±1.75	>50.00					

^a Indomethacin, positive control;

 $^{\rm b}$ The concentration units are $\mu g/ml.$

Figure Captions

- Figure 1. Chemical structures of compounds 1-20 isolated from durian
- Figure 2. The selected key ¹H-¹H COSY and HMBC correlations of compounds 1–4
- Figure 3. The key NOESY correlations of compound 4

Figure 1

Figure 3

TOC Graphic

