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Methods for the synthesis of geometrically defined trisubstituted
olefins define a pillar of modern synthetic organic chemistry. From
a target-based perspective, these stereodefined structural motifs are
ubiquitous in natural products and molecules of biomedical and
physical relevance (Figure 1). From a reactivity-based perspective,

geometrically defined olefins serve as a foundation for stereose-
lective synthesis. These factors have driven the invention of a large
variety of chemical methods for the convergent synthesis of
stereodefined olefins. While many of these methods proceed from
carbonyl addition chemistry or alkyne functionalization, the use of
allylic alcohol derivatives in sigmatropic processes defines a
powerful means to access a subset of stereodefined polysubstituted
olefins.1 Of these, Claisen-based methods have been particularly
effective at establishing stereodefined (E)-trisubstituted olefins.
Here, we describe a metal-mediated reductive cross-coupling
reaction that defines a stereochemically complementary means of
converting allylic alcohols to products related to those derived from
Claisen rearrangement (Figure 2). While describing a unique
stereoselective transformation for complex molecule synthesis, this
study also defines a novel reductive cross-coupling reaction between
alkenes and allylic alcohols.2,3

Recently, we demonstrated that allylic alcohols are useful
substrates in titanium-mediated reductive cross-coupling reactions
with internal alkynes.4 In these reactions, 1,4-dienes result from
C-C bond formation between preformed titanium-alkyne com-
plexes and allylic alkoxides. While quite useful for the stereose-
lective synthesis of substituted 1,4-dienes, we wondered whether a

related reductive cross-coupling process could define a stereose-
lective convergent pathway to isolated di- and trisubstituted olefins.
To accomplish such a transformation, we targeted a reductive cross-
coupling reaction between allylic alcohols and vinylsilanes.5

Our initial studies, depicted in Figure 3, provided some hope
that the desired stereoselective transformation would be possible.
In general, the preformed lithium alkoxide of an allylic alcohol
was combined with vinyltrimethylsilane in Et2O, cooled, and treated
with the combination of ClTi(Oi-Pr)3 and C5H9MgCl (-78 to 0
°C).6 While cross-coupling of allylic alkoxides 1 and 4 with
vinyltrimethylsilane (2) provided cross-coupled products 3 and 5
in 58-66% yield, these reactions proceeded without stereoselection
(E/Z ) 1:1). In contrast, reductive cross-coupling of the (Z)-
disubstituted alkene 6 with 2 provided the (E)-alkene 7 in 64%
yield (E/Z ) 9:1). Highest levels of (E)-selectivity were observed
in the reaction of 8 with 2. This process provided 9 in 69% yield
with g20:1 selectivity; defining a stereoselective transformation
that also establishes a quaternary center.7

While the cross-coupling reaction of terminally substituted allylic
alcohols (i.e., 6 and 8) delivers stereodefined (E)-disubstituted
alkenes, the reaction of allylic alcohols bearing a 1,1-disubstituted
olefin proceeds in a stereochemically unique manner. Reductive
cross-coupling of 10 with 2 delivers 11 in 50% yield, with g20:1
selectivity, favoring the formation of the central stereodefined (Z)-
trisubstituted alkene. Similarly, the coupling of the trisubstituted
allylic alcohol 12 with 2 provides 13 in 65% yield (Z:E g 20:1).

While preliminary studies investigating the coupling of simple
acyclic- and cyclic alkenes with vinyltrimethylsilane indicate that
this reaction is flexible and stereoselective (Figure 3 and Table 1,
entries 1-3), we searched to identify a coupling partner that would
allow for facile oxidation of the C-Si bond resident in the products.
The combination of these two reactions, cross-coupling and
oxidation, would then define a means to access stereodefined
products related to those derived from Claisen rearrangment.1

Figure 1. Natural products possessing stereodefined (Z)-trisubstituted
alkenes.

Figure 2. A stereochemically unique method for the synthesis of stereo-
defined trisubstituted alkenes from allylic alcohols.

Figure 3. Preliminary study of stereoselection in reductive cross-coupling
of allylic alcohols with vinylsilanes.
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As illustrated in Figure 4, reductive cross-coupling of allylic
alcohols 6 and 12 with vinyldimethylchlorosilane5 (20) proceeds
in a stereoselective manner, and delivers the corresponding si-
lylethers 21 and 22 in 53% and 75% yield (E/Z ) 10:1 to g20:1).
Oxidation of the C-Si bond under standard conditions8 then
delivers the stereodefined unsaturated primary carbinol (i.e., 22f
23). While products like 23 could be derived from 12 by the
application of well-known Claisen rearrangement-based procedures,
the cross-coupling reaction described here has the potential to
deliver stereodefined products not readily accessible with these
robust [3,3]-sigmatropic rearrangement processes. For example,
Claisen rearrangement of 10, followed by carbonyl reduction,
provides the (E)-trisubstituted olefin 24 with high levels of
stereoselection (E/Z g 20:1).9 In this complementary process,
reductive cross-coupling of 10 with vinyldimethyl-chlorosilane (20),
followed by oxidation, provides the isomeric (Z)-trisubstituted olefin
25 in 58% yield (Z/E g 20:1).10

As illustrated in Table 2, this (Z)-selective reductive cross-
coupling reaction is useful for the stereoselective functionalization
of a variety of allylic alcohols (entries 1-5). Additionally,
stereochemically defined products can be prepared from the
coupling of mixtures of isomeric allylic alcohols (i.e., entries 6 and
7). Interestingly, coupling of 36 with 20 does not proceed in a

similarly stereoconvergent manner, indicating a potential role of
the PMB ether in the stereochemical course of this reaction (entry
8).12

The regio- and stereochemical control observed in this allylic
alcohol functionalization process is consistent with the empirical
model depicted in Figure 6. In short, preassociation of the allylic
alkoxide with a preformed titanacyclopropane (derived from the
vinylsilane) produces an intermediate mixed titanate ester capable
of rearrangement via formal metallo-[3,3]-rearrangement.4 While
the C-C bond formation proceeds with allylic transposition,
stereochemical control is thought to derive from minimization of

Table 1

Reaction conditions: (a) n-BuLi (1 equiv), vinylsilane (3 equiv),
ClTi(Oi-Pr)3 (3 equiv), C5H9MgCl (6 equiv) (-78 to 0°C), then HCl (1
N); (b) n-BuLi (2 equiv), vinylsilane (3 equiv), ClTi(Oi-Pr)3 (3 equiv),
C5H9MgCl (6 equiv) (-78 to 0°C), then HCl (1 N).

Figure 4. Cross-coupling reactions with vinyldimethylchlorosilane.

Figure 5. A stereochemically complementary process with respect to the
Claisen rearrangement. Reaction conditions: (a) Johnson o-ester Claisen
rearrangement; (b) reduction;9 (c) 20, ClTi(Oi-Pr)3, c-C5H9MgCl, Et2O (-78
to -50 °C), then cool to -78 °C and add lithium alkoxide of 10 (-78 to
0 °C) then, HCl (1 N) (75%, Z/Eg 20:1); (d) t-BuOOH, CsOH ·H2O, TBAF,
DMF, 70 °C.

Table 2.

a Yield reported is over the two-step process: (1) Reductive
cross-coupling (20, ClTi(Oi-Pr)3, c-C5H9MgCl, Et2O (-78 to -50 °C),
then cool to -78 °C and add lithium alkoxide of the allylic alcohol
(-78 to 0 °C) then, HCl (1 N)); (2) oxidation (t-BuOOH, CsOH ·H2O,
TBAF, DMF, 70 °C).
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nonbonded steric interactions in a boatlike conformation (i.e., A′
and B′) where the σC-Ti bond is aligned with the πCdC bond.13

In sum, we have described a new regio- and stereoselective
reductive cross-coupling reaction between allylic alcohols and
vinylsilanes. This reaction proceeds with allylic transposition,
delivers products with stereodefined di- and trisubstituted olefins,
and provides a means to establish allylic tertiary and quaternary
carbon centers. In addition to defining a novel olefin functional-
ization reaction and metal-mediated reductive cross-coupling pro-
cess,14 this reaction provides a stereochemically unique pathway
to functionalized acyclic products not readily accessible with
modern [3,3]-sigmatropic rearrangement reactions.1 Future study
will explore both the utility of this process in target-oriented
synthesis and the interplay between allylic alcohol substitution and
selectivity.
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Note Added in Proof. During the course of our studies, a related
process was published by Professor Jin K. Cha: Lysenko, I. L.; Kim,
K.; Lee, H. G.; Cha, J. K. J. Am. Chem. Soc., published online
November 6, 2008 http://dx.doi.org/10.1021/ja806440m.

Supporting Information Available: Experimental procedures and
tabulated spectroscopic data for new compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.

References

(1) For recent reviews, see: (a) Ziegler, F. E. Chem. ReV. 1988, 88, 1423–
1452. (b) The Claisen Rearrangement: Hiersemann, M., Nubbemeyer, U.,
Eds.; Wiley-VCH: Weinheim, Germany, 2007, p 571. See also: (c) Johnson,
W. S.; Werthem, A. L.; Bartlett, W. R.; Brocksom, T. J.; Li, T. T.; Faulkner,
D. J.; Petersen, M. J. J. Am. Chem. Soc. 1970, 92, 741–743. (d) Perrin,
C. L.; Faulkner, D. J. Tetrahedron Lett. 1969, 10, 2783–2786. (e) Funk,
R. L.; Stallman, J. B.; Wos, J. A. J. Am. Chem. Soc. 1993, 115, 8847–
8848 For Claisen rearrangement processes leading to (Z)-disubstituted
olefins, see: (f) Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H.
J. Am. Chem. Soc. 1990, 112, 316–322. (g) Fernández de la Pradilla, R.;
Montero, C.; Tortosa, M. Org. Lett. 2002, 237, 2–2376. (h) Takanami, T.;
Hayashi, M.; Suda, K. Tetrahedron Lett. 2005, 46, 2893-2896. For a rare
case of a [3,3]-rearrangement for the stereoselective synthesis of (Z)-
trisubstituted olefins, see: (i) Krafft, M. E.; Dasse, O. A.; Jarrett, S.; Fievre,
A. J. Org. Chem. 1995, 60, 5093–5101 For an example of a (Z)-selective

[2,3]-Wittig rearrangement to access related products, see: (j) Still, W. C.;
Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927–1928.

(2) For metal-mediated dimerization of terminal alkenes, see: (a) Isakov, V. E.;
Kulinkovich, O. G. Synlett 2003, 967–970. (b) Lee, J. C.; Sung, M. J.;
Cha, J. K. Tetrahedron Lett. 2001, 42, 2059–2061. (c) Reference 5. For
dimerization of, or coupling with, ethylene in route to metallacyclopentanes,
see: (d) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am. Chem.
Soc. 1976, 98, 6529–6536. (e) Grubbs, R. H.; Miyashita, A. J. Chem. Soc.,
Chem. Commun. 1977, 864–865. (f) Cohen, S. A.; Auburn, P. R.; Bercaw,
J. E. J. Am. Chem. Soc. 1983, 105, 1136–1143. (g) Mashima, K.; Takaya,
H. Organometallics 1985, 4, 14641466;(h) Mashima, K.; Sakai, N.; Takaya,
H. Bull. Chem. Soc. Jpn. 1991, 64, 2475–2483. (i) Thorn, M. G.; Hill,
J. E.; Waratuke, S. A.; Johnson, E. S.; Fanwick, P. E.; Rothwell, I. P. J. Am.
Chem. Soc. 1997, 119, 8630–8641 For the dimerization of chalcones, see:
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Figure 6. Model of stereoselection.
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