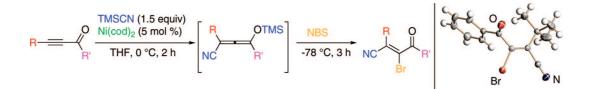
Ni(0)-Catalyzed Conjugate Addition of Me₃SiCN to Ynones: α -Bromo- β -cyano Tetrasubstituted Enones

ORGANIC LETTERS 2009 Vol. 11, No. 2 333-335


Takayoshi Arai,* Yuuki Suemitsu, and Yui Ikematsu

Department of Chemistry, Graduate School of Science, Chiba University, Inage 1-33, Chiba 263-8522, Japan

tarai@faculty.chiba-u.jp

Received October 30, 2008

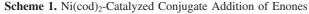
ABSTRACT

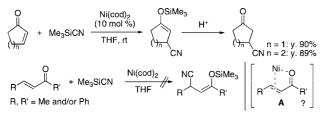
Conjugate addition of Me₃SiCN to ynones is smoothly catalyzed by Ni(cod)₂ to give the β -cyanosilyloxyallene quantitatively. Further reaction of the silyloxyallenes with NBS provides the tetrasubstituted α -bromo- β -cyano enones in high yields (up to 95%) with excellent Z-selectivity (E/Z = up to >1/99). X-ray crystallographic analysis showed a bent structure of the α -bromo- β -cyano enone due to a deconjugation of the π -bond and carbonyl group.

Due to the great importance of conjugate addition reactions (i.e., 1.4-addition) in organic synthesis, α_{β} -unsaturated carbonyl compounds have been extensively utilized.¹ Horner-Emmons reactions, Claisen-Schmidt condensations, and eliminations of phenylselenium groups via oxidation have been employed widely for preparing such α,β -unsaturated carbonyl compounds.² While these conventional methods are quite useful, a general method for the synthesis of highly functionalized tetrasubstituted α . β -unsaturated carbonyl compounds is still needed.³ Because tetrasubstituted olefins are also of interest for the development of light- and/or electron-responsive materials such as liquid crystals and molecular devices including sensors, switches, and motors,⁴ the efficient regio- and stereoselective synthesis of the tetrasubstituted olefins having four different functional groups becomes an important task in organic synthesis. We report herein the nickel(0)-catalyzed conjugate addition of trimethylsilyl cyanide (Me₃SiCN) to ynones to provide silvloxyallenes, and further transformation to the α -bromo- β -cyano tetrasubstituted enones.^{5,6}

Regarding the Ni(0)-catalyzed conjugate addition of Me₃SiCN, Shibasaki et al. reported one elegant example in the synthesis of Tamiflu, in which the reaction proceeded on the cyclohexenone derivative.⁷ This Ni(0)-catalyzed conjugate addition is quite efficient for cyclic enones; however, the simple application of the Ni(0)-catalyst to acyclic substrates were unsuccessful (Scheme 1).⁸

One possibility for the obstacle in the reaction using acyclic enones might be explained by the formation of a stable Ni–enone complex (A). These examinations led us to experiment further on ynones, which would avoid formation of a tight Ni–substrate complex such as A.⁹


To our delight, the reaction of diphenyl ynone¹⁰ with Me₃SiCN was smoothly catalyzed by Ni(cod)₂ in THF, and the corresponding β -cyano enone was obtained in 90% yield


^{(1) (}a) Jung, M. E. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, UK, 1999; Vol. 4, pp 1–67. (b) Perlmutter, P. In *Conjugate Addition Reactions in Organic Synthesis*; Baldwin, J. E., Magnus, P. D., Eds.; Pergamon: Oxford, UK, 1992.

⁽²⁾ Takeda, T., Ed. Modern Carbonyl Olefination; Wiley-VCH: Weinheim, Germany, 2004.

⁽³⁾ Flynn, A. B.; Ogilvie, W. W. A Review for the synthesis of tetrasubstituted olefins. *Chem. Rev.* 2007, 107, 4698.

^{(4) (}a) Balzani, V.; Venturi, M.; Credi, A. *Molecular Devices and Machines – A Journey into the Nanoworld*; Wiley-VCH: Weinheim, 2003.
(b) *Molecular Switches*; Feringa, B. L., Ed.; Wiley-VCH: Weinheim, 2001.
(c) Irie, M., Ed. Photochromism: Memories and Switches, Special Issue. *Chem. Rev.* 2000, *100*, 1683.

after treatment with 1 N HCl (Table 1, entry 1).¹¹ Though the *E*/*Z* selectivities of the obtained β -cyano enones are low when the reactions were quenched by strong acids, quenching with AcOH improved the *Z*-selectivity in the ratio of 11:89 (Table 1, entry 2).

Table 1. Ni(cod) ₂ -Catalyzed	Conjugate	Addition	of Me ₃ SiCN to
Ynones			

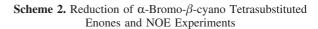
	Me ₃ SiCN (1.5 equiv) Ni(cod) ₂ (5 mol %) THF, 0 °C, 2 h ► NC	OSiMe ₃ Ph B	Ph Ph
entry	H^{+} source	yield (%)	E/Z
1	1 N HCl (aq)	90	58/42
2	AcOH	94	11/89
3	TFA	92	25/75
4	$PhCO_2H$	85	30/70
5	PhOH	88	59/41

The current procedure is useful not only for aromatic ynones, but aliphatic ynones as well, which give β -cyano trisubstituted enones efficiently (Table 2). The introduction of electron donating or withdrawing group on the aromatic substrates couldn't improve the *E*/*Z* selectivities of the products.

Table 2.	Catalytic	Synthesis	of β -Cyano	Trisubstituted	Enones
----------	-----------	-----------	-------------------	----------------	--------

R-=	O Ni(cod) ₂ (5 mol %) R' THF, 0 °C, 2 h	^{V)} R OSiMe NC R' B	$\begin{bmatrix} 3 \\ 0 & C, 2 \end{bmatrix}$	
entry	R	R′	yield (%)	E/Z
1	Ph	Ph	94	11/89
2	Ph	Me	68	24/76
3	<i>n-</i> Bu	Ph	92	24/76
4^a	<i>t</i> -Bu	Ph	84	31/69
5	Ph	$4-MeOC_6H_4$	84	27/73
6	Ph	$4\text{-BrC}_6\text{H}_4$	71	46/54
7	$4-MeOC_6H_4$	Ph	94	35/65
^a Con	jugate addition was	carried out at rt.		

The predominant formation of the silyloxyallene (**B**) was confirmed by 1 H NMR analysis of the reaction mixture.

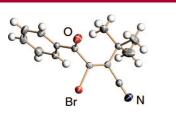

Actually, in the Ni(0)-catalyzed reaction of diphenyl ynone and *t*-BuMe₂SiCN, the corresponding silyloxyallene was isolated in 64% yield (rt, 3 h). The mild reaction conditions would be an alternative way for the synthesis of silyloxyallenes without use of the 1,2-Brook rearrangement.¹²


Next, we tried to trap the silyloxyallene with a halogen ion to obtain α -halo- β -cyano enones.¹³ After completion of the Ni-catalyzed conjugate addition, 1.0 mol equiv of *N*-bromosuccinimide (NBS) was added to the reaction mixture. Bromination at the α -position occurred smoothly at -78 °C to give α -bromo- β -cyano enones with high isolated yields (Table 3).

Table 3.	Catalytic Synthesis of α -Bromo- β -cyano)
Tetrasubs	tituted Enones	

в——— ∢	O Ni(cod) ₂ (5 mol %) Ni R ¹ THF, 0 °C, 2 h		NBS -78 °C, 3 h NC	
entry	R	R′	yield (%)	E/Z
1	Ph	Ph	94	> 1/99
2	Ph	Me	44	>1/99
3^a	<i>t</i> -Bu	Ph	90	>1/99
4	Ph	$4-MeOC_6H_4$	89	>1/99
5	Ph	$4\text{-}\mathrm{BrC_6H_4}$	84	>1/99
6	$4\text{-MeOC}_6\text{H}_4$	Ph	95	>1/99
^a Conj	ugate addition was	carried out at rt.		

The bromination proceeded in a highly (Z)-selective manner, which was confirmed by NOE experiments after

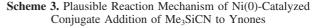


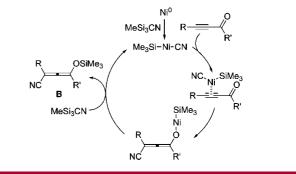
conversion to the allylic alcohols by reduction of the enones. In the α -bromination, the substituent on the aromatic ring did not reduce the high (*Z*)-selectivity of the products.

⁽⁵⁾ Selected catalytic conjugate additions of cyanide (non asymmetric):
(a) Evans, D. A.; Hoffman, J. M.; Truesdale, L. K. J. Am. Chem. Soc. 1973, 95, 5822. (b) Utimoto, K.; Obayashi, M.; Shishiyama, Y.; Inoue, M.; Nozaki, H. Tetrahedron Lett. 1980, 21, 3389. (c) Higuchi, K.; Onaka, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1991, 1035.

⁽⁶⁾ Selected catalytic conjugate additions of cyanide (asymmetric): (a) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442. (b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928. (c) Mita, T.; Sasaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 514. (d) Fujimori, I.; Mita, T.; Maki, K.; Shiro, M.; Sato, A.; Furusho, S.; Kanai, M.; Shibasaki, M. Tetrahedron 2007, 63, 5820. (e) Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 6072.

Furthermore, the structures of the compounds obtained in entry 3 of Table 3 were confirmed by X-ray crystallographic analysis as shown in Figure 1.




Figure 1. ORTEP diagram of α -bromo- β -cyano tetrasubstituted enones (Table 3, entry 3).

Interestingly, the X-ray structure depicted in Figure 1 suggests an extremely bent enone structure caused by a deconjugation of the π -bond and carbonyl group due to significant steric repulsion between the carbonyl group and the *t*-Bu substituent ($\theta O=C-C=C = 81.1^{\circ}$).

Typically, when $\alpha_{4}\beta$ -unsaturated carbonyl compounds are mixed with Ni(cod)₂ in THF, the solution has a dark brown color. We originally thought the dark brown color suggested the formation of a Ni- π -bond complex, and the coordination resulted in activation of the π -bond to promote the subsequent conjugate addition of cyanide ion.^{14,15} The addition of Me₃SiCN into the mixture of Ni(cod)₂ and ynone, however, caused the dark brown color to disappear spontaneously. In the infrared (IR) spectrum, the mixture of the Ni(cod)₂ and Me₃SiCN showed a CN absorption at 2146 cm⁻¹, though the Me₃SiCN itself has a CN absorption at 2188 cm⁻¹. The DFT simulation of the IR spectrum using the Gaussian program for Me₃SiCN, which is generated by an oxidative addition of Ni(0) to Me₃SiCN, suggested a CN absorption at 2137 cm^{-1.16}

Based on these experimental observations and the theoretical study, the possible mechanism for the current Ni(0)-catalyzed conjugate addition of Me₃SiCN to ynones is proposed as shown in Scheme 3. Ni(cod)₂ would smoothly cause oxidative addition to Me₃SiCN to give the Me₃Si-Ni-CN complex. The more Lewis acidic Ni(II) intermediate would form a π -complex with the ynones to promote the conjugate addition of cyanide. Further

reductive elimination from the nickel enolate intermediate would provide the silyloxyallene (**B**), and the $Me_3Si-Ni-CN$ catalyst would be regenerated by the reaction with Me_3SiCN .

In conclusion, a facile conjugate addition of Me₃SiCN to ynones is presented using the simple Ni(cod)₂ catalyst. The reaction of the silyloxyallenes with NBS provides tetrasubstituted α -bromo- β -cyano enones in a Z-selective manner. Further applications of silyloxyallenes and α -bromo- β -cyano enones are in progress, including a mechanistic study on the Ni(0) catalysis.

Acknowledgment. This work was supported by a foundation of the venture business laboratory, Chiba University, and a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank Prof. Akira Yanagisawa at Chiba University for helpful discussions.

Supporting Information Available: Detailed descriptions of experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802508Q

⁽⁷⁾ Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312.

⁽⁸⁾ Quite recently, Shibasaki and Kanai et al. reported a cooperative catalysis system using Ni(0) and Gd(OTf)₃ for the conjugate addition of cyanide to various enones including the acyclic substrates: Tanaka, Y.; Kanai, M.; Shibasaki, M. *Synlett* **2008**, *15*, 2295.

⁽⁹⁾ Arzoumanian et al. reported the nickel catalyzed cyanation of ynones using Ni(CN) ₂, NaOH, and an excess amount of KCN: Arzoumanian, H.; Jean, M.; Nuel, D.; Garcia, J. L.; Rosas, N. *Organometallics* **1997**, *16*, 2726.

⁽¹⁰⁾ Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmant, J. P. H.; Kantacha, A. *Chem. Commun.* **2005**, 1037.

^{(11) (}a) Nozaki, K.; Sato, N.; Takaya, H. J. Org. Chem. 1994, 59, 2679.
(b) Nozaki, K.; Sato, N.; Takaya, H. Bull. Chem. Soc. Jpn. 1996, 69, 1629.

⁽¹²⁾ Synthesis of silyloxyallenes: (a) Kuwajima, I.; Kato, M. *Tetrahedron Lett.* **1980**, *21*, 623. (b) Reich, H. J.; Olson, R. E.; Clark, M. C. J. Am. Chem. Soc. **1980**, *102*, 1423.

⁽¹³⁾ Examples of the synthetic utilities of silyloxyallenes: (a) Merault,
G.; Bourgeois, P.; Dunogues, J.; Duffaut, N. J. Organomet. Chem. 1974,
76, 17. (b) Fleming, I.; Perry, D. A. Tetrahedron 1981, 37, 4027. (c) Kato,
M.; Kuwajima, I. Bull. Chem. Soc. Jpn. 1984, 57, 827. (d) Reich, H. J.;
Eisenhart, E. K.; Olson, R. E.; Kelly, M. J. J. Am. Chem. Soc. 1986, 103,
7791. (e) Stergiades, I. A.; Tius, M. A. J. Org. Chem. 1999, 64, 7547. (f)
Yoshizawa, K.; Shioiri, T. Tetrahedron Lett. 2006, 47, 757. (g) Reynolds,
T. E.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 7806. (h) Reynolds,

T. E.; Binkley, M. S.; Scheidt, K. A. Org. Lett. 2008, 10, 2449.

⁽¹⁴⁾ A review of the Ni-catalyzed reaction: Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890.

⁽¹⁵⁾ Selected examples of Ni-catalyzed reaction of cyanide compounds with π-bond: (a) Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren, T. H. J. Am. Chem. Soc. **1994**, 116, 9869. (b) Nakao, Y.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. **2004**, 126, 13904. (c) Ogoshi, S.; Oka, M.; Kurosawa,

H. J. Am. Chem. Soc. 2004, 126, 11802.
 (16) Schaub, T.; Döring, C.; Radius, U. Dalton Trans. 2007, 1993.