1134 Chemistry Letters 2000

Use of 2-Cyano-1-t-butylethyl or 2-Cyano-1-(1,1-diethyl-3-butenyl)ethyl as a Phosphorus Protecting Group in Oligonucleotide Synthesis via *in situ* Phosphoramidite Methods

Akinori Kitamura, Yoji Horie, and Tadao Yoshida*

Bioscience Research Department, Tsukuba Research Laboratory, Toagosei Co., Ltd., 2 Ohkubo, Tsukuba, Ibaraki 300-2611

(Received June 16, 2000; CL-000592)

2-Cyano-1-t-butylethyl or 2-cyano-1-(1,1-diethyl-3-butenyl)ethyl 3'-O-phosphorimidazolidite of 5'-O-protected nucleoside was prepared *in situ* by the use of 2-cyano-1-t-butylethyl or 2-cyano-1-(1,1-diethyl-3-butenyl)ethyl phosphorobisimidazolidite as a new phosphitylating reagent. The phosphorimidazolidites were found to be key intermediates for preparing 5'-O-protected nucleoside 3'-O-monoalkylphosphoramidites *in situ* useful in the solid-phase oligonucleotide synthesis, and for synthesizing conveniently 3'-OH free dinucleoside phosphates and phosphorothioates in solution.

The phosphoramidite method is most widely used for the synthesis of oligonucleotide in solution and on a solid support. In this approach, the 2-cyanoethyl group has been proved to be an useful protecting group for the internucleotide linkage. 2

We wish to present here three developmental works for broadening the scope in the 2-cyanoethyl phosphoramidite chemistry: (i) a new phosphitylating reagent, 2-cyano-1-t-butylethyl or 2-cyano-1-(1,1-diethyl-3-butenyl)ethyl phosphorobisimidazolidite 1, is used in *in situ* generation of 5'-O-protected nucleoside 3'-O-phosphorimidazolidite 3; (ii) the phosphorimidazolidite 3 serves as a key intermediate for the preparation of a new type of the nucleoside 3'-O-phoshoromonoalkylamidite 4; (iii) the imidazolidite 3 is used for the selective introduction of the 3'-5' internucleotide linkage by the reaction with a 3',5'-O,O-unprotected nucleoside 5.

A general method of preparation of **1** and **3** is represented in Scheme 1. The reaction of the phosphorodichloridite **6** ($R^1 = t$ -butyl or 1,1-diethyl-3-butenyl)³ with 1-(trimethylsilyl)imidazole in a 1 : 2.2 ratio in toluene, followed by evaporation under reduced pressure to dryness, gave **1**⁴ quantitatively as an oil.⁵

The treatment of **1** with 1.03 equivalents of 5'-*O*-(4,4'-dimethoxytrityl(DMTr))-nucleoside **2** for 1 h at room temperature produced the corresponding imidazolidite **3** in ca. 97% yield (based on **1**).⁶ This indicates that the reaction of **1** with **2** proceeds selectively before the produced **3** reacts with **2** to give the 3'-3' dinucleoside phosphite. This would be caused by the steric hindrance of the phosphorus protecting group.⁷

The compound 3 was converted to the phosphoromonoalkylamidite 4 quantitatively by adding 1 equivalent of the corresponding primary amine (Scheme 1). The monoalkylamidite 4 obtained was useful for the solid-phase oligonucleotide synthesis using an automated synthesizer⁸ without any purification. For example, the thymidine icosamer (d-T₂₀) was synthesized in an average coupling yield of 99.1% by the use of *in situ* prepared 4 ($R^1 = t$ -C₄H₉, $R^2 = i$ -C₃H₇)⁹ as a monomer unit.

In addition, 3 was selectively coupled with the 5'-hydroxyl group of a 3',5'-O,O-unprotected nucleoside 5 to give the corresponding triester 7^{10} (Table 1). Thus, the reaction of 3 with

DMTrO
$$\stackrel{B^1}{\circ}$$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^2NH_2}{\circ}$
 $\stackrel{R^1}{\circ}$
 $\stackrel{R^1}$

 $R^1 = t$ -butyl or 1,1-diethyl-3-butenyl, $R^2 = alkyl$ Scheme 1.

1.1-1.3 equivalents of **5** in chloroform/pyridine (1/2, v/v) (room temperature, several hours) afforded **7** in good yields (based on **3**). The phosphite triester **7** was readily oxidized with iodine/water to give the phosphate derivatives. Thus, the treatment of crude **7** prepared as mentioned above with 1.2 equivalents of iodine in water/THF (1/10, v/v) for 0.5 h at room temperature produced the phosphate **8** essentially quantitatively. Furthermore, the reaction of crude **7** with elemental sulfur gave the phosphorothioate derivatives **9** (Table 1). 12

The 2-cyano-1-*t*-butylethyl or 2-cyano-1-(1,1-diethyl-3-butenyl)ethyl group of the internucleotide phosphate and phosphorothioate was removed as readily as the 2-cyanoethyl group in concetrated aqueous ammonia/pyridine (1/1, v/v) (room temperature, < 1 h).

Chemistry Letters 2000 1135

Table 1. The in situ coupling reaction of 3 with 5

Entry	$^{\prime}$ \mathbb{R}^{1}	B ^{1 a}	B ^{2 a}	³¹ P NMR ^b	Yield	Selec-
				of 7	of 7	tivity ^d
				δ / ppm	/ %	1%
1	t-C ₄ H ₉	ABz	G^{iBu}	e	94 ^f	96 ^g
					(80)	
					` /	
2	t-C ₄ H ₉	T	G^{iBu}	e	94 ^f	97 ^g
					(90)	
					()	
3	$C(C_2H_5)_2$ -	$\mathbf{C}^{\mathbf{Bz}}$	C^{Bz}	140.8, 141.0	89	92
	CH ₂ CHCH ₂ h	•	·	141.7	0)	72
	2			1117		
4	$C(C_2H_5)_2$ -	T	T	140.6, 140.7	>88	>91
•	CH ₂ CHCH ₂	•	•	141.0, 141.8	- 00	- 71
				111.0, 111.0		
5	$C(C_2H_5)_2$ -	\boldsymbol{A}^{Bz}	\boldsymbol{A}^{Bz}	140.0, 141.1	91	94
3	CH ₂ CHCH ₂	11	71	141.3, 141.7	(88)	74
	CIT2CITCIT2			171.5, 141.7	(00)	
6	C(C ₂ H ₅) ₂ -	G^{iBu}	G^{iBu}	140 7 141 2	93	96
U	(/-	U	U	140.7, 141.3	93	90
	CH₂CHCH₂			142.0, 142.8		

^aT, C^{Bz} , A^{Bz} and G^{IBu} represent 1-thyminyl, 1-(N^d -benzoylcytosinyl), 9-(N^6 -benzoyladeninyl) and 9-(N^2 -isobutyrylguaninyl), respectively. ^b(MeO)₃P = 140 ppm as an external standard. ^cYield determined by ³¹P NMR. Isolated yields after the sulfurization of 7 are presented in parentheses. ^dThe selectivity is defined according to the following equation 1, where [7] and [3'-3' dimer] represent the respective molar composition ratios of 7 and the 3'-3' dimer formed as a by-product in the coupling reaction.

Selectivity (%) = $\{[7] / ([7] + [3'-3' \text{ dimer}])\} \times 100$ (1) Not measured. The yields were determined after the sulfurization of 7. The selectivities were determined after the sulfurization of 7. The piethyl-3-butenyl.

In conclusion, the *in situ* preparation of the phosphitylating reagents and the high selectivities in the phosphitylating reactions would make this methodology afford a new route to a facile oligonucleotide synthesis.

References and Notes

- For example: S. L. Beaucage and R. P. Iyer, *Tetrahedron*, **49**, 6123 (1993) and references cited therein.
- 2 For example: N. D. Sinha, J. Biernat, and H. Köster, Tetrahedron Lett., 24, 5843 (1983); S. L. Beaucage and R. P. Iyer, Tetrahedron, 48, 2223 (1992) and references cited therein.
- 3 2-Cyano-1-*t*-butylethanol was first treated with phosphorus trichloride, but desired 6 (R¹ = *t*-C₄H₉) was not obtained in high purity. Compound 6 was satisfactorily synthesized by the method of Hata et al., where phosphorus trichloride was allowed to react with the corresponding alkoxytrimethylsilanes. See: H. Nagai, T. Fujiwara, M. Fujii, M. Sekine, and T. Hata, *Nucleic Acids Res.*, 17, 8581 (1989). 6 (R¹ = *t*-C₄H₉): yield 89%; bp 79–80 °C/0.1 mmHg (1 mmHg = 133.322 Pa); ³¹P NMR (161.7 MHz, CDCl₃, (MeO)₃P) δ 177.9. 6 (R¹ = C(C₂H₅)₂CH₂CHCH₂): yield 78%; bp 119-120 °C/0.1 mmHg; ³¹P NMR (161.7 MHz, CDCl₃, (MeO)₃P) δ 181.9
- 4 Alkyl phosphorobisimidazolidite was previously used by Hata et al. for the preparation of alkyl nucleoside 3'-*O*-phosphonates. See: T. Wada, R. Kato, and T. Hata, *J. Org. Chem.*, **56**, 1243 (1991).

5 31 P NMR (161.7 MHz, CDCl₃, (MeO)₃P): 1 (R¹ = t-C₄H₉) δ 109.4; 1 (R¹ = C(C₃H₅)₃CH₃CHCH₂) δ 109.4.

- 6 ³¹P NMR of the reaction mixture displayed essentially four peaks (127–135 ppm, ca. 97%) for the desired imidazolidites **3**, and two signals (140-142 ppm, ca. 3%) for the 3'-3' dinucleoside phosphites formed from **1** and excess **2**. ³¹P NMR (161.7 MHz, CDCl₃, (MeO)₃P): **3** (B¹ = T, R¹ = t-C₄H₉) δ 127.3, 127.5, 128.4, 130.6; **3** (B¹ = T, R¹ = $C(C_2H_5)_2CH_2CHCH_2$) δ 126.9, 129.5, 130.2, 133.5; **3** (B¹ = C^{Bz} , R¹ = $C(C_2H_5)_2CH_2CHCH_2$) δ 127.5, 131.1, 131.8, 134.8; **3** (B¹ = A^{Bz} , R¹ = $C(C_2H_5)_2CH_2CHCH_2$) δ 129.5, 130.3, 131.1, 134.3; **3** (B¹ = G^{iBu} , R¹ = $C(C_2H_5)_2CH_2CHCH_2$) δ 128.3, 128.6, 131.8, 132.6.
- 7 R. L. Letsinger, E. P. Groody, N. Lander, and T. Tanaka, Tetrahedron, 40, 137 (1984); J. E. Marugg, C. E. Dreet, G. A. van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, 103, 97 (1984).
- 8 The chain elongation was achieved on a 0.2 μmol scale following the standard protocol by using a PerSeptive Biosystems ExpediteTM 8909 automated synthesizer. The reagents except for 4 and solvents used were purchased from PerSeptive Biosystems, Inc.
- The reagent **4** (B¹ = T, R¹ = t-C₄H₉, R² = i-C₃H₇) used in solid-phase synthesis was prepared by the reaction of **3** (B¹ = T, R¹ = t-C₄H₉) with i-propylamine in a 1 : 1 ratio in chloroform followed by dilution to a 0.1 mol dm⁻³ solution with acetonitrile. The reagent **4** was stable for at least one month when stored at -20 °C under an inert atmosphere. ³¹P NMR (161.7 MHz, CDCl₃, (MeO)₃P): δ 141.8, 142.4, 144.5, 145.8.
- 10 The related reaction, in which the nucleoside 3'-*O*-phosphorochloridites were treated with the 3',5'-*O*,*O*-unprotected nucleosides in the presence of a base, followed by oxidation with iodine/water, afforded the 3'-OH free dinucleoside phosphates in ca. 65% yields.⁷
- 11 After the usual work-up, the crude product (B¹ = B² = T, R¹ = t-C₄H₉, 4.5 mmol based on **1**) was chromatographed on a column of silica gel (150 g) with chloroform/methanol (100/1 to 100/7, v/v) to give **8** (3.49 g, 81%): ³¹P NMR (161.7 MHz, CDCl₃, (MeO)₃P): δ –4.2, –3.4; R_f silica (chloroform/methanol = 10/1, v/v): 0.33.
- 12 In a typical case, elemental sulfur (0.26 g, 8 mmol) was added to the reaction mixture of 7 (B¹ = T, B² = G^{iBu} , R^1 = t- C_4H_9 , 4 mmol based on 1) prepared as mentioned above. The resulting mixture was stirred for 2 h at room temperature, poured into water (100 mL) and then extracted with chloroform (100 mL \times 2). The combined organic layer was washed with 5% NaHCO₃ (40 mL \times 2) and brine (50 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was chromatographed on a column of silica gel (100 g) with chloroform/methanol (100/1 to 100/7, v/v) to give 9 (3.85 g, 90%): ${}^{31}P$ NMR (161.7 MHz, CDCl₃, (MeO)₃P): **9** (B¹ = T, $B^2 = G^{iBu}$, $R^1 = t - C_4 H_0$): δ 65.6, 66.1, 66.2; R_f silica (chloroform/methanol = 7/1, v/v): 0.42. ³¹P NMR and TLC analysis data for the other dinucleoside phosphorothioates 9 were as follows: 9 (B¹ = A^{Bz}, B² = G^{iBu}, R¹ = t-C₄H₀), (CDCl₃): δ 65.4, 65.9, 66.0, 66.2; R_f silica (chloroform/methanol = 7/1, v/v): 0.38, **9** (B¹ = B² = A^{Bz}, R¹ = C(C₂H₅)₂CH₂CHCH₂), (CDCl₃/pyridine = 1/2, v/v): δ 65.2, 65.5, 65.8, 65.9; R_f silica (chloroform/methanol = 7/1, v/v): 0.48.