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Abstract: 6-Bromo-3-oxoalkanoates, benzofurans and 1,7-dibro-
moheptan-4-ones were chemo- and regioselectively prepared by
reaction of 2-alkylidenetetrahydrofurans with boron tribromide.
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Boron tribromide (BBr3) has been widely used for the
demethylation of methylaryl ethers.1 The reaction of cy-
clic ethers with BBr3–MeOH has been reported to result in
ring opening and formation w-bromoalkanols.2 w-Halo-
carboxylic acids have been prepared by reaction of lac-
tones with BBr3.

3 Herein, we wish to report what are, to
the best of our knowledge, the first reactions of BBr3 with
cyclic enol ethers, e.g. 2-alkylidenetetrahydrofurans. This
transformation allows a chemo- and regioselective ap-
proach to 6-bromo-3-oxoalkanoates, benzofurans and 1,7-
dibromoheptan-4-ones which all represent useful synthet-
ic building blocks. Our methodology relies on a ‘cycliza-
tion-ring-opening’ strategy: the starting materials, 2-
alkylidenetetrahydrofurans, are readily available by one-
pot cyclizations. In contrast, the ring-opening products are
in most cases not readily available by other methods.4

The reaction of 1,3-dicarbonyl dianions with 1-bromo-2-
chloroethane has been reported to give 6-chloro-3-oxoal-
kanoates.5 These products readily undergo 5-exo-tet cy-
clizations under the basic conditions employed. In fact, 2-
alkylidenetetrahydrofurans 3 can be prepared in good
yields by one-pot cyclizations.6 Despite their synthetic
usefulness, 6-bromo-3-oxoalkanoates 2 are not directly
available by reaction of dianions with 1,2-dibromoethane,
due to reduction of the dielectrophile.7 We have found that
this problem could be successfully solved by sequential
treatment of 2-alkylidenetetrahydrofuran (3a) with BBr3

and water. During the optimization, the use of an excess
of BBr3 (4 equiv) proved to be important.8 A possible
mechanism could involve the activation of 3a (intermedi-
ate A), ring-opening (intermediate B) and subsequent pro-
tonation of the enolate. So far, we have no evidence for the
mechanism and for the configuration of B (Scheme 1).

The reaction of BBr3 with 2-alkylidenetetrahydrofurans
3b–h, containing a substituent located at the exocyclic
double bond, afforded the 2-alkyl- and 2-aryl-6-bromo-3-
oxoalkanoates 2b–h (Scheme 2, Table 1). During the for-
mation of 2h, the methylaryl ether of the starting material
was cleaved. The 4-alkyl-6-bromo-3-oxoalkanoates 2i–j
were prepared from 2-alkylidenetetrahydrofurans 3i–j
containing a substituent at carbon C-3. The reaction of
5,12-bicyclic 2-alkylidenetetrahydrofuran (3k), prepared
from ethyl cyclododecan-1-one-2-carboxylate, afforded
2k. The ring-opening of 5-alkyl-2-alkylidenetetrahydro-
furans, readily available by cyclization of 1,3-bis-silyl
enol ethers with epoxides,9 was studied next. Treatment of
3l–n with BBr3 afforded the 6-methyl-, 6-ethyl- and 6-bu-
tyl-6-bromo-3-oxoalkanoates 2l–n. The 6-bromo-7-chlo-
ro-3-oxoalkanoate (2o) was prepared in 80% yield from
3o. Starting with 4-phenyl-2-alkylidenetetrahydrofuran
(3p), 5-phenyl-6-bromo-3-oxoalkanoate (2p) was
prepared. Treatment of tetrahydrofuran 3q with BBr3

afforded the 1,3-diketone 2q. The reaction of 5-vinyl-2-
alkylidenetetrahydrofuran, readily available by cycliza-
tion of dilithiated methyl acetoacetate with 1,4-dibromo-
2-butene,10 afforded ethyl 8-bromo-3-oxooct-6-enoate. In
this reaction, the cleavage of the tetrahydrofuran moiety
proceeded by a SN¢ mechanism with migration of the dou-
ble bond. All reactions proceeded in good yield and with
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very good chemo- and regioselectivity. As expected from
the chemistry of boron tribromide, alkyl esters remained
intact.1

Treatment of 2-alkylidenetetrahydrofuran 4 with BBr3

afforded the functionalized benzofuran 5 (Scheme 3).11

The formation of 5 can be explained by ring-opening of 4
to give intermediate C, deprotection of the arylmethyl
ether (intermediate D) and subsequent BBr3 mediated cy-
clization by attack of the hydroxy onto the carbonyl
group. Functionalized benzofurans are of great pharmaco-
logical relevance and are used in the clinic.12 For example,
amiodarone represents a potent antiarrythmic drug
(Figure 1).12a,b Brominated benzofurans related to 5 repre-
sent useful synthetic building blocks. In addition, they are
interesting in their own right as metabolites of amio-
darone.12a

Scheme 3

Figure 1

Scheme 4

The reaction of BBr3 with dinuclear 2-alkylidenetetrahy-
drofuran (6a), available in one step from 2-acetyl-g-buty-
rolactone, afforded 1,7-dibromoheptan-4-one (7a) in 73%
yield (Scheme 4). The formation of 7a can be explained
by BBr3 mediated ring-opening of the cyclic enol, cleav-
age of the lactone, decarboxylation and protonation.13 The
unsymmetrical 1,7-dibromoheptan-4-one (7b) was pre-
pared in 85% yield from 2-alkylidenetetrahydrofuran (6b)
which is available in one step from epichlorohydrin.9 1,7-
Dibromoheptan-4-ones represent versatile synthetic
building blocks.14 For example, 7a has been used for the
synthesis of medium-sized carba- and heterocycles.14a,b

Unsymmetrical 1,7-dibromoheptan-4-ones are not readily
available by other methods.14f
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Table 1 Products and Yields

2 R1 R2 R3 R4 R5 (%)

a H H H H OEt 76

b H H H Oct OEt 95

c H H H Bn OMe 96

d H H H (CH2)3Cl OMe 84

e H H H Ph OMe 84

f H H H 4-MeC6H4 OMe 89

g H H H 4-ClC6H4 OMe 77

h H H H 4-HOC6H4 OMe 72

i H H Pr H OEt 96

j H H (CH2)3Cl H OMe 86

k H H -(CH2)9- OEt 87

l Me H H H OMe 80

m Et H H H OMe 91

n Bu H H H OMe 75

o CH2Cl H H H OMe 80

p H Ph H H OEt 83

q H H H H Ph 98

a Yields of isolated products.
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