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Abstract

Palladium-catalyzed cross-coupling reactions of aryl perfluorooctanesulfonates with amines are introduced. Application of the fluorous tag in

multistep synthesis of triaryl-substituted pyrimidine is also described.
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1. Introduction

Palladium-mediated organic transformations, such as

Suzuki–Miyaura, Heck, and Buchwald–Hartwig reactions, are

powerful synthetic methods for formation of carbon–carbon and

carbon–heteroatom bonds [1]. Solid-phase synthesis employs

substrates which attached to sulfonamide, Wang, PMB, Rink,

and other linkers for palladium-catalyzed cross-coupling

reactions to simplify reaction mixture purifications [2]. We

have recently engaged in the development of fluorous tags for

solution-phase synthesis [3]. Perfluorooctanesulfonyl-attached

phenols have been used for palladium-catalyzed reactions to

form aryl carbon–carbon, carbon–sulfur, and carbon–hydrogen

bonds (Scheme 1a–c) [4]. Reported in this paper is an extension

of this chemistry for Buchwald–Hartwig type amination to form

aryl carbon–nitrogen bond (Scheme 1d).

Aryl triflates (ArOSO2CF3) and aryl nonaflates (ArO-

SO2(CF2)3CF3) are well-known aryl halide equivalents for

palladium-catalyzed coupling reactions [5]. Solid-supported aryl

sulfonate linkers have also been developed [6]. Solution-phase

and solid-supported aryl perfluoroalkanesulfonates can be easily

prepared from a wide range of commercially available phenols.

They have high reactivity, good stability for room temperature

storage, chromatography purification, and resistance towards
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hydrolysis [7]. In the development of fluorous Suzuki reactions,

we found that aryl perfluorooctanesulfonates (ArO-

SO2(CF2)7CF3) had similar characters and literature procedures

developed for reactions of aryl triflates [8] can be easily

transferred to reactions of aryl perfluorooctanesulfonates [4]. It is

also noteworthy that perfluorooctanesulfonates containing a light

fluorous C8F17 tag usually have good solubility in common

reaction solvents such as DMF, toluene, and THF.

2. Results and discussion

Aryl perfluorooctanesulfonates 1a–c for palladium-catalyzed

coupling reactions were readily prepared by reaction of

commercially available phenols with perfluorooctanesulfonyl

fluoride under general conditions using K2CO3 as a base and

dimethylformamide (DMF) as a solvent at 70 8C for 5 h (Scheme

2) [9]. The crude aryl perfluorooctanesulfonates 1a–c usually

have greater than 90% purity after workup. They were used

directly for the cross-coupling reactions. If needed, sulfonates

can be further purified by recrystallization from MeOH or by

fluorous solid-phase extraction (F-SPE) using a FluoroFlash

cartridges [10]. After loaded the sample on the cartridge, it was

first eluted with 80:20 MeOH/H2O to remove non-fluorous

impurities, then with MeOH to obtain aryl perfluorooctanesul-

fonate 1 with purity typically >95%. Sulfonates 1a–c shown in

Scheme 2 represent three kinds of substrates: compound 1a has a

carbonyl functionality, compound 1b is heterocyclic, and

compound 1c has an electron rich methoxy substitution.
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Scheme 1.

Scheme 2.
With the aryl perfluorooctanesulfonates in hand, we

examined Buchwald–Hartwig type amination reactions follow-

ing reported procedures using Pd(OAc)2 and 2,20-bis(diphe-

nylphosphino)-1,10-binaphthyl (BINAP) as a catalyst, Cs2CO3

as a base, and toluene as a solvent [11]. Reactions under both

microwave and oil-bath heating conditions were evaluated.

Under microwave irradiation at 120–150 8C up to 30 min,

reactions did not reach completion. Formation of dark-brown

precipitate suggested that the incomplete reactions could be

caused by rapid decomposition of the catalyst under the

microwave heating.

Under optimized thermo amination conditions of heating the

reaction mixture at 80–90 8C for 48 h [12], aryl perfluor-

ooctanesulfonates 1a–c were reacted with different amines

including primary amines (butylamine and benzylamine),

secondary and cyclic amines (morpholine and 1-(2-pyridyl)-

pyrazine) (Table 1). Since excess amount of amine (2–3 equiv.)

was used to push the reaction to completion, unreacted amine

also existed in the reaction mixture as the non-fluorous

component. The desired products have to be purified by flash

chromatography with normal silica gel instead of by F-SPE.

Reactions with 1a and 1b gave good yields of amination

products 2, while the electron-rich sulfonate 1c gave no

amination product. We have not tried other reaction conditions

reported in literature for triflates that could result good yields of

amination products [13].
Scheme
After the study of palladium-catalyzed reactions of aryl

perfluorooctanesulfonates, we applied the fluorous tagging

strategy in the synthesis of triaryl-substituted pyrimidine

compound 6 (Scheme 3). In the multistep synthesis, the

perfluorooctanesulfonyl group has three potential functions: as

a phenol protecting group, as a fluorous tag for reaction mixture

separation, and as an activating group for palladium-catalyzed

coupling. The fluorous tag is removed during the cross-

coupling reaction in a traceless fashion; no additional step is

needed for the tag cleavage.

Fluorous benzaldehyde 1d was condensed with phosphonate

3 to form a,b-unsaturated ketone 4. A small amount (not

quantified) of detagged byproduct was observed under basic

reaction conditions. Compound 4 was then used for cycloaddi-

tion with benzamidine to form pyrimidine 5. Because of low

solubility of 4 and 5 in organic solvents, these two fluorous

intermediates were purified by crystallization instead of F-SPE.

Compound 4 was purified by crystallization with hexanes/Et2O,

whereas, compound 5 was precipitated out by adding water to
3.
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Table 1

Amination of aryl perfluorooctanesulfonates

F-sulfonate Amine Product Yield (%) Puritya (%)

BuNH2 66 91

67 >99

61 95

71 92

BuNH2 73 90

61 96

81 71

Not detected

a Assesed by LC–MS (UV 254 nm).
the reaction mixture. Easy isolations of 4 and 5 demonstrated

the technical compatibility of fluorous molecules with

conventional purification methods. Compound 5 was coupled

with benzylamine under optimized amination conditions

described above to give the targeted triaryl-substituted

pyrimidine 6 in 76% yield [14].

In summary, the scope of previously developed aryl

perfluorooctanesulfonate-based fluorous coupling reactions

for formation of aryl carbon–carbon, carbon–sulfur, and

carbon–hydrogen bonds has been extended to Buchwald–

Hartwig type amination to form aryl carbon–nitrogen bond. We

have also demonstrated the utility of fluorous tag in multistep

synthesis of a triaryl-substituted pyrimidine scaffold, which has

potential application in parallel synthesis of drug-like analogs.
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