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Abstract: It was found that monofluoroarenes were reduced to the
corresponding hydrodefluorinated arenes by the treatment of 5
mol% of NbCl5 and LiAlH4. Based on the substituent effect ob-
served, an aromatic nucleophilic substitution mechanism is pro-
posed.
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The carbon-fluorine bond is one of the strongest bonds
that constitutes organic molecules and reductive cleavage
of the C-F bond is a significant problem not only from a
viewpoint of organic chemistry but also from a viewpoint
of environmental chemistry in relation to dehalogenation
of organic compounds.1 Polyfluoroarenes such as perflu-
orobenzene or perfluoronaphthalene are readily reduced
by a variety of methods utilizing transition metals,2 but re-
duction of simple and more stable monofluoroarenes re-
mains to be explored.3

We have recently found that monofluoroarenes are readily
reduced by the use of catalytic amounts of group 5 metal
halides and LiAlH4.

As shown in Table 1, LiAlH4 alone reduced p-fluorobi-
phenyl into biphenyl in 28% yield after 4 hours reflux in
1,4-dioxane, but use of 20 mol% of VCl3 increased the
yield up to 54% (entries 1 and 2). Examination of other
group 5 metal halides revealed that NbCl5 was the most
active catalyst (entries 2–6) and the catalyst loading could
be reduced to 5 mol% (entries 6–9).4

Use of ethereal solvent was crucial for this reaction. Reac-
tions in refluxing 1,4-dioxane, 1,2-dimethoxyethane
(DME), and THF gave moderate to good yields of biphe-
nyl, but reaction in toluene gave a disappointing result
(Table 2). These results suggest that coordination of a sol-
vent molecule to the metal center is essential.5 Among the
solvents examined, we concluded that DME was the most
suitable for reaction under less vigorous conditions.

The scope and limitations of this reaction are shown in
Table 3.6 All of o-, m-, and p-fluorobiphenyls were re-
duced in the optimized system described in Table 3 to
give biphenyl in good yields (entries 1, 6, 9). Not only
simple fluorobiphenyls but also electron-rich methyl- or
ethoxy-substituted fluorobiphenyls worked well to afford
the corresponding products although prolonged time was
required (entries 2, 3, 8). Chloride and bromide in fluoro-
biphenyl substrates were reduced prior to fluoride under
the reaction conditions and complete reduction afforded
biphenyl in good yields (entries 4, 5, 10). Trifluorobiphe-
nyl also gave 91% yield of biphenyl after 6 hours reflux
with 10 mol% of the catalyst (entry 12).

From Table 3, we could also learn two characteristic prop-
erties of this reaction. 1) A meta-isomer had a lower reac-
tivity compared to the para- and ortho-isomers: after 4
hours reflux, m-fluorobiphenyl gave only 64% yield of bi-
phenyl although p- and o-fluorobiphenyl gave 91% and
93% yields of the products, respectively (entries 1, 7, 9);

Table 2 Solvent Effect

Entry Solvent Bp (°C) Yield of biphenyl (%)a

1 1,4-Dioxane 100 94 (–)

2 DME 85 91 (–)

3 THF 65 73 (18)

4 Toluene 111 10 (82)

a Recoveries of p-fluorobiphenyl are indicated in parentheses (%).

FPh LiAlH4
NbCl5 5 mol%

Ph
4 h

+

2 mol. amt.

Table 1 Reduction of p-Fluorobiphenyl with Group 5 Metal Ha-
lides and LiAlH4

Entry MXn Loading (mol%) Yield of biphenyl (%)a

1 None – 28 (57)

2 VCl3 20 54 (37)

3 TaBr5 20 56 (29)

4 TaCl5 20 60 (34)

5 NbBr5 20 60 (26)

6 NbCl5 20 94 (–)

7 10 93 (–)

8 5 94 (–)

9 2 41 (47)

a Recoveries of p-fluorobiphenyl are indicated in parentheses (%).

Ph F LiAlH4

MXn
Ph

100 °C, 4 h
1,4-Dioxane

+

4 mol. amt.
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and trifluorobiphenyl mainly gave 80% yield of a p-hy-
drodefluorinated product after 15 minutes reflux (entry
13). 2) An assistance of an extra phenyl group on fluo-
robenzene ring was necessary for the reaction to proceed
because p-benzyl(fluoro)benzene afforded only 13%
yield of diphenylmethane (entry 14).

Based on the substituent effect mentioned as above, we
now surmise that aromatic nucleophilic substitution might
take place (Scheme 1): NbCl5 and LiAlH4 undergo hy-
dride-halogen exchange to give niobium(V) di- or polyhy-
dride species 1 and subsequent reductive elimination of
dihydrogen7 forms niobium(III) species 2.8 Compound 2
undergoes complexation with the fluoroarene to form the
18-electron h6-arene complex 39 which contains a DME
molecule as a bidentate ligand. Aromatic nucleophilic ad-

dition of LiAlH4 onto the arene ligand of 3 takes place10,11

and the resulting anionic charge is delocalized effectively
when an extra phenyl group is placed para or ortho to the
fluorine atom. Subsequent elimination of fluoride from
the resulting intermediate 4 gives h6-arene complex 5.
Liberation of the arene product from 5 regenerates niobi-
um(III) species 2, which allows the reaction to proceed
catalytically.12

Scheme 1 Supposed reaction mechanism

In summary, we found that NbCl5 catalyzes reduction of
monofluoroarenes with LiAlH4.
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Table 3 Scope and Limitations

Entry ArF Time 
(h)

ArH Yield 
(%)a

1 4.0 91 (–)

2 10.0 90 (–)

3 10.2 Quant. (–)

4

5

4.0b

0.6

6
7

6.0
4.0

91 (–)
64 (34)

8 8.0c 90 (–)

9 4.0 93 (–)

10 8.0d 90 (–)

11 2.2 81 (–)

12

13

6.0d

0.25e

14 6.2 13 (76)

a Recoveries of starting material are indicated in parentheses (%).
b 3.5 molar amounts of LiAlH4 was used.
c 10 Mol% of NbCl5 and 10 mol% of Et3N were used.
d 10 Mol% of NbCl5 and 6 molar amounts of LiAlH4 were used.
e 6 Molar amounts of LiAlH4 was used. A few percents yield of 
m-hydrodefluorinated product was detected by GC-MS analysis.
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