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Abstract: The synthesis of 1,1-disubstituted C-glycosides contain-
ing amino and ester containing moieties at what is formally the ano-
meric site is described. Petasis olefination of pyranosyl lactones
provided exo-glycals which underwent regioselective azidoselena-
tion and subsequent radical-mediated C-glycoside formation.
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The synthesis of C-glycosides as carbohydrate mimetics
has been the subject of considerable interest due to the im-
proved stability of this class of carbohydrate derivative
towards acidic and enzymatic hydrolysis while still retain-
ing in many cases the desirable biological profile of the
‘parent’ O-glycoside.1 Consequently, a number of meth-
ods have been developed for the preparation of C-glyco-
side analogues of complex carbohydrates.2 Our
contributions3 in this area have been focused on defining
methods for generating a-C-glycosides based on gluco,
galacto, and manno 2-acetamido sugars, given the biolog-
ical importance of amino sugars associated in particular
with O-linked glycopeptides. We have also extended this
chemistry to a wider range of C-glycosides and this is il-
lustrated in Scheme 1 for a C1-methylated galacto variant
1 (R = Me). Azidoselenation4 of endo-glycal 1 (R = Me)
provided anomeric selenide 2 and C–Se homolysis (and
the associated anomeric radical reactivity) was harnessed
to provide the b-C-glycoside series 3 (by reduction) and
by trapping the anomeric radical derived from 2 with a
reactive alkene, the 1,1-disubstituted C-glycoside 4.3c

However, this chemistry was limited to the use of the C1-
unsubstituted or C1-methyl variants (i.e., 1, R = H or Me)
and attempts to extend this chemistry to include other C1
substituents (1, R = alkyl or aryl) were unsuccessful. The
issue here was that the azidoselenation step (i.e., 1 → 2)
failed when R ≠ H or Me.5 In order to solve this issue and
extend this methodology to a wider range of C1 substitu-
tion patterns, we have explored the use of exo-cyclic gly-
cals (e.g., 8–10) as a more general starting point for C-
glycoside synthesis.

Our strategy has involved use of O-protected exo-glycals
8–10, which were readily available via Petasis
olefination6 (using Cp2TiMe2 under microwave-mediated
conditions7) from the corresponding galacto, gluco and

manno lactones 5–7, respectively (Scheme 2).8 The olefi-
nation process showed only modest levels of selectivity
for the lactone carbonyl in the presence of competing O-
acetate residues (e.g., 5a) but a higher and synthetically
useful level of discrimination was observed when the cor-
responding O-pivaloyl (Piv)-protected carbohydrates
(e.g., 5b) were employed.

Our objective was to evaluate exo-glycals 8–10 as sub-
strates for a series of addition processes, and these includ-
ed use of organometallic nucleophiles as well as

Scheme 1 b-C-Glycosides and 1,1-disubstituted C-glycosides
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azidoselenation to provide a more general entry to C1-
substituted glycals.

While a variety of methods were examined, we were un-
able to achieve Pd(0)-mediated allylic displacements in-
volving 8–10. Substrates 8b and 9 were unreactive
towards Pd(0) under a variety of conditions, and this was
demonstrated using a series of control experiments.9 In
the case of the manno derivative 10, in which the allylic
leaving group is positioned in a stereoelectronically more
favorable arrangement for displacement,10 evidence for
the intermediacy of the p-allyl Pd(II) species 11 was ob-
tained. However, this species was unreactive towards a
malonate nucleophile, and the desired adduct 12 was not
observed (Scheme 3).9,11

Scheme 3

Azidoselenation does, however, provide an alternative
means of functionalizing exo-glycals 8b, 9, and 10. In the
case of the galacto derivative 8b, azidoselenation gave the
selenoglycoside adduct 13 in 46% yield.12

One-pot azide reduction (using a dithiol) and protection
provided the N-acetylated amine 14 in 94% yield. The re-

giochemistry of the azidoselenation step was confirmed
by 1H NMR: acetamide 14 clearly showed CHHNHAc as
a doublet of doublets (J = 14.5, 3.5 Hz) where coupling
(J = 3.5 Hz) to the amide NH was apparent. C-Glycoside
formation was achieved by homolysis of the C–Se bond in
14 and trapping of the resulting anomeric (and tertiary)
radical species with tert-butyl acrylate to give the 1,1-di-
substituted C-glycoside 15 as a single isomer (see below).
Similar sequences were achieved in the gluco series (9 →
16 → 17) and in the manno series (10 → 19 → 20) to pro-
vide 1,1-disubstituted C-glycosides 18 and 21, respective-
ly.

Regiochemical assignments of 15, 18, and 21 were based
on 1H NMR analysis (following from the assignment of
the acetamide 14) but it was not possible to assign ‘ano-
meric’ stereochemistry unambiguously. For this reason,
the structure of azidoselenide 1613 was determined by X-
ray crystallography, which demonstrated the expected
preference of the anomeric radical to undergo axial attack,
with the trapping agent being Ph2Se2. We have assumed
that the galacto and manno adducts and the corresponding
C-glycosides 15, 18, and 21 display the same stereochem-
ical preference, and this is indicated as the outcomes
shown in Scheme 4.

It is also pertinent to note that selenoglycosides function
as glycosyl donors in more conventional O-glycosylation
processes.14 Using the manno adduct 19, activation using
NIS/TMSOTf and employing benzyl alcohol as the accep-
tor, gave O-glycoside 22 which underwent dithiol-mediat-
ed azide reduction and in situ acetylation to give O-
glycoside 23 in 60% overall yield (Scheme 5).15

The a-stereochemistry of O-glycosides 22 and 23 is as-
sumed (based on an expected preference for an a-manno-
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side) as 1H NMR did not allow for an unambiguous
assignment of anomeric stereochemistry.

In summary, radical-mediated azidoselenation, which is
well established for conventional endocyclic glycals, is
also effective with exo-glycals. The resulting adducts
function as intermediates for the synthesis of 1,1-disubsti-
tuted C-glycosides which constitute an unusual class of
carbohydrate-based amino acids derivatives 15, 18, and
21, and also O-glycosides, such as 22 and 23.
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J = 10.0 Hz, H2), 5.49 (1 H, app t, J = 10.0 Hz, H3), 6.42 (1 
H, br s, NH). 13C NMR (100 MHz, acetone-d6): d = 20.2, 
23.3, 26.5, 26.6, 26.7, 27.5, 27.0, 27.6, 29.5, 29.3, 42.4, 62.7, 
68.6, 70.1, 71.2, 104.1, 169.2, 172.0, 176.8, 177.3, 177.3. 
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R. R.; Compton, R. G.; Davis, B. G.; Fairbanks, A. J.; Rees, 
N. V.; Wadhawan, J. D. Org. Biomol. Chem. 2004, 2, 2195.

(15) Compound 22: 1H NMR (400 MHz, acetone-d6): d = 1.06, 
1.10, 1.16, 1.26 [36 H, 4 × s, 4 × COC(CH3)3], 1.97 
(NHCOCH3), 3.53 (1 H, dd, J = 15.0, 5.0 Hz, 1 × 
CH2NHCOCH3), 3.74 (1 H, dd, J = 15.0, 8.0 Hz, 1 × 
CH2NHCOCH3), 4.09 (1 H, m, H5), 4.16 (1 H, dd, J = 12.0, 
4.5 Hz, H6a), 4.32 (1 H, dd, J = 12.0, 2.0 Hz, H6b), 4.67 (1 
H, d, J = 12.0 Hz, 1 × CH2Ph), 4.90 (1 H, d, J = 12.0 Hz, 
1 × CH2Ph), 5.37 (1 H, app t, J = 2.0 Hz, H2), 5.44–5.46 (2 
H, m, H3 + H4), 6.16 (1 H, app t, J = 6.0 Hz, NH), 7.35 (1 
H, m, ArCH), 7.40–7.48 (4 H, m, ArCH). 13C NMR (100 
MHz, CDCl3): d = 20.3, 26.5, 26.5, 26.6, 26.8, 37.7, 38.3, 
38.5, 38.6, 38.7, 59.7, 61.6, 62.7, 65.0, 68.1, 70.1, 101.4, 
127.7, 127.8, 128.7, 138.0, 170.0, 176.3, 176.6, 177.1, 
177.3. ESI-HRMS: m/z calcd for C36H55NO11 [M + Na]+: 
700.3667; found: 700.3679
Compound 23: 1H NMR (400 MHz, CDCl3): d = 1.12, 1.14, 
1.25, 1.30 [36 H, 4 × s, 4 × COC(CH3)3], 3.26 (1 H, d, 
J = 13.5 Hz, 1 × CH2N3), 3.70 (1 H, d, J = 13.5 Hz, 1 × 
CH2N3), 3.92 (1 H, app dq, J = 10.0, 2.0 Hz, H5), 4.12 
(1 H, app d, J = 3.5 Hz, H6a), 4.14 (1 H, app d, J = 3.5 Hz, 
H6b), 4.62 (2 H, ABq, J = 12.0 Hz, CH2Ph), 5.41–5.52 (2 H, 
m, H3 + H4), 5.58 (1 H, d, J = 3.0 Hz, H2), 7.35–7.45 (5 H, 
m, ArCH). 13C NMR (100 MHz, CDCl3): d = 27.0, 27.1, 
38.3, 38.8, 49.5, 61.8, 63.3, 64.7, 68.4, 70.1, 70.6, 100.8, 
127.2, 128.7, 131.5, 136.4, 176.7, 177.1, 178.0. ESI-HRMS: 
m/z calcd for C34H51N3O11 [M + Na]+: 684.3467; found: 
684.3478.
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